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2.8. Möbius Graphs and Non-Orientable Surfaces 27
2.9. Symmetric Matrix Integrals 34

2. Matrix Integrals and Feynman Diagram Expansion

This chapter is devoted to the study of the asymptotic analysis of various ma-
trix integrals. We investigate symmetric, Hermitian, and quarternionic self-adjoint
matrices separately. These integrals can be thought of as 0-dimensional models of
Quantum Field Theory. QFT produces many interesting and useful mathematical
tools. In this chapter, we deal with QFT as a machinery of counting formula.
QFT provides us with a clever method of counting the order of certain finite groups.

Often QFT is not well-defined mathematically, but all our models lead to finite
dimensional integrals and therefore they are well-defined. We will develop two
different methods for calculating some of the QFT integrals. Since the original
integral is well-defined, the two methods should provide the same answer. This
apparent equality turns out to be an interesting equality in mathematics.

Let us begin by reviewing asymptotic analysis of holomorphic functions.

2.1. Asymptotic Expansion of Analytic Functions. A holomorphic function
admits a convergent Taylor series expansion at each point of the domain of defi-
nition. What happens if we try to expand the function into a power series at a
boundary point of the domain? We investigate this question in this section. Since
our goal is the asymptotic analysis of matrix integrals, we focus our study on the
techniques used in matrix integrals, instead of developing the most general theory
of asymptotic series.
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2 MOTOHICO MULASE

When we are first introduced to complex analysis, perhaps the most surprizing
thing may have been the fact that complex differentiability implies complex analyt-
icity. Let h(z) be a continuous function defined on an open domain U ⊂ C. If h(z)
is continuously differentiable everywhere in U , then it satisfies Cauchy’s Theorem
of Integration: ∮

γ

h(z)dz = 0,

where γ is a closed loop in U . One can then show that h(z) satisfies the Cauchy
Integral Formula

h(w) =
1

2πi

∮
γ

h(z)
z − w

dz,(2.1)

where γ is a simple loop in U that goes around w ∈ U once counter-clockwise. But
(2.1) immediately implies that h(z) has Taylor expansion everywhere in U . What
happens if h(z) is continuously differentiable not on an entire neighborhood of a
point, say 0, but only a part of the neighborhood? This motivates us to introduce
the following definition.

Definition 2.1 (Asymptotic Expansion). Let h be a holomorphic function defined
on a wedge-shaped domain Ω:

Ω = {z ∈ C
∣∣ α < arg(z) < β, |z| < r.}

A power series
∑

n≥0 anz
n is said to be an asymptotic expansion of h at the

origin 0 ∈ ∂Ω if

lim
z→0
z∈Ω

h(z) −
∑m−1

n=0 anz
n

zm
= am(2.2)

holds for every m ≥ 0. When an asymptotic expansion exists, we say h has an
asymptotic expansion on Ω at its boundary point 0.

α

β

Ω

0

Figure 2.1. A wedge-shaped domain.

Let us examine the implications of (2.2). For m = 0, it requires the convergence
of h(z) as t −→ 0 while in Ω. Thus h(z) is continuous at 0 when approaching from
inside Ω. We can define the value of h(z) at 0 by h(0) = a0. For m = 1, the
existence of

lim
z→0
z∈Ω

h(z) − h(0)
z

= a1

implies that h(z) is differentiable at 0 when approaching from inside Ω. Let us call
the situation Ω-differentiable. Since h(z) is holomorphic on Ω, we can differentiate
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the numerator and the denominator of (2.2) (m−1)-times and obtain the same limit.
The existence of the limit

lim
z→0
z∈Ω

h(z) −
∑m−1

n=0 anz
n

zm
= lim

z→0
z∈Ω

h(m−1)(z) − (m− 1)!am−1

m!z
= am

thus implies that h(m−1)(z) is Ω-differentiable, and that h(m)(0) = m!am. There-
fore, the existence of an asymptotic expansion at 0 ∈ Ω simply means the function
h(z) is infinitely many times continuously Ω-differentiable at 0.

The above consideration immediately implies

Proposition 2.2 (Uniqueness of asymptotic expansion). If a holomorphic function
h on Ω has an asymptotic expansion at 0 ∈ ∂Ω as above, then it is unique.

The simplest example of an asymptotic expansion is the Taylor expansion when
h is holomorphic at 0. Since h is infinitely many times continuously differentiable in
a neighborhood of 0, h(m)(0) is well-defined for all m ≥ 0, and the Taylor expansion

h(z) =
∑
n≥0

h(m)(0)
m!

zm

gives the asymptotic expansion of h(z) at z = 0.
The technique of asymptotic expansion is developed to study the behavior of a

holomorphic function at its essential singularity. When a holomorphic function
h(z) has an essential singularity at 0, often we can find a wedge-shaped domain
Ω with 0 as its vertex such that the function is infinitely many times continuously
differentiable on Ω. We can then expand the function into its asymptotic series and
study its properties. The existence of such a domain is significant because h(z) can
take arbitrary values except for up to two excluded values in any neighborhood of
0 (Picard’s Theorem). If h is defined on a larger domain Ω′ that contains Ω and
has an asymptotic expansion on Ω′, then h has an asymptotic expansion also on Ω
and the asymptotic series are exactly the same. In general, however, the existence
depends on the choice of the domain Ω.

Example 2.1. Consider h(z) = e1/z. It is holomorphic on C \ {0}. If we choose

Ω = {z ∈ C | π
2

+ ε < arg(z) <
3π
2

− ε},(2.3)

then it has an asymptotic expansion on Ω at 0, and its asymptotic series is the zero
series. However, if we choose a wedge-shaped domain contained in the right half
plane Re(z) > 0, then e1/z does not have any asymptotic expansion.

