
Mathematics for Decision Making: An Introduction

Lecture 6

Matthias Köppe

UC Davis, Mathematics

January 22, 2009

6–1

Case Study: Line Drawings on Pen Plotters

Optimizing the operation of a pen plotter
Pen plotters are used instead of printers for very large-scale line drawings, such as for
drawings in architecture, or charts of logic circuits in electronics. (Nowadays pen
plotters are gradually being replaced by large-format inkjet printers.)

The plotter can move a pen horizontally

At the same time it can roll the paper (either a large sheet or paper from a roll) up
and down

These movements can be done in pen-up (not drawing) or pen-down (drawing)
mode

Problem: Given a drawing to be produced, minimize the total drawing time.

Key insights:
How is the drawing time determined?
There are two parts of the total drawing time – one part is independent of our
decisions, one does depend on our decisions.
Can we draw every drawing in pen-down mode only?
What are useful variables for modeling?
What constraints do we need? 6–2

Pen plotter – Input data

A line drawing can be formalized like this:

We assign numbers 1, . . . ,n arbitrarily to all endpoints of straight line segments
and collect them in a set V = {1, . . . ,n}
A line segment between endpoints i and j will be encoded by an edge {i , j}
Thus the combinatorics of the drawing will be represented as a graph G = (V ,E)

In addition, we need as input the coordinates of the endpoints (they determine the
objective function!); we denote them as parameters xi ,yi for i = 1, . . . ,n.

6–3

Pen plotter: Assignment model

Finding an optimal way to draw a line drawing means to bring actions into sequence.
Our first model therefore assigns actions, such as

“draw a line from a to b”
“move the pen (in pen-up mode) from a to b”

to sequence numbers (abstractions of passing time) 1,2,3,
Let’s use 0/1 variables

xa,b,i = 1 if we draw a line from a to b as the i-th action

ya,b,i = 1 if we move the pen from a to b as the i-th action

It’s clear we need at most 2n−1 of these actions to draw n lines, so we use
i = 1, . . . ,2n−1.
Constraints: “We need to draw every line {a,b} exactly once (direction does not
matter)”:

∑
i

(xa,b,i + xb,a,i) = 1 for {a,b} ∈ E

Constraints: “There is at most one action we can do at any given time”:

∑
a,b∈V :a 6=b

ya,b,i + ∑
{a,b}∈E

xa,b,i ≤ 1 for i = 1, . . . ,2n−1

6–4

Pen plotter: Assignment model, cont’d

Constraints: “No teleporting”: We can start from point b in period i + 1 only if we
arrived at b in period i .

∑
a∈V :
a 6=b

ya,b,i + ∑
a∈V :
{a,b}∈E

xa,b,i ≥ ∑
c∈V :
b 6=c

yb,c,i+1 + ∑
c∈V :
{b,c}∈E

xb,c,i+1

for b ∈ V and i = 1, . . . ,2n−2.

By using ≥ (rather than =), we allow to let a period of activity be followed by a period in
which nothing happens.

Notes on this model:

The no-teleporting constraints can be understood as flow conservation constraints
in a time-layered network with an implicit sink.

The at-most-one-action constraint for period 1 together with the no-teleporting
constraints imply all the other at-most-one-action constraints (flow principle).

6–5

More ZIMPL Power – Reading from data files

We want to be able to read parameters and sets from simple data files, to complete the
separation between the ZIMPL model (which stays fixed) and data (which varies).

Following UNIX tradition, our data files are plain text files; one line is one “record” that
we read in; an example:

Labeled points
label x y
1 7 208
2 137 187
3 384 580
4 684 536
5 925 278

Edges in a graph
from to
38 100
36 60
91 99
37 48
7 58

Here the line starting with # is a comment line. Non-comment lines are split into
“fields”, separated by either whitespace or a comma, semicolon, or colon.

6–6

More ZIMPL Power – Reading from data files, II

ZIMPL uses this syntax, which can be used with set and param definitions:
read FILENAME as TEMPLATE-STRING comment COMMENT-CHARACTER;

To read in the list of labeled points with coordinates, we first create a set of the labels.

set labels := { read "plot-points-100-1" as "<1n>" comment "#" };

Here the template string means “take the 1st field (of each line) and interpret it as a
numeric (n) value”. The 1st field, in our data format, is the numeric label that we assign
to the points.

