
Mathematics for Decision Making: An Introduction

Lecture 13

Matthias Köppe

UC Davis, Mathematics

February 17, 2009

13–1

Reminder: Flows in networks

General structure: Flows in networks
In general, consider a digraph (directed graph) (V ,A), where

V is a set of vertices,
A is a set of (directed arcs), which are (ordered) pairs (a,b) ∈ V ×V with a 6= b (no
loops!)

We call two designated vertices r ,s ∈ V the source and the sink

An r -s flow x is a vector of real values xa,b for every arc (a,b) ∈ A such that, in
every vertex (except for source r and sink s), flow conservation constraints are
satisfied:

fx(b) := ∑
a∈V :

(a,b)∈A

xa,b− ∑
c∈V :

(b,c)∈A

xb,c = 0 for b ∈ V , b 6= r ,s.

We call fx(b) the excess of the flow x at vertex b.

The excess fx(s) at the sink is called the value of the flow x; note fx(s) =−fx(r).

Often, capacities u(a,b) are given, i.e., upper bounds on the flow values x(a,b).
We call a flow x feasible if it is non-negative and respects the upper bounds (if
given). 13–2

Reminder: Flows in networks, II

Maximum flow problem
Given a digraph (V ,A), source r ,
sink s, arc capacities ua,b:
Find a feasible flow x of maximum
value fx(s).

Minimum-cost r -s flow problem
Given a digraph (V ,A), source r ,
sink s, arc capacities ua,b, per-unit
costs ca,b, and a flow value φ:
Find a feasible flow x of value
fx(s) = φ that has minimum total flow
costs ∑ca,bxa,b.

Note that it is essential to use the excess function fx at the sink s if we want to
measure or prescribe the flow value. If we just determine the amount of incoming
flow, the flow model is not correct! Disconnected solutions are possible.

We now turn to study the maximum flow problem. We will discuss an optimality
criterion (strong duality theory): “max-flow min-cut”, and combinatorial algorithms to
compute the maximum flow.

13–3

Flows: Decomposition into Paths and Cycles

We have interpreted an integer r -s flow of value 1 as a path from r to s (plus
circulations), when we modeled the shortest-path problem as a minimum-cost flow.

Lemma (Integer flows as path packings)
There exists a family (P1, . . . ,Pk) of directed paths from r to s in (V ,A) with

|{i : (a,b) ∈ Pi}| ≤ ua,b for all (a,b) ∈ A

if and only if there exists a feasible integral r -s flow x of value k.

Proof.
When we add up unit path flows along the Pi , we clearly get a feasible integral r -s flow
of value k . It remains to show the converse.

If there is any directed circuit C with xa,b > 0 for all arcs (a,b) ∈ C, then construct
a new feasible flow x′ by reducing the arc flows along this cycle by 1 (or by
min{xa,b : (a,b) ∈ C }}). Continue until no such directed circuit exists.

If k > 0, follow a path starting from r , through arcs (a,b) with xa,b > 0. We never
get stuck due to flow conservation, and finally reach s. Call this (simple) path Pk .
Subtract the path flow from x, and continue. 13–4

Flows: Decomposition into Paths and Cycles, II

For general flows we have:

Theorem
Every r -s flow of nonnegative value is the sum of at most m = |A| flows, each of which
is a path flow or a circuit flow.

These decomposition results give us a natural idea how to construct a maximum
flow:

Start with the zero flow x = 0

Send flow along a path from source to sink

Repeat until there is no path with positive “bottleneck capacity”

Unfortunately, this fails. While we can decompose flows into paths, by using
arbitrary paths, one at a time, we cannot construct a maximum flow by packing
arbitrary paths. We either need to “look ahead”, or use a different idea that allows us to
continue if we get stuck.

13–5

Augmenting Paths

An important idea is to consider also paths P from r to s that include arcs in the
wrong direction (so these paths P are not directed paths).
We call these arcs reverse arcs (as opposed to forward arcs).
For a given flow x, we shall call a path x-incrementing if

for every forward arc (a,b) ∈ P, we have xa,b < ua,b , and
for every reverse arc (a,b) ∈ P, we have 0 < xa,b .

An x-incrementing path from r to s is called x-augmenting.
Why are these paths useful? We can:

increase flow by some ε > 0 on all forward arcs, and
decrease flow by this ε on backward arcs.

The resulting, augmented flow
respects the flow conservation constraints;
for ε small enough, is a feasible flow (capacities and nonnegativity hold);
Has a larger flow value.