This example also shows that two different holomorphic functions may have the
same asymptotic expansion on the same domain. From this point of view, the
holomorphic function h and its asymptotic series

∑
n≥0 anz

n are not equal. We use
the notation

A(h) =
∑
n≥0

anz
n(2.4)

to indicate that the series of the right hand side is the asymptotic expansion of
h(z). We also use

h(z) ≡ g(z)
if h(z) and g(z) have the same asymptotic expansion on the same domain. Thus
0 ≡ e1/z on the domain of (2.3).
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Proposition 2.3 (Properties of the asymptotic expansion). Let f(z) and h(z) be
holomorphic functions on a domain Ω and have asymptotic expansions at its bound-
ary point 0 ∈ ∂Ω:

A(f) =
∑
n≥0

anz
n, A(h) =

∑
n≥0

bnz
n.

Then

A(f + h) = A(f) + A(h)(2.5)

A(f · h) = A(f) · A(h)(2.6)

Proof. For every m ≥ 0, we have

lim
f(z) + h(z) −

∑m−1
n=0 (an + bn)zn

zm
= lim

f(z) −
∑m−1

n=0 anz
n

zm

+ lim
h(z) −

∑m−1
n=0 bnz

n

zm

= am + bm.

This proves (2.5).
Since we know

lim
f(z)h(z) − f(z)

∑m−1
n=0 bkz

k

zm
= a0bm

and

lim
f(z)

∑m−1
k=0 bkz

k −
∑m−1

n=0 anz
n

∑m−1
k=0 bkz

k

zm
= amb0,

adding the above two equations, we have

lim
f(z)h(z) −

∑m−1
n=0 anz

n
∑m−1

k=0 bkz
k

zm
= a0bm + amb0.

Note that
m−1∑
n=0

anz
n
m−1∑
k=0

bkz
k

=
∑

n+k≤m−1

anbkz
n+k + (a1bm−1 + a2bm−2 + · · · am−1b1)zm +O(zm+1).

Therefore, we obtain

lim
f(z)h(z) −

∑
n+k≤m−1 anbkz

n+k

zm
=

∑
n+k=m

anbk.

This proves (2.6).

Let us now consider a simple example

Z4(t) =
1√
2π

∫ +∞

−∞
e−

1
2x

2
e

t
4!x

4
dx.

The integral Z4(t) is a holomorphic function in t for Re(t) < 0 and continuous for
Re(t) ≤ 0. Let

Ω = {t ∈ C | 2π/3 < arg(t) < 4π/3}.
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We wish to find the asymptotic expansion of Z4 on Ω at t = 0. First we note that
if t ∈ Ω, then ∣∣∣e t

4!x
4
∣∣∣ = e

Re(t)
4! x4 ≤ 1.

We claim:

A
(
Z4(t)

)
=

∑
n≥0

tn

(4!)nn!

(
1√
2π

∫ +∞

−∞
e−

1
2x

2
x4ndx

)
.(2.7)

Indeed, we have

lim
t→0
t∈Ω

1
tm

(∫ +∞

−∞
e−

1
2x

2
e

t
4!x

4
dx−

m−1∑
n=0

tn

(4!)nn!

∫ +∞

−∞
e−

1
2x

2
x4ndx

)

= lim
t→0
t∈Ω

1
tm


∫ +∞

−∞
e−

1
2x

2 ∑
n≥0

tn

(4!)nn!
x4ndx−

∫ +∞

−∞
e−

1
2x

2
m−1∑
n=0

tn

(4!)nn!
x4ndx




= lim
t→0
t∈Ω

1
tm

∫ +∞

−∞
e−

1
2x

2
∞∑

n=m

tn

(4!)nn!
x4ndx

= lim
t→0
t∈Ω

∫ +∞

−∞
e−

1
2x

2
∞∑
n=0

tn

(4!)n+m(n+m)!
x4(n+m)dx

= lim
t→0
t∈Ω

1
m!

dm

dtm
Z4(t)

=
1

(4!)mm!

∫ +∞

−∞
e−

1
2x

2
x4mdx,

where we have used the uniform continuity of Z(m)
4 (t) on Ω for every m ≥ 0.

To evaluate this last integral, let us consider

Z(J) =
1√
2π

∫ +∞

−∞
e−

1
2x

2+Jxdx =
1√
2π

∫ +∞

−∞
e−

1
2 (x−J)2e

1
2J

2
dx = e

1
2J

2
.(2.8)

We can now calculate
1√
2π

∫ +∞

−∞
e−

1
2x

2
x4ndx =

d4n

dJ4n
Z(J)

∣∣∣∣
J=0

=
d4n

dJ4n

∑
m≥0

1
2mm!

J2m

∣∣∣∣∣∣
J=0

=
(4n)!

22n(2n)!

=
(4n)(4n− 1)(4n− 2) · · · 4 · 3 · 2 · 1

(4n)(4n− 2) · · · 4 · 2
= (4n− 1)(4n− 3) · · · 3 · 1
=
def

(4n− 1)!!.

(2.9)

Thus the final result of the asymptotic expansion is given by

A
(

1√
2π

∫ +∞

−∞
e−

1
2x

2
e

t
4!x

4
dx

)
=

∑
n≥0

(4n− 1)!!
(4!)nn!

tn.(2.10)
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The above method works for other potential terms such as x6, x8, etc. However,
if we consider a more general potential such as

V (x) =
2m∑
j=1

tj
j!
xj ,

then we immediately encounter the difficulty that the asymptotic expansion be-
comes too complicated to evaluate. The technique developed in the next section
solves this difficulty.

2.2. Feynman Diagram Expansion. The key technique of the computation of
the asymptotic expansion (2.10) is the introduction of the source term Jx in (2.8)
and the fact that the integration changes into the differentiation as we have seen
in (2.9). Instead of calculating the Taylor expansion of Z(J) = eJ

2/2, let us find a
combinatorial interpretation of the mechanism.

Since
d

dJ
e

1
2J

2
∣∣∣∣
J=0

= Je
1
2J

2
∣∣∣
J=0

= 0,

the differentiation should occur in pairs to obtain a non-zero result. Thus the
differentiation Z(4n)(0) gives the number of ways of making 2n-pairs in the
4n objects. Indeed,

Z(4n)(0) =

(
4n
2

)(
4n−2

2

)
· · ·

(
4
2

)(
2
2

)
(2n)!