Now that we have this index set, we read in the coordinates as (indexed) parameters.
Note that parameters can only be numbers or strings (but not tuples), so we use
separate parameters for the x and the y coordinates:

param x_coordinates[labels]
:= read "plot-points-100-1" as "<1n> 2n" comment "#";

param y_coordinates[labels]
:= read "plot-points-100-1" as "<1n> 3n" comment "#";

The template string means: Take the 1st field and interpret it as an index; then fill that
parameter from the 2nd (or 3rd, respectively) field. Compare with the initialization
syntax of parameters. 6–7

Modeling the Drawing Time (Objective Function)

Consider a straight line (to be drawn in pen-down mode) or a movement (in pen-up
mode) from point (x1,y1) to point (x2,y2). Let (∆x ,∆y) = (x1− x2,y1− y2).

Pen-down movement
We assume that the drawing time for
the line depends on |∆x | and |∆y |, so
let’s denote it by fdown(∆x ,∆y).
Depending on the “pen” technology
(ink pens vs. ballpoint pens or cutting
knives), a plausible requirement could
be that all lines are drawn with the
same pen velocity α, to ensure the
same amount of ink bleeds into the
paper. So the drawing time would be
proportional to the Euclidean distance
of the endpoints:

fdown(∆x ,∆y) = α
√

(∆x)2 + (∆y)2.

Pen-up movement
We denote the movement time
by fup(∆x ,∆y).
In pen-up mode, horizontal movement
(moving the pen) and vertical
movement (rolling the paper up or
down) can be done independently, at
the maximum speeds β, γ of the two
(different!) technologies.
A plausible model of the movement
time therefore is:

fup(∆x ,∆y) = max{β|∆x |,γ|∆y |}

6–8

Assignment model: Testing the formulation

Model and data:

The complete ZIMPL model is found in plotter-assignment.zpl

We use the data files named like this: plot-points-10-1 and
plot-edges-10-20-1 – these are 10 points, and using a graph density of 20%
(i.e., 20% of the edges of the complete graph are there)

These data files were randomly generated using Python programs
make-random-points.py, make-random-graph.py

Remark: Generators of random examples allow to quickly test the performance of
the model for various sizes of problems. . . but note that this might not tell enough
about the performance of real-world examples, which could have completely
different characteristics than randomly generated examples.

6–9

Assignment model – Test results and summary

Test results:

The model (with 10 points and 10% density of edges to be drawn) creates about
1 800 variables, is solved in 6 seconds.
10 points, 20% density: about 2 000 variables, 79 seconds
10 points, 50% density: about 2 300 variables; after 680 seconds the best known
feasible solution has 13.5% gap
30 points, 10% density: about 16 000 variables
50 points, 10% density: about 260 000 variables
Models with 100 points or larger already use up a lot of virtual memory while
interpreting the ZIMPL file

Summary:
This model does not perform sufficiently well.
(This is quite typical for scheduling problems modeled like this.)
In the model above, we have very many variables because we wanted to encode a
complete drawing algorithm (telling which line to draw, which movement to make,
at each period).
In the next step, we will try to reduce the number of variables.

6–10

Reducing the model – Decomposition

An important observation is that we can actually make the optimal decision for the
drawing algorithm in two steps:

1 We first ignore the precise assignment of actions to periods, and just compute
which actions should be taken. – So we now use integer variables

xa,b = 1 if we draw a line from a to b

ya,b = number of times we move the pen from a to b

(note ya,b is not a 0/1 variable).
2 Next we decide when to schedule these actions.

All feasible ways to schedule the actions have the same cost (drawing time), so
we just need to find one possible schedule.
This is known as the Euler walk problem.
We can do this either

with a simple combinatorial algorithm (homework)
with another integer programming model that is just like the old assignment model,
but only has variables xa,b,i and ya,b,i for the actions actually taken (much fewer
variables!)

This “decomposition” is possible because the cost (contribution to drawing time) of an
action is independent of when the action is done.

6–11

The flow formulation for Step 1

Constraints: “We draw every line {a,b} exactly once (direction does not matter)”:

xa,b + xb,a = 1 for {a,b} ∈ E

Constraints: “If we enter a vertex, we must leave it again (and conversely).” (These
constraints are the remains of the no-teleporting constraints of the larger model.)

