Mathematics for Decision Making: An Introduction

Lecture 17

Matthias Köppe
UC Davis, Mathematics

March 3, 2009

Minimum-cost flow problems

Minimum-cost r-s flow problem

Given a digraph (V, A), source r, sink s, arc capacities $u_{v, w}$, per-unit costs $c_{v, w}$, and a flow value ϕ :
Find a feasible flow \mathbf{x} of value $f_{\mathbf{x}}(s)=\phi$ that has minimum total flow $\operatorname{costs} \sum c_{v, w} X_{v, w}$.
We can generalize this to problems with several sources and sinks. (Note this is still the case of one commodity - i.e., the same kinds of goods are produced in the sources and consumed in the sinks, so it does not matter to which sink something is sent.)

Minimum-cost flow problem

Given a digraph (V, A), arc capacities $u_{V, w}$, and flow excess values b_{v} for all nodes, find a feasible flow, i.e., a vector \mathbf{x} of arc flows $x_{V, w}$ with

$$
0 \leq x_{v, w} \leq u_{v, w}
$$

and

$$
f_{\mathbf{x}}(v)=b_{v}
$$

that has minimum total flow costs $\sum c_{v, w} x_{v, w}$.

The primal criterion of optimality

- By definition, a feasible flow \mathbf{x}^{1} for the minimum-cost flow problem has minimal cost if and only if there exists no feasible flow \mathbf{x}^{2} of smaller cost.
- So let's consider a feasible flow \mathbf{x}^{2} as a candidate.
- Call $\overline{\mathbf{x}}=\mathbf{x}^{2}-\mathbf{x}^{1}$ the difference of the two flows.
- Since both \mathbf{x}^{1} and \mathbf{x}^{2} satisfy the equations $f_{\mathbf{x}}(v)=b_{v}$ for all v, we have

$$
f_{\overline{\mathbf{x}}}(v)=0 \quad \text { for all } v
$$

- From $\mathbf{0} \leq \mathbf{x}^{1}+\overline{\mathbf{x}} \leq \mathbf{u}$, we also have the lower and upper bounds

$$
-\mathbf{x}^{1} \leq \overline{\mathbf{x}} \leq \mathbf{u}-\mathbf{x}^{1} .
$$

- Finally, \mathbf{x}^{2} has smaller cost if and only if $\overline{\mathbf{x}}$ has negative cost:

$$
\sum_{(v, w) \in A} c_{v, w} \bar{x}_{v, w}<0
$$

- These three conditions characterize "difference flows" $\overline{\mathbf{x}}$ that can be added to the feasible flow \mathbf{x}^{1}, to obtain a new feasible flow (\mathbf{x}^{2}) of smaller cost.

Using auxiliary networks

- Components of $\overline{\mathbf{x}}$ can be negative. To work around this, if $x_{v, w}^{1}>0$, we write

$$
\bar{x}_{v, w}=z_{v, w}-z_{w, v}^{\mathrm{rev}}
$$

with non-negative variables that respect the bounds

$$
\begin{aligned}
& 0 \leq z_{v, w} \leq u_{v, w}-x_{v, w}^{1} \\
& 0 \leq z_{w, v}^{\text {rev }} \leq x_{v, w}^{1} .
\end{aligned}
$$

- We can interpret this as a feasible flow \mathbf{z} (without source or sink, i.e., a circulation) in the auxiliary network $G\left(\mathbf{x}^{1}\right)$.
- Note that the auxiliary graph does not have arcs corresponding to variables $z_{v, w}$ and $z_{w, v}^{\mathrm{rev}}$ that are fixed to zero by the above bounds.
- (Note that the relation between $\overline{\mathbf{x}}$ and \mathbf{z} is one-to-many.)

Theorem

A feasible flow \mathbf{x}^{1} has minimal cost if and only if there does not exist a feasible circulation \mathbf{z} in the auxiliary network (with the given capacities) with negative cost

$$
\mathbf{c}(\mathbf{z}):=\sum_{a \in A\left(\mathbf{x}^{1}\right)}\left(c_{v, w} z_{v, w}-c_{v, w} z_{w, v}^{\mathrm{rev}}\right) .
$$

Using auxiliary networks

- Now, from the Flow Decomposition Theorem, we know that every circulation can be decomposed into flows along (simple) directed circuits:

$$
\mathbf{z}=\sum_{i=1}^{k} \lambda_{i} \mathbf{z}^{i}
$$

(with $\lambda_{i} \geq 0$, and \mathbf{z}^{i} a unit flow along a simple directed circuit, and $k \leq|A|$)

- Since $\mathbf{c}(\mathbf{z})=\sum_{i=1}^{k} \lambda_{i} \mathbf{c}\left(\mathbf{z}^{i}\right)$, we know that if $\mathbf{c}(\mathbf{z})<0$, then at least one $\mathbf{c}\left(\mathbf{z}^{i}\right)<0$, so there exists a simple directed circuit of negative cost in $G\left(\mathbf{x}^{1}\right)$.
- On the other hand, if \mathbf{z}^{i} is a (unit) flow along a simple directed circuit in $G\left(\mathbf{x}^{1}\right)$ with $\mathbf{c}\left(\mathbf{z}^{i}\right)<0$, then \mathbf{x}^{1} is not minimal (because we can augment \mathbf{x}^{1} by sending some $\lambda_{i}>0$ units of flow along the circuit, which will decrease the total cost).

Theorem

A feasible flow \mathbf{x}^{1} has minimal cost if and only if there does not exist a simple directed circuit of negative cost in the auxiliary network.

Augmenting Circuit Algorithm for Min Cost Flow

Augmenting Circuit Algorithm, Kantoróvich [1942]

Input: Graph $G=(V, A)$, capacities \mathbf{u}, excess values \mathbf{b}, costs \mathbf{c}

- Find a feasible flow \mathbf{x} (max-flow, homework)
- While there exists a negative-cost directed circuit in $G(\mathbf{x})$, i.e., an augmenting circuit for \mathbf{x} in G :

Determine the capacity (bottleneck) of the augmenting circuit.
Augment \mathbf{x} along C by this bottleneck.

- Negative-cost directed circuits can be determined (in polynomial time) by running the Bellman-Ford algorithm, or other shortest-path algorithms. (Key: cycles in the predecessor vector.)
- Again, as we see already on simple examples, this gives us (only) a pseudo-polynomial algorithm for instances where it terminates.
- Choosing "most negative" augmenting circuits does not work (neither effective nor efficient)
- Choosing minimum-mean-cost (i.e., most-negative-mean-cost) circuits produces a polynomial-time algorithm, Goldberg-Tarjan [1989]
- A strongly polynomial algorithm for min-cost flow was unknown until 1985!