=
(4n)(4n− 1)(4n− 2)(4n− 3) · · · 4 · 3 · 2 · 1

2(2n)(2n)!

=
(4n)!

2(2n)(2n)!
= (4n− 1)!!

coincides with the calculation of (2.9). In order to visualize the situation, let us
provide n sets of 4 dots, and connect two dots when they form a pair (Figure 2.2).
Let us call it a pairing scheme.

Figure 2.2. A pairing scheme of n sets of 4 dots.

What follows is an ingenious idea of Richard Feynman. He replaces the set of
four dots with a vertex of valence four. Then the paring scheme changes into a
graph Figure 2.3.

The formula (2.9) counts the number of pairing schemes. Then what does the
coefficient

(4n− 1)!!
(4!)nn!
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Figure 2.3. A 4-valent graph.

of the asymptotic expansion (2.10) represent? We can view the 4n dots as the total
space D of a fiber bundle defined over a finite set V of n elements as the base
space with a fiber Fp at a base point p ∈ V consisting of 4 dots:

Fp −−−−→ D� π

�
{p} −−−−→ V.

The symmetric group S4n acts on the total space D through permutation of all
4n dots. Let G ⊂ S4n be a maximal subgroup that preserves the fiber bundle
structure. In other words, G consists of those permutations that map each fiber
onto another fiber. Clearly, every element of G induces a transformation of V, and
the kernel of the homomorphism G −→ Sn is Sn

4 , which acts on each fiber as a
permutation of the 4 elements. Thus we have obtained an exact sequence of
groups

Sn
4 −−−−→ G −−−−→ Sn,

and hence
Sn

4 � Sn
∼= G ⊂ S4n.

The passage from the paring scheme P as in Figure 2.2 to the graph Γ as in
Figure 2.3 is the projection of the pairing scheme onto the base space V. From this
point of view, let us denote

π(P ) = Γ.

π

P

Γ

Figure 2.4. From a pairing scheme to a graph through the pro-
jection of the fiber bundle.

The group G also acts on the set of pairing schemes P. If this action is fixed
point free, then we can identify the orbit space P

/
G with the set of all 4-valent
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graphs with n vertices. Note that if two pairing schemes P and P ′ are on the same
G-orbit, then their stabilizer subgroups are isomorphic:

GP
∼= GP ′ .

Let Γ = π(P ) denote the graph obtained from the pairing scheme P , and Γ′ =
π(P ′). Then these graphs should be defined to be isomorphic, and their auto-
morphism group can be defined by

Aut(Γ) = GP .

Since the G-orbit G · P is related to the stabilizer GP by

G · P ∼= G
/
GP ,

we have the counting formula

|P|
|G| =

1
|G|

∑
π(P )∈P

/
G

|G · P | =
1
|G|

∑
π(P )∈P

/
G

∣∣G/
GP

∣∣ =
∑
Γ

1
Aut(Γ)

,

where Γ runs all 4-valent graphs consisting of n vertices. We have thus established
a desired interpretation of the coefficient:

(4n− 1)!!
(4!)nn!

=
∑

Γ 4-valent graph
with n vertices

1
|Aut(Γ)| .(2.11)

In order to proceed further to more complicated integrals, we need to give the
precise definition of graphs and their automorphisms here.

2.3. Preparation from Graph Theory.

Definition 2.4 (Graph). A graph is a collection

Γ = (V, E , I)

consisting of a finite set V of vertices, a finite set E of edges, and their incidence
relation

I : E −→ (V × V)
/
S2

that maps the set of edges to the set of symmetric pairs of vertices. A vertex V
and an edge E of a graph Γ is said to be incident if I(E) = (V, V ′) for a vertex
V ′.

Remark. A graph is a visual object. We place the vertices in the space, and connect
a pair of vertices with a line if there is an edge incident to them. If an edge is incident
to the same vertex twice, then it forms a loop starting and ending at the vertex.

Let V and V ′ be two vertices of a graph Γ. The quantity

aV V ′ = |I−1(V, V ′)|
gives the number of edges that connect these vertices. The valence, or the degree,
of a vertex V is the number

j(V ) =
∑
V ′∈V
V ′ 
=V

aV V ′ + 2aV V .

This is the number of edges that are incident to V . Note that when an edge is
incident to V twice, forming a loop, then it contributes 2 to the valence of V .
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Remark. To avoid unnecessary complexity, we assume that all graphs we
deal with in these lectures have no vertices of valence less than 3, unless
otherwise stated.

Definition 2.5 (Graph isomorphism). Two graphs Γ = (V, E , I) and Γ′ = (V ′, E ′, I ′)
are said to be isomorphic if there are bijections α : V ∼−→ V ′ and β : E ∼−→ E ′
that are compatible with the incidence relations:

E I−−−−→ (V × V)
/
S2

β

� �α×α

E ′ I′−−−−→ (V ′ × V ′)
/
S2.

For example, the graph of Figure 2.3 and the graph at the bottom of Figure 2.4
are isomorphic. The notion of isomorphism of graphs should naturally lead to the
notion of graph automorphisms. However, we immediately see that there is a big
difference between what we need in Feynman diagram expansion and the notion of
graph automorphisms in a more traditional sense. Let us consider the case of n = 1
in (2.11). We have a 4-valent graph with only one vertex. There is only one such
graph, which has two loops attached to the vertex. In terms of traditional graph
theory, the automorphism group should be S2, which interchanges the two loops.
But the formula we have established gives

3!!
4! × 1

=
1
8

=
1

|Aut(Γ)| ,

or |Aut(Γ)| = 8. This example illustrates that we have to define the graph auto-
morphism in a quite different way from the usual graph theory. To establish the
right notion of graph automorphisms for our purpose, we need to consider directed
graphs and the edge refinement of a graph.