We need to make special exceptions for beginning and end – but how do we know at
which point to begin and at which to end?

The solution is to add a beginning (“artificial source”) s and an end (“artificial sink”) t :

V̄ = V ∪{s, t}
Ā = {(a,b) ∈ V ×V : a 6= b}∪{arcs from s}∪{arcs to t}

The constraints then read:

∑
a∈V̄ :

(a,b)∈Ā

ya,b + ∑
a∈V :
{a,b}∈E

xa,b = ∑
c∈V̄ :

(b,c)∈Ā

yb,c + ∑
c∈V :
{b,c}∈E

xb,c for b ∈ V .

Of course, we need to make sure (in the objective function) it costs nothing to move
from the artificial source to any point, and from any point to the artificial sink.

6–12

The flow formulation for Step 1

Constraint: Finally, we need to make sure that we move from the artificial source to
exactly one real beginning – otherwise, we could “cheat” and start at many points “at
the same time”!

∑
b∈V :(s,b)∈Ā

ya,b = 1.

The model is found in plotter-flow.zpl

10 points, 10% density: 119 variables, 0.02 seconds

10 points, 20% density: 127 variables, 0.05 seconds

10 points, 50% density: 145 variables, 0.07 seconds

30 points, 10% density: 1009 variables, 0.29 seconds

50 points, 10% density: 2771 variables, 16.7 seconds

50 points, 50% density: 3417 variables: after 2.7 seconds solution at most 0.03%
away from the optimum, after 1000 seconds still a gap of 0.02% (and going)

6–13

General structure: Flows in networks

General structure: Flows in networks
In general, consider a digraph (directed graph) (V ,A), where

V is a set of vertices,
A is a set of (directed arcs), which are (ordered) pairs (a,b) ∈ V ×V with a 6= b (no
loops!)

We call two designated vertices r ,s ∈ V the source and the sink

An r -s flow x is a vector of real values xa,b for every arc (a,b) ∈ A such that, in
every vertex (except for source r and sink s), flow conservation constraints are
satisfied:

fx(b) := ∑
a∈V :

(a,b)∈A

xa,b− ∑
c∈V :

(b,c)∈A

xb,c = 0 for b ∈ V , b 6= r ,s.

We call fx(b) the excess of the flow x at vertex b.

The excess fx(s) at the sink is called the value of the flow x; note fx(s) =−fx(r).

Often, capacities u(a,b) are given, i.e., upper bounds on the flow values x(a,b).
We call a flow x feasible if it is non-negative and respects the upper bounds (if
given). 6–14

General structure: Flows in networks

Maximum flow problem
Given a digraph (V ,A), source r ,
sink s, arc capacities ua,b:
Find a feasible flow x of maximum
value fx(s).

Minimum-cost r -s flow problem
Given a digraph (V ,A), source r ,
sink s, arc capacities ua,b, per-unit
costs ca,b, and a flow value φ:
Find a feasible flow x of value
fx(s) = φ that has minimum total flow
costs ∑ca,bxa,b.

Variants of this problem with real flows and integer flows are both useful
Flows appear naturally in many applications, such as:

Transportation problems through road networks
Water networks, oil pipelines
Telecommunication networks

Flow formulations have good mathematical properties (total unimodularity), which
make them an excellent modeling tool even for problems that do not look like flow
problems
The shortest path problem has a natural formulation as a minimum-cost flow
problem, where we send one unit of flow from source to sink

6–15

Homework

1 Describe an algorithm that, given a graph (V ,E), decides whether it has an Euler
walk and, if so, constructs such a walk. Explain why your algorithm is correct.

2 Modify and test the TSP model.

Modify the TSP model (tsp6-5.zpl), so that it reads cities and their Euclidean
coordinates from a data file.
Then compute the Euclidean distances of the cities within ZIMPL, rather than using
the hard-coded distances of the 6-city TSP.
Create coordinate files for TSP problems of different sizes (at least 3 sizes, between 5
and 20 cities); for each size, create at least 3 different coordinate files
Test the performance of SCIP on this model, and find out how the computation time
depends on the size, and how much it varies between different coordinate files for one
size

6–16

