
Mathematics for Decision Making: An Introduction

Lecture 20

Matthias Köppe

UC Davis, Mathematics

March 12, 2009

20–1



The Primal-Dual Algorithm (reminder)

Primal-Dual Algorithm
Input: Graph G = (V ,A), capacities u, excess values b, costs c

Construct a pair of initial solutions x, y.

While x is not feasible:
If there exists an x-augmenting path P of equality arcs:

Determine the width of the path
Augment the flow x along P

Otherwise:
Find a vertex set R blocking all such paths, and change yv for all v ∈ V \R

(as described on page 18–12 1
2 )

We were not happy with this algorithm because it seems we may need quite a
number of dual steps (change of potentials) until we can make the next primal
step (sending flow from an x-source to an x-sink)

20–2



The Primal-Dual Algorithm (complexity analysis)

To be more precise: Because each dual step increases the size of the blocking
set R by at least one vertex, at most n−1 dual steps are necessary
For integer-valued data, it is clear that each primal step (augmenting flow)
decreases the imbalance by at least 1; so the number of augmentations is
bounded by the initial imbalance

Bx0 := ∑
v

max{0,bv − fx0(v)},

where x0 is the initial feasible solution.
For non-negative costs, we could start with the zero flow x0 = 0, so we have at
most

B0 = ∑
v

max{0,bv}

augmentations.
So again, we will get a pseudo-polynomial algorithm of running time
O(S(n,m) ·n ·Bx0), where S(n,m) is the running time of a shortest-path
computation.
(Knowing this more precisely does not make us happier, though.)

20–3



Primal-Dual Algorithm with Least-Cost Augmenting Paths

This observation suggests a new algorithm, due to Busacker–Gowen [1961]

Primal-Dual Algorithm with Least-Cost Augmenting Paths
Input: Graph G = (V ,A), capacities u, excess values b, costs c

Construct a pair of initial solutions x, y.

While x is not feasible:
Find a least-cost (with respect to reduced costs c̄) x-incrementing path Pv

from an x-source to v , for each v ∈ V (one nonnegative-cost
shortest-path-tree calculation in a graph with an artificial source);
denote by σv the costs of the paths.

Choose an x-sink s such that σs is minimum
Update the potentials yv := yv +min{σv ,σs} for v ∈ V .
Augment x on Ps.

Lemma
This algorithm maintains the optimality conditions on x and y in each step.

20–6



Efficiency of the Algorithm, Initial Feasible Solution

Because the dual update can be done in one step, using a single
shortest-path-tree computation, this is quite a bit faster. The running time reduces
to O(S(n,m) ·n ·Bx0).
How do we construct a pair of initial solutions, by the way?

If all costs are non-negative, can use x = 0, y = 0.
We could try to set y = 0 (or arbitrary), and set xv ,w = uv ,w if c̄v ,w < 0 and xv ,w = 0
to satisfy the optimality conditions. However, this fails if some uv ,w =∞.

General solution: (updated)
Solve a maximum-flow problem to find out whether there is a feasible flow; discard the
solution.
Solve a shortest path problem (in a directed graph G∞ that only has the arcs with
infinite capacities, using the original costs c).
If there is no feasible shortest-path potential, there exists a negative-cost directed
cycle of infinite capacity; so the problem is unbounded (no optimal solution).
Otherwise, we obtain a feasible shortest-paths potential y on G∞; so we have
yw ≤ yv + cv ,w for all (v ,w) with uv ,w =∞.
We use this y as the initial potential. From the above inequality we have c̄v ,w ≥ 0 for
all arcs (v ,w) with uv ,w =∞.
Now set xv ,w = uv ,w if c̄v ,w < 0 and xv ,w = 0. (Note that no xv ,w will be infinite.)

20–10



Outlook

By a scaling technique (where demands bv are replaced by bbv/2kc),
Edmonds–Karp [1972] obtained a polynomial-time variant. The running time is
O(n ·S(n,m) · (1+ logmax{B0,U})), where U is the largest finite arc capacity.

The scale-and-shrink algorithm (following from work by Tardos [1985], Orlin
[1985], Fujishige [1986]) is a strongly polynomial-time variant, with a running
time of O((m0 +n)n logn ·S(n,m)).

20–11



There’s much more of optimization to learn!

We have only scratched the surface. . .

MAT-168 (Spring 2009) – Linear Programming

2009/2010: Year-long program (VIGRE RFG) on optimization:

Optimization seminar
Reading courses
258A (Fall 2009) – Numerical Optimization
258B (Winter 2010) – Variational Analysis and Mixed-Integer Nonlinear Programming
280 (Spring 2010) – Integer Programming

20–12