A directed edge is an edge E ∈ E of a graph with an arrow assigned from the
vertex at one end of E to the other. There are two distinct directions for every
edge. A directed graph is a graph whose edges are all directed. There are 2|E|

different directed graphs for each graph. For every directed edge
−→
E of a graph Γ

that is incident to vertices V and V ′ (allowing the case V = V ′), we can choose a
midpoint VE of it, and separate the edge E into two half edges E− and E+, such
that the order (E−, E+) is consistent with the direction of the edge. Thus E− is
incident to (V, VE), and E+ is incident to (V ′, VE). VE is a new vertex of valence
2. The incidence relation of a directed graph is a map

I : E � E �−→ (V, V ′) ∈ V × V

without taking the symmetric product, where V is the initial vertex of
−→
E and

V ′ is its terminal vertex.

Definition 2.6 (Edge refinement). Let Γ = (V, E , I) be a graph with no vertices
of valence less than 3. The edge refinement of Γ is a graph obtained by adding
a midpoint on each edge of Γ. More precisely, choose a direction on Γ. The edge
refinement is a graph

ΓE = (V ∪ VE , E− ∪ E+, IE)
consisting of the set of vertices V ∪ VE , the set of edges E− ∪ E+, and an incidence
relation IE : E− ∪ E+ −→ V × VE subject to the following conditions:
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V V

V V

E

VE E+E−

Directed Edge

Two Half Edges

Figure 2.5. Creating two half edges from a directed edge.

1. VE = E is the set of edges of the original graph that is identified with the set
of midpoints of edges;

2. E− ∪ E+ is the set of half edges;
3. the incidence relation IE is consistent with the original incidence relation,

namely

E− IE−−−−→ V × VE −−−−→ V� ∥∥∥
E I−−−−→ V × V pr1−−−−→ V,

E+
IE−−−−→ V × VE −−−−→ V� ∥∥∥

E I−−−−→ V × V pr2−−−−→ V.
Remark. 1. The edge refinement is independent of the choice of a direction of

Γ. Indeed, let
−→
E be a directed edge of Γ connecting the initial vertex Vi and

the terminal vertex Vt. Flipping the direction results in renaming the half
edges E− and E+ and the vertices Vi and Vt, without altering the actual set
of vertices, half edges, and the incidence relation.

2. Since we are not allowing any vertices of valence less than 3 in Γ, the original
graph can be recovered from its edge refinement ΓE uniquely. Indeed, Γ is
obtained by throwing away all 2-valent vertices from ΓE , and connecting half
edges together when they meet.

3. The valence of a vertex V ∈ V of Γ is the number of half edges of the edge
refinement ΓE that are incident to V .

Definition 2.7 (Graph automorphism). Let Γ = (V, E , I) be a graph with no ver-
tices of valence less than 3. A graph automorphism of Γ is a triple (α, αE , β) of
bijections α : V ∼−→ V, αE : VE ∼−→ VE , and β : E− ∪ E+

∼−→ E− ∪ E+ that are com-
patible with the incidence relation of the edge refinement ΓE = (V∪VE , E−∪E+, IE)
of Γ:

E− ∪ E+
IE−−−−→ V × VE

β

� �α×αE

E− ∪ E+
IE−−−−→ V × VE .

The group of graph automorphisms of a graph Γ is denoted by Aut(Γ).

Example 2.2. There is only one 2j-valent graph Γ with one vertex. Since every
edge is a loop, Γ has j edges (Figure 2.6). There are 2j half edges in the edge
refinement of Γ. Thus Aut(Γ) is a subgroup of S2j that acts on the set of half edges
E− ∪E+ through permutation. Since a graph automorphism induces a permutation
of midpoints VE , we have an exact sequence

(S2)j −−−−→ Aut(Γ) −−−−→ Sj .
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Therefore, Aut(Γ) = (S2)j � Sj ⊂ S2j . In particular, it has 2jj! elements. We
note that from the point of view of traditional graph theory, there are only j!
automorphisms.

Figure 2.6. The unique 2j-valent graph with 1 vertex.

If a graph Γ has no loops and its vertices have valance at least 3, then our
Aut(Γ) is the same as the traditional automorphism group. Historically, one of
the greatest motivations of graph theory came from applications to electric circuits
and communication networks. In a context of electric circuits or networks, it is
absolutely important to have 2-valent vertices, but loops are not welcome. In fact,
a loop is a short circuit in an electrical circuit, and there is no need for a loop
in a communication network. We need an alternative definition of automorphisms
because our intent of application is different. Now we are ready to show that our
definition is indeed the right notion for the Feynman diagram expansion we are
considering.

Definition 2.8 (Pairing scheme). Let Γ = (V, E , I) be a graph. For each vertex
V ∈ V, we denote by j(V ) the valence of V . Note that∑

V ∈V
j(V ) = 2|E|

is equal to the number of half edges of the edge refinement of Γ. A pairing scheme
associated with graph Γ is a triple (D, π, IP ) consisting of a collection D of a total
of 2|E| dots, a projection

π : D −→ V
whose fiber at V consists of j(V ) dots, and a bijection

IP : E− ∪ E+
∼−→ D

satisfying the compatibility condition of incidence

E− ∪ E+
IE−−−−→ V × VE

IP

� �pr1

D π−−−−→ V.
Two dots D,D′ ∈ D are connected in the pairing scheme (D, π, IP ) if there is an
edge E ∈ E such that D = IP (E−) and D′ = IP (E+), whereE− and E+ are the
two half edges belonging to E with an appropriate choice of a direction of E.

A pairing scheme associated with a graph Γ is not unique. Indeed, an automor-
phism of the fibration π : D −→ V transforms one pairing scheme to another.
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Definition 2.9 (Automorphism of fibration). An automorphisms of the fibra-
tion π : D −→ V is a permutation f of the dots D that preserves the fibration:

D f−−−−→ D

π

� �π

V f−−−−→ V.