We now claim:

Theorem

A feasible flow x is maximum if and only if there is no x-augmenting path.

13–6

Optimality Criteria

A theorem like this is easiest to prove if we have an optimality criterion that is based on
a certificate of optimality.

In the case of shortest paths, feasible potentials served as optimality certificates:
Any feasible potential y provided a lower bound for the length of any path from r to v .
For an optimal solution of this minimization problem (minimum-cost paths Pv from r
to v) we could construct a feasible potential (namely, setting yv to be the cost of Pv),
for which this lower bound was attained.

So the lower bound, matching the value of the feasible solution, provided the
optimality certificate.

In the case of maximum flow, we should be looking for useful upper bounds with
similarly strong properties.

13–7

Useful Upper Bounds: Cut Capacities

Let R ⊆ V be a set of vertices. Then we call the arc set

δ(R) = {(a,b) ∈ A : a ∈ R,b /∈ R }
the cut induced by R. Any arc set that can be obtained this way is called a cut.
An r -s cut is a cut induced by a set R with r ∈ R and s /∈ R.

Lemma
For any r-s cut δ(R) and any r-s flow x,

x(δ(R))−x(δ(V \R)) = fx(s).

Proof.
Add up flow conservation constraints.

Corollary
For any r-s cut δ(R) and any feasible r -s flow x,

fx(s)≤ u(δ(R)).
13–8

The Max-Flow Min-Cut Theorem

So any r -s cut provides an upper bound. But we have something much stronger:

Theorem (Max-Flow Min-Cut; Ford–Fulkerson [1956], Kotzig [1956])
If there is a maximum r-s flow, then

max{ fx(s) : x is a feasible r -s flow}= min{u(δ(R)) : δ(R) is an r -s cut}.

So, for an optimal solution of the maximization problem, there always exists an r -s cut,
for which the provided upper bound is attained.

Proof of the Max-Flow Min-Cut Theorem, and the theorem on slide 6.
By the Corollary, ≤ holds. Only need to find one pair x, δ(R) for which = holds.

Let x be a maximum r -s flow [or, a flow without x-augmenting path]

We define R = {v ∈ V : there is an x-incrementing path from r to v }.
Then r ∈ R (trivial) and s /∈ R (otherwise x-augmenting path, so x not maximum).

For (a,b) ∈ δ(R), we have xa,b = ua,b; for (a,b) ∈ δ(V \R), we have xa,b = 0
(Otherwise, there would be an x-incrementing path to b.)

By the Lemma, fx(s) = x(δ(R))−x(δ(V \R)) = u(δ(R)).
13–9

Consequences from Max-Flow Min-Cut, I

Corollary
If u is integral and there exists a maximum flow, there also exists a maximum flow that
is integral.

Thus integer flow problems are as easy to solve as continuous flow problems! This is in
contrast to the general situation of linear programs vs integer programs: the latter are
much harder to solve. This integrality property of network flows is one reason why
network flow formulations are useful as a modeling tool.

Proof.
Among all integral flows, pick one of maximum value, call it x.

If there existed an x-augmenting path, then since u is also integral, we could
increase the flow by an integer amount.

So x is already a maximum flow.

13–10

Consequences from Max-Flow Min-Cut, II

Corollary (Complementary slackness)
Let x be a feasible r -s flow and δ(R) be an r-s cut. Then: x is a maximum r-s flow if
and only if

xa,b = ua,b for (a,b) ∈ δ(R)

xa,b = 0 for (a,b) ∈ δ(V \R)

13–11

Auxiliary directed graphs

An algorithm for constructing maximum flows thus repeatedly needs to find
x-augmenting paths.

We already know algorithms for constructing (shortest) paths, so we might want to
use them.

However, reverse arcs complicate the picure.

So let us construct an auxiliary digraph G(x) such that finding a directed path
from r to s is the same as finding an x-augmenting path in G.

Constructing the auxiliary digraph G(x) from G = (V ,A)

For any arc (a,b) ∈ A with xa,b < ua,b, introduce an arc (a,b) in G(x).

For any arc (b,a) ∈ A with xb,a > 0, introduce an arc (a,b) in G(x).

(We allow to introduce parallel arcs.)

13–12

The Ford–Fulkerson Algorithm

Ford–Fulkerson Maximum Flow Algorithm
Input: A digraph G = (V ,A) with arc capacities u, vertices r and s.
Output: A maximum flow x and a set R ⊆ V inducing a minimum cut δ(R).

Set x := 0.

