
Mathematics for Decision Making: An Introduction

Lecture 7

Matthias Köppe

UC Davis, Mathematics

January 27, 2009

7–1

Back to the pen plotter: An Insight from Graph Theory

We observed that there are some line drawings that can be drawn entirely in pen-down
mode, but most drawings require using pen-up mode as well – we need to move from
one “dead end” to a new start. This theorem gives us a characterization:

Theorem (Euler walk)
A connected graph has an Euler walk if and only if there are 0 or 2 vertices of odd
degree.

A new idea for modeling the pen plotter problem is:
We ignore the orientation of lines, i.e., in which direction we draw them
Consider a set F of “movement” edges that we add to the graph (V ,E), such that
the (multi)graph (V ,E +F) has an Euler walk (here we allow parallel edges)
We want to pick this set F such that the total movement time is minimized (note
the actual drawing time is the same (constant) in every solution).
An important observation is that it never pays off to connect edges to vertices that
already have even degree.
Thus, the set F can always be chosen as a set of edges connecting vertices of
odd degree – to be precise, a pairing (matching) of the vertices of odd degree,
i.e., each vertex of odd degree belongs to exactly one edge of F
(To deal with the start/end point, we again introduce artificial vertices.) 7–2

Pen plotter problem: Matching formulation

We have reduced the problem to a matching problem:

Minimum-cost perfect matching problem
Given a graph (V ,E) and costs ca,b for all {a,b} ∈ E , find a perfect matching F (i.e., in
the case of an even |V |, a subset F of E such that every vertex is incident to precisely
one edge) of minimum total cost.

The optimization model can be found in plotter-matching.zpl

50 points, 10% density: 276 variables, 0.04 seconds

50 points, 50% density: 325 variables, 0.05 seconds

100 points, 10% density: 1327 variables, 0.09 seconds

400 points, 10% density: 17579 variables, 10.5 seconds

1000 points, 1% density: 130817 variables, after 67 seconds: 0.01% gap, total
160.2 seconds

1000 points, 10% density: 126757 variables, after 80 seconds: 0.00% gap, total
150.6 seconds

7–3

Case Study: The Shortest Path Problem in GPS Navigation

The fundamental problem to be solved is to find the “shortest” path from r to s through
the network of streets and roads.

Definition of distances: Either road length, or expected driving time (depends on
road length and maximum allowed speed or typical speed at a given time of day).
Some GPSs take real-time traffic data into account.
Mathematical abstraction of the network: Digraph (V ,A) with V vertex set of
street intersections, street numbers, or points of interest, A arc set of (directed)
street segments. Complicated, asymmetric street intersections might need special
treatment with auxiliary vertices and arcs.
Integer linear optimization model as a minimum-cost flow problem. We send 1
indivisible unit of flow from r to s; distances ca,b are treated as per-unit costs.

min ∑(a,b)∈A ca,bxa,b

s.t. fx(b) = 0 for all b ∈ V with b 6= r ,s
fx(r) = 1

x ∈ {0,1}A

Note that this formulation has feasible solutions that contain cycles, but they are
never optimal solutions.

7–4

Conclusions about black-box optimization software

Algebraic modeling languages like ZIMPL are convenient

Integer programming solvers like SCIP, used as a “black box”, can efficiently solve
a wide range of optimization problems, up to a certain size

Not all mathematical models are equal!
As we observed in the pen plotter problem, it pays off to find “good” formulations.
Without explaining what is in the black box, we cannot know what makes a
formulation good. Not always models with fewer variables are better!

For very large scale problems, the black box solvers break down:
very many variables (matching formulation of pen plotter problem for ≥ 1000 points;
formulation of shortest path problem as minimum-cost flow)
or very many constraints (all the short-cycle inequalities in the case of the TSP)

By opening the black box, we can solve many problems of
much larger scale. These are complicated technologies!
We can deal with many variables by Column Generation
(Revised Simplex Method, Branch-and-Price) and with many
constraints by Cut Generation (Cutting Plane Algorithms,
Branch-and-Cut), and by decomposition techniques.

←

In this class, we
instead study fast
combinatorial
algorithms for
important basic
problems. 7–5

Shortest Paths and Rooted Trees

Assumptions:
We assume there always exists a path from r to any other node v .
The cost ca,b of each arc (a,b) is a real number; it is allowed to be negative (this
has important applications!)

Remark
We use the words “minimum cost path” and “shortest path” interchangably

To understand the problem better, we consider a generalization: Find a minimum cost
path from r to any other vertex v ∈ V .

A solution to the generalized problem is a collection of minimum cost paths Pv

(from r to v), for v ∈ V – quite complicated solution data!
Important observation: Subpaths of shortest subpaths are shortest.
In particular, this holds for special subpaths: Pw = [r ,P1,v ,P2 = (v ,w),w].
Thus, there always is an optimal solution to the generalized problem that takes the
form of a rooted tree T :

Each vertex w that is not the root r has a unique predecessor v, i.e.,
there is a unique arc (v ,w) ∈ T that leads into w. The root r has no
predecessor.

We can store the whole tree by storing the predecessor p(w) of every node w
(data structure). Let p(r) = 0 (special value). 7–6

Shortest Paths and Feasible Potentials

Feasible Potentials
Suppose for all v ∈ V , there exists some (directed) path Pv from r to v of cost yv .
Suppose there is one arc (v ,w) ∈ A with yv + cv ,w < yw . Then we know that there is a
path P ′w =

(
Pv ,(v ,w)

)
that is cheaper than Pw (descent step).

In particular: If for all v ∈ V , we have that yv is the cost of a minimum-cost path P∗v
from r to v , then

yv + cv ,w ≥ yw for all (v ,w) ∈ A. (1)

We call any vector y = (yv)v∈V ∈ (R∪{+∞})V a potential; we call it a feasible
potential if yr = 0 and (1) holds.

Lemma (Feasible potentials provide lower bounds)
Let y be a feasible potential and Pv be a path from r to v. Then c(Pv)≥ yv .

In particular, if c(Pv) = yv , then Pv is a minimum cost path (optimality criterion).

7–7

The Algorithm of Ford [1956]

We have discovered two ingredients of a descent algorithm:
1 A descent step that moves from one solution to a better solution.
2 An optimality criterion that tells us when to stop.

We need one more thing:
3 An initial solution: We can start from a y with yr = 0 and yv = +∞ for all v 6= r

(note this is not a feasible potential). We start with a predecessor vector p with
p(r) = 0 and p(v) =−1 (to indicate we don’t know any path yet)

Ford’s Algorithm
Input: A digraph with arc costs, starting node r
Output: Shortest paths from r to all other nodes
Initialize y and p;
While y is not a feasible potential:

Find an incorrect arc (v ,w) and correct it, updating predecessor information
Reconstruct shortest paths from p.

Ford’s Algorithm is a prototype of a label-correcting algorithm.

7–8