(2.12)

Theorem 2.10 (Graph automorphisms and stabilizers of a pairing scheme). Let Γ =
(V, E , I) be a graph and (D, π, IP ) the pairing scheme associated with Γ. By
St(D, π, IP ) we denote the stabilizer subgroup of the group of automorphisms of
the fibration π : D −→ V that fixes the given pairing scheme (D, π, IP ). Then we
have a natural group isomorphism

φ : St(D, π, IP ) ∼−−−−→ Aut(Γ).

Proof. Take an element f ∈ St(D, π, IP ). It induces a bijection f : V −→ V as in
(2.12). Let E ∈ E be an edge of Γ. It determines a pair of dots (IP (E−), IP (E+))
that are connected. Since f stabilizes the pairing scheme (D, π, IP ), the pair of
dots

(
f(IP (E−)), f(IP (E+))

)
are again connected in (D, π, IP ). Therefore, it de-

termines an edge f̂(E) of Γ. More precisely, we have a bijection

f̂ : E− ∪ E+ −→ E− ∪ E+.

The fact that f is an automorphism of the fibration π : D −→ V implies that the
pair of bijections (f, f̂) is an automorphism of the graph Γ. This association defines
the homomorphism φ. Clearly, the kernel of this homomorphism is trivial.

Conversely, let

(α : V −→ V, αE : VE −→ VE , β : E− ∪ E+ −→ E− ∪ E+)

be an automorphism of Γ. Through the bijection IP : E− ∪ E+ −→ D, β induces
an automorphism f of the fibration π that is compatible with the other data:

VE E ←−−−− E− ∪ E+
IP−−−−→ D π−−−−→ V

αE

� β

� �f

�α

VE E ←−−−− E− ∪ E+
IP−−−−→ D π−−−−→ V.

The automorphism f permutes the pairs of dots in D, stabilizing the pairing scheme
(D, π, IP ). Thus the homomorphism φ is surjective. This completes the proof.

Definition 2.11 (Connectivity of a graph). Two vertices V and V ′ of a graph Γ
are said to be connected in Γ if there is a sequence of vertices

V = V0, V1, V2, · · · , Vn = V ′

in V such that (Vi, Vi+1) are incident to an edge Ei ∈ E for every i = 0, 1, 2, · · · , n−1.
If every pair of vertices of Γ are connected in Γ, then we say the graph itself is
connected.
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2.4. Asymptotic Analysis of 1 × 1 Matrix Integrals. We are now ready to
calculate the asymptotic expansion of

Z(t,m) =
1√
2π

∫
R

exp
(
−1

2
x2

)
exp


 2m∑

j=3

tj
j!
xj


 dx,(2.13)

where m > 0 is an integer and

t = (t3, t4, · · · , t2m−1, t2m) ∈ C2m−3 × Ωε.

From now on we use the domain

Ωε = {t2m ∈ C
∣∣ π − ε < arg(t2m) < π + ε}(2.14)

for the asymptotic expansion in t2m, where ε is a small positive real number. Since
Re(t2m) < 0, the integral (2.13) is absolutely convergent on C2m−3 × Ωε. Choose
t2m ∈ Ωε and fix it. Then Z

(
(t3, t4, · · · , t2m−1, t2m),m

)
is absolutely and uniformly

convergent in (t3, t4, · · · , t2m−1) on any compact subset of C2m−3. In particular, it
has an absolutely convergent Taylor series expansion around the origin of C2m−3:

Z(t,m) =
1√
2π

∫
R

exp
(
−1

2
x2

)
exp


2m−1∑

j=3

tj
j!
xj


 exp

(
t2m

(2m)!
x2m

)
dx

=
∑

v3≥0,v4≥0,··· ,v2m−1≥0

2m−1∏
j=3

t
vj

j

(j!)vjvj !

· 1√
2π

∫
R

exp
(
−1

2
x2

)
x

∑2m−1
j=3 jvj exp

(
t2m

(2m)!
x2m

)
dx.

For a fixed (v3, v4, · · · , v2m−1), the integral of the last line of the above and its all
t2m derivatives are uniformly continuous on Ωε. Therefore, as t2m −→ 0 while in
Ωε, we have an asymptotic expansion

A
(

1√
2π

∫
R

exp
(
−1

2
x2

)
x

∑2m−1
j=3 jvj exp

(
t2m

(2m)!
x2m

)
dx

)

=
∑
v2m≥0

tv2m
2m

((2m)!)v2mv2m!
· 1√

2π

∫
R

exp
(
−1

2
x2

)
x

∑2m
j=3 jvjdx.

Let us denote by A
(
Z(t,m)

)
the Taylor expansion in (t3, t4, · · · , t2m−1) ∈ C2m−3

and the asymptotic expansion in t2m ∈ Ωε of Z(t,m). We have thus established

A
(
Z(t,m)

)
=

∑
v3≥0,v4≥0,··· ,v2m≥0

1√
2π

∫
R

e−
1
2x

2
x

∑2m
j=3 jvjdx

2m∏
j=3

t
vj

j

(j!)vjvj !
.(2.15)

It is worth noting that the function Z
(
(t3, t4, · · · , t2m),m

)
is not continuous as

t2m −→ 0 in Ωε. This is why we have to use the above argument to establish the
asymptotic expansion of Z(t,m).

We still have to calculate the coefficients of the expansion. To this end, recall
the function

Z(J) =
1√
2π

∫
R

e−
1
2x

2+Jxdx = e
1
2J

2
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of (2.8). It is easy to see that

1√
2π

∫
R

e−
1
2x

2
x

∑2m
j=3 jvjdx =

(
d

dJ

)∑2m
j=3 jvj

Z(J)

∣∣∣∣∣
J=0

.

Now consider the collection of dots D(v3, · · · , v2m), consisting of vj sets of j dots for
j = 3, 4, · · · , 2m. Since only the paired differentiation contributes 1 to the answer,
we have(

d

dJ

)∑2m
j=3 jvj

Z(J)

∣∣∣∣∣
J=0

= the number of pairing schemes on D(v3, · · · , v2m).

