
Mathematics for Decision Making: An Introduction

Lecture 9

Matthias Köppe

UC Davis, Mathematics

February 3, 2009

9–1

Theorem (Efficiency of Ford’s Algorithm)
If c is integer-valued and G = (V ,A) has no negative-cost directed circuit, then Ford’s
Algorithm terminates after at most Cn2 steps, where n = |V | and

C = m(c) = 1+2||c||∞ with ||c||∞ = max{|c(a,b)| : (a,b) ∈ A}.

This is a typical statement of an efficiency result: We establish an upper bound
for (some abstraction of) the running time, with a simple formula. Note we do
not predict the precise running time; the algorithm could be much faster than that.

Proof.
The first correction step, leading to a finite potential value yv of a vertex, gives yv

that is at most ||c||∞(n−1), because it is the cost of a simple directed path (with
at most n−1 arcs!) from the root.

In every later correction step, yv gets reduced by at least 1, because c is integral

In the end, the potential value yv is the cost of a least-cost path; this may be
negative, but we certainly have yv ≥−||c||∞(n−1).

Thus at most 1+2 · ||c||∞(n−1)≤ Cn steps per vertex

Hence, at most Cn2 correction steps in total.

9–2

Efficiency of Ford’s Algorithm, II

The theorem establishes that Ford’s Algorithm is a pseudo-polynomial
algorithm, i.e., its running time is bounded above by a polynomial expression in
the “dimensions” (such as nk) and the absolute values of its input data.
Because the bound is monotonous in C and n, it is convenient to interpret this
bound as an upper bound on the running time of the worst case that can happen
among all problems (G,c) with |V | ≤ n and and m(c)≤ C.
In a homework exercise, you show that there is a one-parameter family
{(Gk = (Vk ,Ak),ck) : k ∈ N} of networks with nk = |Vk |= 2k +4 vertices and
Ck = 2k , such that Ford’s Algorithm (with a specific, clever, evil way of choosing
which incorrect arc should be corrected) takes more than 2k steps.
This shows that the upper bound is “not too far off” from the worst case

Better efficiency classes:
We are not happy with pseudo-polynomial algorithms, because for the same
graph G, the running time might grow quickly if we just use “large numbers” (it
might grow exponentially in the number of digits of the data c(a,b)).
Better are polynomial algorithms, where the running time is allowed to grow
polynomially in the “dimensions” (such as n = |V | and m = |A|), but only
polynomially in the number of digits of the data (such as ca,b)
Even better are strongly polynomial algorithms, where the worst-case running
time (#steps) is allowed to depend only on the dimensions, not on the data

9–3

Improving Ford’s Algorithm: Ford–Bellman [1958]

In a homework exercise, we saw that there are examples, in which a particular
order of correcting arcs leads to very bad performance (many iterations).
Let’s try to find an order that is better.
Let’s rewrite the body of the while loop like this:

1 Choose an arc (v ,w).
2 If (v ,w) is incorrect, then correct it, updating predecessor information.

We call this verifying arc (v ,w).
We denote by S =

(
(v1,w1),(v2,w2), . . . ,(vk ,wk)) a sequence of arcs that we

verify during Ford’s Algorithm.
Important observation:

Lemma
In Ford’s Algorithm, after verifying the sequence S of arcs, for all directed paths P
from r to v that are embedded in S, i.e.,

the arcs of P appear as a subsequence of S (i.e., in the right order, but
not necessarily consecutively)

we have yv ≤ c(P).

9–4

Improving Ford’s Algorithm: Ford–Bellman [1958]

Proof.
Let P = (v0,a0,v1,a1,v2, . . . ,aK ,vk) with v0 = r and vk = v be a directed path that is
embedded in S.

After verifying a0 in some iteration q0, we have

y (q0)
v1 ≤ y (q0−1)

v0 + cv0,v1 = cv0,v1 .

Then, after verifying a1 in iteration q1 > q0, we have

y (q1)
v2 ≤ y (q1−1)

v1 + cv1,v2 (verification)

≤ y (q0)
v1 + cv1,v2 (yv1 possibly decreased between q0 and q1−1)

≤ cv0,v1 + cv1,v2 . (per above)

and so on: induction yields yv ≤ c(P).

