Mathematics for Decision Making: An Introduction

Lecture 15

Matthias Képpe
UC Davis, Mathematics

February 24, 2009

15-1

The Ford—Fulkerson Algorithm

Ford—Fulkerson Maximum Flow Algorithm

Input: A digraph G = (V, A) with arc capacities u, vertices r and s.
Output: A maximum flow x and a set R C V inducing a minimum cut 8(R).

@ Setx:=0.

@ While we find a directed r-s path P in the auxiliary graph G(x):
Determine the x-width of P:

€= min{ min{ Uz p — Xap : (@ b) forward in P},
min{ X, : (a,b) reverse in P}}

Augment x along P by €.

@ Set R to the set of vertices that can be reached by paths from r in G(x).

The Ford—Fulkerson Algorithm: Termination, Efficiency

Theorem (Termination of the Algorithm)

Ifu is integral and there is a maximum flow (of value K), then the Ford—Fulkerson
Maximum Flow Algorithm terminates after at most K augmentations.

Each of the augmentations increases the flow value by an integer amount. O

@ This also establishes that the Ford—Fulkerson Algorithm is a pseudo-polynomial
algorithm (for inputs with integer data that have a maximum flow).
(By the Max-Flow Min-Cut Theorem, the flow value is the same as some cut
capacity, so it is at most Y up, a quantity that is polynomial in the given data.)

@ Examples that really take K augmentations (with a specific choice of a sequence
of augmenting paths) can be easily constructed.

@ Moreover, if there is no maximum flow, the procedure might fail to terminate.

@ So, we are not completely happy with this basic algorithm.

@ A scaling approach (with data [u/2*|, for k decreasing to 0) leads to a polynomial
algorithm; we omit the details.

@ Even better, it turns out that a specific choice of x-augmenting paths (which is
currently unspecified) will lead to a strongly polynomial algorithm. 153

A Strongly Polynomial Time Variant

Theorem (Dinits [1970], Edmonds—Karp [1972])

If each augmentation is along a shortest (i.e., minimum number of arcs) augmenting
path, then the algorithm terminates after at most nm = | V| - |A| augmentations.

@ To prepare the proof, consider an augmentation along a (shortest) augmenting
path P = (vp,..., V) of length k, leading from flow x to flow x'.

@ Denote by dy(v,w) the least number of arcs in a directed path from v to w in the
auxiliary digraph G(x); we set dx(v, w) = +o0 if no such directed path exists.

@ Since subpaths of shortest paths are shortest, we have dx(r, v,-) =ijand
ox(vi,8) =k —1i.

15-4

A Strongly Polynomial Time Variant, I

Lemma

Shortest-augmenting-path augmentations never decrease the length of shortest
directed paths in the auxiliary digraph from the source r to any node v and from any
node v to the sink s:

ay (r,v) > dx(r,v) and dy(v,s) > dk(v,s).

In particular, they never decrease the length of a shortest augmenting path:

ay (r,s) > dx(r,s)

This lemma implies that shortest-augmenting-path augmentations proceed in stages,
during which augmenting paths of constant length are used:

@ Augmentations along paths of length 1 (possibly none)

@ Augmentations along paths of length 2 (possibly none)

@ Augmentations along paths of length n— 1 (possibly none).
It now suffices to bound the number of augmentations of each stage in a
strongly polynomial way. 155

A Strongly Polynomial Time Variant, Il

Let A(x) be the set of arcs (a, b) € A that appear in a shortest x-augmenting path.

Lemma

If a shortest-augmenting-path augmentation does not increase the length oj a shortest
augmenting path, i.e., dy (r,s) = dx(r,s), then A(X') is a proper subset of A(x).

Proof of the theorem.

From the second lemma, in each stage, there are at most m = |A| augmentations per
stage.

From the first lemma, there are at most n— 1 stages.

So, in total at most nm augmentations. O

| A\

An Application of Max-Flow Min-Cut: Bipartite Matching

@ In the pen plotter problem, we came across a matching problem.

@ As a reminder, a matching of an undirected graph G = (V, E) is a set M of edges
such that every vertex v € V is incident with at most one edge e € M. In other
words, the edges of a matching have no end in common.

@ An important special case concerns bipartite graphs G= (PUQ, E), i.e., graphs
where every edge has its ends in different parts:

Ec{{p.g}:peP.gcQ}.

@ The maximum bipartite matching problem (or marriage problem) asks for a
matching of maximum size in a given bipartite graph G.

@ By introducing an artificial source r (with arcs of capacity 1 to all nodes in P) and
a sink s (with arcs of capacity 1 from all nodes in P), and directing the edges to
become arcs from p € P to g € Q (of capacity co), we can reduce the problem to
a maximum flow problem.

@ So the Ford—Fulkerson algorithm and the max-flow min-cut theorem immediately
translate to results for the maximum bipartite matching problem.

An Application of Max-Flow Min-Cut: Bipartite Matching, Il

In fact, the max-flow min-cut theorem translates to another classic result of
combinatorial duality.

@ A cover of agraph G= (V,E) is aset C C V of vertices such that every edge
has at least one end in C.
@ ltis easy to see that matchings and covers are in weak duality:

o Let M C E be any matching, C C V be any cover.
e Then every edge {a,b} € M has at least one end in C (because C is a cover).
o Because the edges of the matching M have no end in common,

M <[C|.

@ But also strong duality holds:

Theorem (Konig’s Theorem, 1931)
For a bipartite graph G,

max{|M| : M is a matching} = min{|C| : C is a cover}.

(This is false for non-bipartite graphs.)

15-8