Let V(v3, · · · , v2m) be the set of vertices consisting of vj vertices of valence j,
j = 3, 4, · · · , 2m. Then there is a natural fibration

π : D(v3, · · · , v2m) −→ V(v3, · · · , v2m).

The automorphism group G of this fibration is given by

G =
2m∏
j=3

S
vj

j �

2m∏
j=3

Svj
⊂ S|D(v3,··· ,v2m)|.

Let us denote by P(v3, · · · , v2m) the collection of all pairing schemes on D(v3, · · · , v2m).
Then

1√
2π

∫
R

e−
1
2x

2
x

∑2m
j=3 jvjdx

2m∏
j=3

1
(j!)vjvj !

=
|P(v3, · · · , v2m)|

|G|

=
1
|G|

∑
[P ]∈P(v3,··· ,v2m)

/
G

∣∣G · P
∣∣

=
1
|G|

∑
[P ]∈P(v3,··· ,v2m)

/
G

∣∣G/
GP

∣∣

=
∑

[P ]∈P(v3,··· ,v2m)
/
G

1∣∣GP

∣∣
=

∑
Γ

1
|Aut(Γ)| ,

where Γ runs all graphs whose vertex set is equal to V(v3, · · · , v2m). We have thus
proved

(2.16) A


 1√

2π

∫
R

exp
(
−1

2
x2

)
exp


 2m∑

j=3

tj
j!
xj


 dx




=
∑

Γ graph with vertices
of valence j=3,4,··· ,2m

1
|Aut(Γ)|

2m∏
j=3

t
vj(Γ)
j ∈ Q[[t3, t4, · · · , t2m]],

where vj(Γ) denotes the number of j-valent vertices of the graph Γ. The expan-
sion result is a divergent formal power series in Q[[t3, t4, · · · , t2m]] with rational
coefficients.



MODULI OF RIEMANN SURFACES 15

The number m chosen in the integral is artificial. Since the asymptotic expansion
makes sense only when we have a holomorphic function, we placed it so that the
integral Z(t,m) converges. As a result, we obtained an artificial constraint in (2.16)
that the graph Γ cannot have any vertices of valence greater than 2m. In the rest
of this section, let us investigate the limit

lim
m→∞

A
(
Z(t,m)

)
.

First let us recall the Krull topology of the formal power series ring K[[t]] with
coefficients in a field K. Let Jn = tnK[[t]] be the ideal generated by tn. The Krull
topology is introduced to the ring K[[t]] by defining the collection {Jn}n≥0 as the
basis for open neighborhoods of 0 ∈ K[[t]]. Since Jn+1 ⊂ Jn, we have a projective
system

· · · −−−−→ K[[t]]
/
Jn+1

pn+1−−−−→ K[[t]]
/
Jn −−−−→ · · · .

Note that ⋂
n≥0

Jn = {0}.

Therefore, the natural homomorphism

K[[t]] −→ lim
←−

n

K[[t]]
/
Jn

is injective, and hence they are canonically isomorphic.
In the same spirit, let us define the ring K[[t1, t2, t3, · · · ]] of formal power series

in infinitely many variables as follows. We introduce the degree of each variable by

deg(tn) = n, n = 1, 2, 3, · · · .(2.17)

There is a natural inclusion

K[[t1, t2, · · · , tm]] ⊂ K[[t1, t2, · · · , tm, tm+1]].(2.18)

Let Jm
n denote the ideal of K[[t1, t2, · · · , tm]] generated by all polynomials of ho-

mogeneous degree n. Note that if m ≥ n, then the natural inclusion (2.18) induces

K[[t1, t2, · · · , tm]]
/
Jm
n = K[[t1, t2, · · · , tm, tm+1]]

/
Jm+1
n .

We also have a natural projection

K[[t1, t2, · · · , tm, tm+1]] −→K[[t1, t2, · · · , tm, tm+1]]
/
(tm+1)

∼−→K[[t1, t2, · · · , tm]],

which induces a projective system

· · · −→ K[[t1, t2, · · · , tn, tn+1]]
/
J n+1
n+1 −→ K[[t1, t2, · · · , tn]]

/
J n
n −→ · · · .

We can now define

K[[t1, t2, t3, · · · ]] =
def

lim
←−

n

K[[t1, t2, · · · , tn]]
/
J n
n .(2.19)

Let Jn denote the ideal of K[[t1, t2, t3, · · · ]] generated by polynomials of homoge-
neous degree n. This ideal is generated by a finite number of monomials of degree
n. By definition,

K[[t1, t2, t3, · · · ]]
/
Jn = K[[t1, t2, · · · , tn]]

/
J n
n ,

and we have ⋂
n≥0

Jn = {0}.
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The Krull topology of K[[t1, t2, t3, · · · ]] is defined by identifying the collection
{Jn}n≥0 as the basis for open neighborhoods of 0 ∈ K[[t1, t2, t3, · · · ]]. Since

Jn ∩K[[t1, t2, · · · , tm]] = Jm
n ,

the induced topology on the subring

K[[t1, t2, · · · , tm]] ⊂ K[[t1, t2, t3, · · · ]]
agrees with the canonical Krull topology of K[[t1, t2, · · · , tm]].

