
Mathematics for Decision Making: An Introduction

Lecture 17

Matthias Köppe

UC Davis, Mathematics

March 3, 2009

17–1

Minimum-cost flow problems

Minimum-cost r -s flow problem
Given a digraph (V ,A), source r , sink s, arc capacities uv ,w , per-unit costs cv ,w , and a
flow value φ:
Find a feasible flow x of value fx(s) = φ that has minimum total flow costs ∑cv ,w xv ,w .

We can generalize this to problems with several sources and sinks. (Note this is still
the case of one commodity – i.e., the same kinds of goods are produced in the
sources and consumed in the sinks, so it does not matter to which sink something is
sent.)

Minimum-cost flow problem
Given a digraph (V ,A), arc capacities uv ,w , and flow excess values bv for all nodes,
find a feasible flow, i.e., a vector x of arc flows xv ,w with

0≤ xv ,w ≤ uv ,w

and
fx(v) = bv ,

that has minimum total flow costs ∑cv ,w xv ,w . 17–2

The primal criterion of optimality

By definition, a feasible flow x1 for the minimum-cost flow problem has minimal
cost if and only if there exists no feasible flow x2 of smaller cost.

So let’s consider a feasible flow x2 as a candidate.

Call x̄ = x2−x1 the difference of the two flows.

Since both x1 and x2 satisfy the equations fx(v) = bv for all v , we have

fx̄(v) = 0 for all v .

From 0≤ x1 + x̄≤ u, we also have the lower and upper bounds

−x1 ≤ x̄≤ u−x1.

Finally, x2 has smaller cost if and only if x̄ has negative cost:

∑
(v ,w)∈A

cv ,w x̄v ,w < 0

These three conditions characterize “difference flows” x̄ that can be added to the
feasible flow x1, to obtain a new feasible flow (x2) of smaller cost.

17–3

Using auxiliary networks

Components of x̄ can be negative. To work around this, if x1
v ,w > 0, we write

x̄v ,w = zv ,w − zrev
w ,v

with non-negative variables that respect the bounds

0≤ zv ,w ≤ uv ,w − x1
v ,w

0≤ zrev
w ,v ≤ x1

v ,w .

We can interpret this as a feasible flow z (without source or sink, i.e., a
circulation) in the auxiliary network G(x1).
Note that the auxiliary graph does not have arcs corresponding to variables zv ,w
and zrev

w ,v that are fixed to zero by the above bounds.
(Note that the relation between x̄ and z is one-to-many.)

Theorem
A feasible flow x1 has minimal cost if and only if there does not exist a feasible
circulation z in the auxiliary network (with the given capacities) with negative cost

c(z) := ∑
a∈A(x1)

(cv ,w zv ,w − cv ,w zrev
w ,v).

17–4

Using auxiliary networks

Now, from the Flow Decomposition Theorem, we know that every circulation can
be decomposed into flows along (simple) directed circuits:

z =
k

∑
i=1

λizi

(with λi ≥ 0, and zi a unit flow along a simple directed circuit, and k ≤ |A|)
Since c(z) = ∑

k
i=1 λic(zi), we know that if c(z) < 0, then at least one c(zi) < 0,

so there exists a simple directed circuit of negative cost in G(x1).

On the other hand, if zi is a (unit) flow along a simple directed circuit in G(x1) with
c(zi) < 0, then x1 is not minimal (because we can augment x1 by sending some
λi > 0 units of flow along the circuit, which will decrease the total cost).

Theorem
A feasible flow x1 has minimal cost if and only if there does not exist a simple directed
circuit of negative cost in the auxiliary network.

17–5

Augmenting Circuit Algorithm for Min Cost Flow

Augmenting Circuit Algorithm, Kantoróvich [1942]
Input: Graph G = (V ,A), capacities u, excess values b, costs c

Find a feasible flow x (max-flow, homework)

While there exists a negative-cost directed circuit in G(x), i.e., an augmenting
circuit for x in G:

Determine the capacity (bottleneck) of the augmenting circuit.
Augment x along C by this bottleneck.

Negative-cost directed circuits can be determined (in polynomial time) by running
the Bellman–Ford algorithm, or other shortest-path algorithms. (Key: cycles in the
predecessor vector.)
Again, as we see already on simple examples, this gives us (only) a
pseudo-polynomial algorithm for instances where it terminates.
Choosing “most negative” augmenting circuits does not work (neither effective nor
efficient)
Choosing minimum-mean-cost (i.e., most-negative-mean-cost) circuits produces a
polynomial-time algorithm, Goldberg–Tarjan [1989]
A strongly polynomial algorithm for min-cost flow was unknown until 1985!

17–6