9–5

Improving Ford’s Algorithm: Ford–Bellman [1958]

Now let us design a sequence S of arcs such that every possible minimum-cost
path is embedded in S

Minimum-cost paths are simple directed paths, so they contain at most n−1 arcs
(where n = |V |)
Simple construction: Let Si be any ordering of the arcs A. Then the sequence

S = (S1, . . . ,Sn−1)

has the desired property. We say that we make n−1 passes through the graph.

We call this refined algorithm the Ford–Bellman algorithm.

9–6

Improving Ford’s Algorithm: Ford–Bellman [1958]

Ford–Bellman algorithm
Input: A digraph G = (V ,A) with arc costs, starting node r
Output: If G has a negative cycle, output “negative cycle!”; otherwise output a
predecessor vector p, which encodes minimum-cost paths from r to all other nodes.

1 Initialize y and p
2 Set i := 0
3 While i < n and y is not a feasible potential:

Set i := i +1
For (v ,w) ∈ A (in arbitrary order):

If (v ,w) is incorrect, then correct it, updating predecessor information.

4 If i = n, return “negative cycle!”; otherwise, return p.

9–7

Improving Ford’s Algorithm: Ford–Bellman [1958]

Theorem (Correctness and efficiency of Ford–Bellman)
The Ford–Bellman algorithm is correct. It terminates after at most m ·n arc verifications.

Proof.
Correctness follows from the above lemma:

If there is no negative cycle, after the arc-verification sequence S, for every
minimum-cost path Pv we have yv ≤ c(Pv) because Pv is embedded in S. Thus
the while loop terminates with i < n.

If there is a negative cycle, we know there does not exist a feasible potential, so
the while loop terminates because of i = n.

The bound on the number of verifications is obvious.

Thus it is a strongly combinatorial algorithm.

In the general case, no algorithm with a better running time bound is known.

9–8

The case of topologically sortable graphs

Suppose that we can order the vertices of the directed graph G = (V ,A) “from left
to right”, so that all arcs go from left to right.
In other words, suppose there is an ordering v1, . . . ,vn of V such that for any arc
(vi ,vj) ∈ A we have i < j .
Such an ordering is called a topological sort of G.

Observation:
All directed paths in G are embedded in the arc-correction sequence
S = (L1, . . . ,Ln) where Li is an arbitrary ordering of the arcs leaving vertex vi

Therefore, Ford’s Algorithm has the correct answer after running this
arc-correction sequence S.

Where do topologically sortable graphs come from?
In some applications, the graphs have a natural topological sort because the
vertices are layered, for instance by “time”, and there are only arcs that go from
“now” to “later”.
This is related to the idea of dynamic programming (with respect to time or other
“increasing” parameters)
Which (other) directed graphs have a topological sort? Complete answer on the
next slide.

9–9

Characterization of Topological Sortability

Lemma (Topological Sortability Lemma)
A directed graph has a topological sort if and only if it is acyclic (has no directed circuit)

Proof of the Topological Sortability Lemma.
1 If there is a topological sort v1, . . . ,vn, there clearly is no directed circuit.
2 For the converse, we first show that there is a suitable choice for v1, i.e., a vertex

with no predecessor, i.e., no incoming arc.
Suppose, to the contrary, that every vertex has a predecessor.
Let w1 ∈ V be arbitrary; pick a predecessor of w1 and call it w2.
Pick a predecessor of w2 and call it w3.
This produces an infinite sequence w1,w2, · · · ∈ V .
However, V is finite, so there is some i < j with wi = wj .
Thus there is a directed circuit (wj ,wj−1, . . . ,wi+1,wi) in G, a contradiction.

3 Continue inductively on a graph G1 where we have removed v1 (and the arcs
originating from v1).

This proof suggests an efficient algorithm that constructs a topological sort or detects a
directed circuit (homework).

9–10

Bellman’s Algorithm for the Acyclic Case

Bellman’s Algorithm (“Dynamic Programming”)
Input: A digraph G = (V ,A) with arc costs, starting node r
Output: If G has a cycle, output “cycle!”; otherwise output a predecessor vector p,
which encodes minimum-cost paths from r to all other nodes.

1 Find a topological sort v1, . . . ,vn of G; if there is none, return “cycle!”.
2 Initialize y and p
3 For i = 1 to n:

Scan vertex vi , i.e., do for all arcs (vi ,w) ∈ A:
If (vi ,w) is incorrect, then correct it, updating predecessor information.