With these preparations, let us go back to the asymptotic expansion (2.16). For
a graph Γ = (V, E , I), let us denote

v(Γ) = |V| = the number of vertices of Γ,

e(Γ) = |E| = the number of edges of Γ.
(2.20)

As before, vj(Γ) denotes the number of j-valent vertices. It is easy to see that

v(Γ) =
∑
j

vj(Γ), e(Γ) =
1
2

∑
j

jvj(Γ).(2.21)

Therefore, the degree of the monomial in (2.16) is given by

deg


 2m∏

j=3

t
vj(Γ)
j


 = 2e(Γ),

which takes only even values. Although bounding v = v(Γ) does not bound the set
of graphs with v vertices, if we fix the number e(Γ), then there are only finitely
many graphs with e(Γ) edges. Hence every coefficient of a monomial in (2.16) is a
finite sum. In particular, we can rearrange the summation of the asymptotic series
as

A
(
Z

(
(t3, t4, · · · , t2m),m

))
=

∑
n≥0

∑
Γ graph with e(Γ)=n

and valence j=3,··· ,2m

1
|Aut(Γ)|

2m∏
j=3

t
vj(Γ)
j ,

and for every n ≥ 0, the graph sum

∑
Γ graph with e(Γ)=n

and valence j=3,··· ,2m

1
|Aut(Γ)|

2m∏
j=3

t
vj(Γ)
j

is a weighted homogeneous polynomial of degree 2n if there is a graph Γ with
exactly n edges. We also note that the maximum of jvj(Γ) for every given graph
Γ does not exceed 2e(Γ). Therefore, for a fixed n and an arbitrary m ≥ n, the
polynomial

A
(
Z

(
(t3, t4, · · · , t2m),m

))
mod J 2m

2n+1 =
∑

Γ graph with e(Γ)≤n
and valence j=3,··· ,2n

1
|Aut(Γ)|

2n∏
j=3

t
vj(Γ)
j

∈ Q[[t3, t4, · · · , t2m]]
/
J 2m

2n+1

= Q[[t3, t4, t5, · · · ]]
/
J2n+1

(2.22)
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is stable, i.e., it does not depend on m as long as it is larger than n. In the light
of this stability, let us consider a sequence of polynomials

A
(
Z

(
(t3, t4, · · · , t2m),m

))
mod J 2m

m ∈ Q[[t3, t4, t5, · · · ]]
/
Jm

for m ≥ 0. This defines an element of the projective system

· · · −−−−→ Q[[t3, t4, t5, · · · ]]
/
Jm+1 −−−−→ Q[[t3, t4, t5, · · · ]]

/
Jm −−−−→ · · · .

Definition 2.12. We define the limit of A
(
Z(t,m)

)
as m goes to ∞ as an element

of the projective limit of the above projective system:

lim
m→∞

A
(
Z

(
(t3, t4, · · · , t2m),m

))

=
{
A

(
Z

(
(t3, t4, · · · , t2m),m

))
mod Jm

}
m≥0

∈ lim
←−

m

Q[[t3, t4, t5, · · · ]]
/
Jm

= Q[[t3, t4, t5, · · · ]].

Theorem 2.13 (Asymptotic expansion of the scalar integral). The asymptotic ex-
pansion A

(
Z(t,m)

)
of (2.16) has a well-defined limit as m goes to ∞, and the

limiting formal power series as an element of Q[[t3, t4, t5, · · · ]] is given by

lim
m→∞

A


 1√

2π

∫
R

exp
(
−1

2
x2

)
exp


 2m∑

j=3

tj
j!
xj


 dx




=
∑
n≥0

∑
Γ graph

with e(Γ)=n

1
|Aut(Γ)|

2n∏
j=3

t
vj(Γ)
j .

For every fixed n ≥ 0, the graph sum is a finite sum, and the product
∏

j t
vj(Γ)
j is a

monomial of degree 2n.

Remark. If we set tj = 0 for all j ≥ 3, then the integral has value 1. This corre-
sponds to the homogeneous degree 0 term of the formal power series in the right
hand side. Since it means e(Γ) = 0, and since we are not allowing any vertex to
have valence less than 3, the graph Γ = (V, E , I) is an empty object. Therefore, we
define ∑

Γ graph
with e(Γ)=0

1
|Aut(Γ)|

0∏
j=3

t
vj(Γ)
j = 1

to make the equality hold for all cases.

Proof. The only remaining thing we have to check is that for every n ≥ 0, the
weighted homogeneous polynomial

∑
Γ with
e(Γ)=n

1
|Aut(Γ)|

2n∏
j=3

t
vj(Γ)
j(2.23)
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of degree 2n appears in the element{
A

(
Z

(
(t3, t4, · · · , t2m),m

))
mod Jm

}
m≥0

(2.24)

of the projective limit, and that it is stable as m tends to ∞. From (2.22), if
we choose m ≥ 2n + 1, then the homogeneous polynomial (2.23) appears in the
sequence (2.24) and is stable for sufficiently large m. This completes the proof.

2.5. The Logarithm and the Connectivity of Graphs. For our purpose of
using graph theory in the study of the moduli spaces of Riemann surfaces, we need
to consider connected graphs. In the asymptotic expansion of Theorem 2.13, all
graphs, connected or non-connected, appear in the right hand side. How can we
restrict the sequence to have only connected graphs?

As we have seen, the power series in an infinite number of variables

f(t) = f(t3, t4, t5, · · · ) =
∑
n≥0

∑
Γ graph

with e(Γ)=n

1
|Aut(Γ)|

2n∏
j=3

t
vj(Γ)
j ∈ Q[[t3, t4, t5, · · · ]]

(2.25)

is a well-defined element. Therefore, its subseries

h(t) = h(t3, t4, t5, · · · ) =
∑
n>0

∑
Γ connected

graph with e(Γ)=n

1
|Aut(Γ)|

2n∏
j=3

t
vj(Γ)
j(2.26)

is also well-defined.

Remark. We considered the case when the graph Γ was an empty object in the last
section, and gave the value 1 to the leading term of (2.25). This means that an
empty set is counted as a graph. However, we do not consider an empty graph
to be connected. This is consistent with the definition of a connected topological
space, which dictates that an empty set is not connected. This is the reason our
series h(t) of (2.26) does not have the constant term.

Theorem 2.14 (Sequence of connected graphs). Let f(t) and h(t) be as above.
Then

f(t) = eh(t) =
∞∑

m=0

1
m!

(
h(t)

)m
.