While we find a directed r -s path P in the auxiliary graph G(x):
Determine the x-width of P:

ε := min
{

min{ua,b− xa,b : (a,b) forward in P },

min{xa,b : (a,b) reverse in P }
}

Augment x along P by ε.

Set R to the set of vertices that can be reached by paths from r in G(x).

13–13

The Ford–Fulkerson Algorithm: Termination, Efficiency

Theorem (Termination of the Algorithm)
If u is integral and there is a maximum flow (of value K), then the Ford–Fulkerson
Maximum Flow Algorithm terminates after at most K augmentations.

Proof.
Each of the augmentations increases the flow value by an integer amount.

This also establishes that the Ford–Fulkerson Algorithm is a pseudo-polynomial
algorithm (for inputs with integer data that have a maximum flow).
(By the Max-Flow Min-Cut Theorem, the flow value is the same as some cut
capacity, so it is at most ∑uab, a quantity that is polynomial in the given data.)
Examples that really take K augmentations (with a specific choice of a sequence
of augmenting paths) can be easily constructed.
Moreover, if there is no maximum flow, the procedure might fail to terminate.
So, we are not completely happy with this basic algorithm.
A scaling approach (with data u/2k , for k decreasing to 0) leads to a polynomial
algorithm; we omit the details.
Even better, it turns out that a specific choice of x-augmenting paths (which is
currently unspecified) will lead to a strongly polynomial algorithm. 13–14

A Strongly Polynomial Time Variant

Theorem (Dinits [1970], Edmonds–Karp [1972])
If each augmentation is along a shortest (i.e., minimum number of arcs) augmenting
path, then the algorithm terminates after at most nm = |V | · |A| augmentations.

To prepare the proof, consider an augmentation along a (shortest) augmenting
path P = (v0, . . . ,vk) of length k , leading from flow x to flow x′.

Denote by dx(v ,w) the least number of arcs in a directed path from v to w in the
auxiliary digraph G(x); we set dx(v ,w) = +∞ if no such directed path exists.

Since subpaths of shortest paths are shortest, we have dx(r ,vi) = i and
dx(vi ,s) = k− i .

13–15

A Strongly Polynomial Time Variant, II

Lemma
Shortest-augmenting-path augmentations never decrease the length of shortest
directed paths in the auxiliary digraph from the source r to any node v and from any
node v to the sink s:

dx′(r ,v)≥ dx(r ,v) and dx′(v ,s)≥ dx(v ,s).

In particular, they never decrease the length of a shortest augmenting path:

dx′(r ,s)≥ dx(r ,s)

This lemma implies that shortest-augmenting-path augmentations proceed in stages,
during which augmenting paths of constant length are used:

Augmentations along paths of length 1 (possibly none)
Augmentations along paths of length 2 (possibly none)
...
Augmentations along paths of length n−1 (possibly none).

It now suffices to bound the number of augmentations of each stage in a
strongly polynomial way. 13–16

A Strongly Polynomial Time Variant, III

Let Ã(x) be the set of arcs (a,b) ∈ A that appear in a shortest x-augmenting path.

Lemma
If a shortest-augmenting-path augmentation does not increase the length of a shortest
augmenting path, i.e., dx′(r ,s) = dx(r ,s), then Ã(x′) is a proper subset of Ã(x).

Proof of the theorem.
From the second lemma, in each stage, there are at most m = |A| augmentations per
stage.
From the first lemma, there are at most n−1 stages.
So, in total at most nm augmentations.

13–17

Programming Project

The programming project is due Tuesday, March 17.

Implement the Bellman–Ford and the Dijkstra algorithms in a general-purpose
programming language of your choice.

Verify that your implementations are correct, by comparing (for small examples)
with an optimization model in ZIMPL/SCIP.

Document the running time of your implementations for all test problems (that can
be solved within reasonable time).

Your program should read data files in the format of the example data files
available at: http://www.math.ucdavis.edu/~mkoeppe/teaching/2009w/
mat-180-1/graphs/

Note that these data files describe the edges (with costs) of undirected graphs; it
is understood that the shortest path algorithms should run on the directed graph
obtained by replacing each edge by two arcs.

Bonus points, towards homework, can be earned by making these
implementations fast enough that the large sparse examples (bgfh-*) work within
seconds.

13–18

http://www.math.ucdavis.edu/~mkoeppe/teaching/2009w/mat-180-1/graphs/
http://www.math.ucdavis.edu/~mkoeppe/teaching/2009w/mat-180-1/graphs/

