
Mathematics for Decision Making: An Introduction

Lecture 15

Matthias Köppe

UC Davis, Mathematics

February 24, 2009

15–1

The Ford–Fulkerson Algorithm

Ford–Fulkerson Maximum Flow Algorithm
Input: A digraph G = (V ,A) with arc capacities u, vertices r and s.
Output: A maximum flow x and a set R ⊆ V inducing a minimum cut δ(R).

Set x := 0.

While we find a directed r -s path P in the auxiliary graph G(x):
Determine the x-width of P:

ε := min
{

min{ua,b− xa,b : (a,b) forward in P },

min{xa,b : (a,b) reverse in P }
}

Augment x along P by ε.

Set R to the set of vertices that can be reached by paths from r in G(x).

15–2

The Ford–Fulkerson Algorithm: Termination, Efficiency

Theorem (Termination of the Algorithm)
If u is integral and there is a maximum flow (of value K), then the Ford–Fulkerson
Maximum Flow Algorithm terminates after at most K augmentations.

Proof.
Each of the augmentations increases the flow value by an integer amount.

This also establishes that the Ford–Fulkerson Algorithm is a pseudo-polynomial
algorithm (for inputs with integer data that have a maximum flow).
(By the Max-Flow Min-Cut Theorem, the flow value is the same as some cut
capacity, so it is at most ∑uab, a quantity that is polynomial in the given data.)
Examples that really take K augmentations (with a specific choice of a sequence
of augmenting paths) can be easily constructed.
Moreover, if there is no maximum flow, the procedure might fail to terminate.
So, we are not completely happy with this basic algorithm.
A scaling approach (with data bu/2kc, for k decreasing to 0) leads to a polynomial
algorithm; we omit the details.
Even better, it turns out that a specific choice of x-augmenting paths (which is
currently unspecified) will lead to a strongly polynomial algorithm. 15–3

A Strongly Polynomial Time Variant

Theorem (Dinits [1970], Edmonds–Karp [1972])
If each augmentation is along a shortest (i.e., minimum number of arcs) augmenting
path, then the algorithm terminates after at most nm = |V | · |A| augmentations.

To prepare the proof, consider an augmentation along a (shortest) augmenting
path P = (v0, . . . ,vk) of length k , leading from flow x to flow x′.

Denote by dx(v ,w) the least number of arcs in a directed path from v to w in the
auxiliary digraph G(x); we set dx(v ,w) = +∞ if no such directed path exists.

Since subpaths of shortest paths are shortest, we have dx(r ,vi) = i and
dx(vi ,s) = k− i .

15–4

A Strongly Polynomial Time Variant, II

Lemma
Shortest-augmenting-path augmentations never decrease the length of shortest
directed paths in the auxiliary digraph from the source r to any node v and from any
node v to the sink s:

dx′(r ,v)≥ dx(r ,v) and dx′(v ,s)≥ dx(v ,s).

In particular, they never decrease the length of a shortest augmenting path:

dx′(r ,s)≥ dx(r ,s)

This lemma implies that shortest-augmenting-path augmentations proceed in stages,
during which augmenting paths of constant length are used:

Augmentations along paths of length 1 (possibly none)
Augmentations along paths of length 2 (possibly none)
...
Augmentations along paths of length n−1 (possibly none).

It now suffices to bound the number of augmentations of each stage in a
strongly polynomial way. 15–5

A Strongly Polynomial Time Variant, III

Let Ã(x) be the set of arcs (a,b) ∈ A that appear in a shortest x-augmenting path.

Lemma
If a shortest-augmenting-path augmentation does not increase the length of a shortest
augmenting path, i.e., dx′(r ,s) = dx(r ,s), then Ã(x′) is a proper subset of Ã(x).

Proof of the theorem.
From the second lemma, in each stage, there are at most m = |A| augmentations per
stage.
From the first lemma, there are at most n−1 stages.
So, in total at most nm augmentations.

15–6

An Application of Max-Flow Min-Cut: Bipartite Matching

In the pen plotter problem, we came across a matching problem.

As a reminder, a matching of an undirected graph G = (V ,E) is a set M of edges
such that every vertex v ∈ V is incident with at most one edge e ∈M. In other
words, the edges of a matching have no end in common.

An important special case concerns bipartite graphs G = (P ∪Q,E), i.e., graphs
where every edge has its ends in different parts:

E ⊆
{
{p,q} : p ∈ P,q ∈ Q

}
.

The maximum bipartite matching problem (or marriage problem) asks for a
matching of maximum size in a given bipartite graph G.

By introducing an artificial source r (with arcs of capacity 1 to all nodes in P) and
a sink s (with arcs of capacity 1 from all nodes in P), and directing the edges to
become arcs from p ∈ P to q ∈ Q (of capacity∞), we can reduce the problem to
a maximum flow problem.

So the Ford–Fulkerson algorithm and the max-flow min-cut theorem immediately
translate to results for the maximum bipartite matching problem.

15–7

An Application of Max-Flow Min-Cut: Bipartite Matching, II

In fact, the max-flow min-cut theorem translates to another classic result of
combinatorial duality.

A cover of a graph G = (V ,E) is a set C ⊆ V of vertices such that every edge
has at least one end in C.

It is easy to see that matchings and covers are in weak duality:
Let M ⊆ E be any matching, C ⊆ V be any cover.
Then every edge {a,b} ∈M has at least one end in C (because C is a cover).
Because the edges of the matching M have no end in common,

|M| ≤ |C|.

But also strong duality holds:

Theorem (Kőnig’s Theorem, 1931)
For a bipartite graph G,

max{|M| : M is a matching}= min{|C| : C is a cover}.

(This is false for non-bipartite graphs.)
15–8