4 Return p.

This is still a label-correcting algorithm; but it’s a one-pass algorithm.

Theorem (Correctness and Efficiency of Bellman’s Algorithm)
Bellman’s algorithm is correct. It terminates after m = |A| arc verification steps.

9–11

The Nonnegative Case

Another important special case is to allow directed cycles, but to require that all arc
costs are nonnegative.

Again, we use an arc-correction sequence that corresponds to the idea of
scanning the vertices in some ordering v1,v2, . . . ,vn (i.e., first verifying all arcs
leaving v1, then all arcs leaving v2, etc.)

This time, however, we do not determine this ordering a priori

Rather, when v1,v2, . . . ,vi have been determined and scanned,
we choose vi+1 as an unscanned vertex v with minimum potential
value yv (at that time).

The resulting algorithm is called Dijkstra’s Algorithm.

9–12

Dijkstra’s Algorithm [1959]

Dijkstra’s Algorithm
Input: A digraph G = (V ,A) with nonnegative arc costs, starting node r
Output: A predecessor vector p, encoding minimum-cost paths from r to all nodes.

1 Initialize y, p.
2 Set S := V .
3 While S 6= ∅:

Choose v ∈ S with yv minimum.
Set S := S \{v}.
Scan vertex v , i.e., do for all arcs (v ,w) ∈ A:

If (v ,w) is incorrect, then correct it, updating predecessor information.

9–13

Dijkstra’s Algorithm: Correctness

We use the notation v1,v2, . . . ,vn for the ordering of the nodes
We denote by y(i) the value of y at the point when vi is chosen to be scanned.

Lemma (Monotonicity of potentials of scanned nodes)

For all i < k we have y (i)
vi ≤ y (k)

vk .

Proof.

Suppose the contrary, i.e., there exist i < k with y (i)
vi > y (k)

vk .

Fix such a i and choose k minimal with this property, i.e., vk is the
earliest-chosen vertex after vi that, at the time of its scanning, had a smaller
potential than the vertex vi at the time of its scanning.

But by the minimal choice in the algorithm, we have y (i)
vi ≤ y (i)

vk .

So yvk must have been lowered while scanning some vertex vj with i < j < k .

This arc correction made y (k)
vk = y (j+1)

vk = y (j)
vj + cvj ,vk .

Because cvj ,vk ≥ 0, we have y (j)
vj ≤ y (k)

vk < y (i)
vi .

This is a contradiction to the definition of k .
9–14

Dijkstra’s Algorithm: Correctness, II

Theorem
Dijkstra’s Algorithm is correct.

Proof.
We prove that, after all vertices have been scanned, we have a feasible potential yn+1:

Suppose not, i.e., for some (vi ,vk) ∈ A, we have y (n+1)
vi + cvi ,vk < y (n+1)

vk .

But directly after scanning vertex vi , we certainly did have y (i+1)
vi + cvi ,vk ≥ y (i+1)

vk .

Since we never increase the potentials, yvi must have been lowered afterwards!
Say, it was lowered the last time when scanning vertex vj (with i < j).

Thus y (i+1)
vi > y (n+1)

vi = y (j+1)
vi = y (j)

vj + cvj ,vi ≥ y (j)
vj

On the other hand, by the Lemma, because vj was scanned after vi , we have

y (j)
vj ≥ y (i)

vi , a contradiction (y (i+1)
vi > y (i)

vi).

9–15

Dijkstra’s Algorithm: Efficiency

Theorem (Efficiency of Dijkstra’s Algorithm)
Dijkstra’s Algorithm terminates after m = |A| arc verification steps.

Let’s try out Dijkstra’s Algorithm in practice; we expect that the running time
essentially only depends, linearly, on the number of arcs.
We try on examples with the same number of arcs, but different numbers of
vertices.
Result: There is a great dependence on the number of vertices, and we are not
happy with the running time for large, sparse graphs (many vertices, few arcs)
Where is the running time spent? Our coarse abstraction of running time
(number of arc verification steps) does not give the answer.
To find this out in the practical program, it is strongly recommended to find this
out by measuring time, rather than thinking or guessing.
Every modern, reasonable programming system has a facility for measuring how
much running time is spent in parts of the program; this is called a (time) profiler.
In the case of C, the GCC toolchain (compiler/linker option -pg) and the gprof
tool provide a (sampling) time profiler.

9–16