Proof. The order of a formal power series in Q[[t3, t4, t5, · · · ]] is the degree of the
lowest degree non-zero homogeneous polynomial (called the leading term) that
appears in the series. Thus h(t) has order 4, and the leading term corresponds to
the unique graph with one vertex and two edges. In particular,(

h(t)
)m ∈ Jk

if 4m ≥ k. Therefore, (
eh(t) mod Jk

)
∈ Q[t3, t4, · · · , tk−1]

is a polynomial with rational coefficients for every k ≥ 0.
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Now consider the graph expansion

1
m!

(
h(t)

)m ≡ 1
m!

∑
Γ1,Γ2,··· ,Γm

e(Γi)<k

m∏
i=1

1
|Aut(Γi)|

∏
j≥3

t
vj(Γi)
j mod J2k.(2.27)

Let
Γ = Γ1 ∪ Γ2 ∪ · · · ∪ Γm

be the graph with m connected components Γi, i = 1, 2, · · · ,m. Obviously, we have

Aut(Γ) =

(
m∏
i=1

Aut(Γi)

)
� Sm.

In particular,

1
|Aut(Γ)| =

1
m!

m∏
i=1

1
|Aut(Γi)|

.(2.28)

Because of the construction of Γ, we also have

∏
j≥3

t
vj(Γ)
j =

∏
j≥3

t
vj(Γ1∪···∪Γm)
j =

m∏
i=1

∏
j≥3

t
vj(Γi)
j .(2.29)

From (2.27), (2.28) and (2.29), we obtain

1
m!

(
h(t)

)m ≡
∑

Γ graph with m connected
components and e(Γ)<k

1
|Aut(Γ)|

∏
j≥3

t
vj(Γ)
j mod J2k.

Since the bound on e(Γ) also bounds the number of connected components in Γ,
we have

eh(t) ≡
∑

Γ graph with
e(Γ)<k

1
|Aut(Γ)|

∏
j≥3

t
vj(Γ)
j mod J2k

≡ f(t) mod J2k

for every k ≥ 0. This establishes f(t) = eh(t).

The formal power series

f>0(t) = f(t) − f(0) = f(t) − 1

has a positive order. Therefore,

log f(t) =
def

−
∑
m≥1

(−1)m

m

(
f>0(t)

)m ∈ Q[[t3, t4, t5, · · · ]]

is well-defined. Of course it is h(t):

log f(t) = h(t).

In the same way as in the previous section, we can establish the equality for the
asymptotic series that contains only connected graphs:
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Theorem 2.15 (Asymptotic expansion with connected graphs). As an element of
Q[[t3, t4, t5, · · · ]], we have an equality

lim
m→∞

logA


 1√

2π

∫
R

exp
(
−1

2
x2

)
exp


 2m∑

j=3

tj
j!
xj


 dx




=
∑
n>0

∑
Γ connected

graph with e(Γ)=n

1
|Aut(Γ)|

2n∏
j=3

t
vj(Γ)
j .

Remark. The factor 1/j! accompanying tj in the integral is introduced so that the
asymptotic expansion has a natural interpretation as the generating function of
the reciprocal of the orders of graph automorphism groups.

2.6. Ribbon Graphs and Oriented Surfaces. We have found in Theorem 2.15
the generating function of the orders of the automorphism groups of connected
graphs. Our next challenge is to restrict the graphs to be drawn on a surface, in
particular a Riemann surface. The shape of the right hand side of the asymptotic
formula inevitably becomes more complicated, because it should contain informa-
tion of the genus of the surface on which a connected graph is drawn, while the
left hand side has amazingly simple generalizations. In the next two sections we
develop the extensions of the left hand side of the formula to deal with graphs
on surfaces. In this section, we identify the conditions we have to impose on the
graphs so that they are placed on a surface. For historical remarks on the research
on graphs embedded in surfaces, we refer to Ringel [?].

Suppose we have a graph drawn on an oriented surface. The orientation of the
surface determines a cyclic ordering of the edges incident to each vertex. This
consideration motivates our definition of ribbon graphs.

Figure 2.7. A graph drawn on an oriented surface. At each ver-
tex, the orientation of the surface determines a cyclic ordering of
the edges incident to the vertex.

Definition 2.16 (Cyclic ordering). Consider a set X of j labeled objects, and let
G be a subgroup of the symmetric group Sj . A G-ordering on X is a coset of the
quotient space Sj

/
G. When G = Z

/
jZ is the cyclic group of order j, we simply

say the G-ordering a cyclic ordering.

Remark. An element of Sj

/
G gives an ordering of the j elements of X that is

invariant under the G-action. Therefore, when G = Sj , the G-ordering means no
ordering. The {1}-ordering is thus the same as the ordering in the usual sense, and
there are j! different ways of ordering the elements of X.
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Definition 2.17 (Ribbon graphs). Let Γ = (V, E , I) be a graph, and ΓE its edge
refinement. A cyclic ordering of edges at a vertex V ∈ V means a cyclic ordering
of the set of half edges incident to V . A ribbon graph structure C on Γ is the
collection of cyclic ordering at every vertex of Γ. A ribbon graph is a graph with
a ribbon graph structure. We use the notation ΓR = (Γ, C) to indicate a ribbon
graph. The graph Γ is the underlying graph of a ribbon graph ΓR.

Remark. The terminology ribbon graph was first used by Kontsevich in [?]. Ear-
lier, the same object was called a fatgraph by Penner [?], but the notion was
well-known to the graph theory community for long time and called by different
names, such as a map of a surface. A cyclic ordering is commonly referred to as
a rotation or a rotation system in the literature ([?], [?]). We adopt the new
terminology due to Kontsevich, that best represents the nature of the object.

Definition 2.18 (Ribbon graph isomorphism). Let (Γ, C) and (Γ′, C′) be two rib-
bon graphs. A graph isomorphism of the edge refinement

φ : ΓE
∼−−−−→ Γ′E′

induces the pull-back ribbon graph structure φ∗(C′). The ribbon graphs (Γ, C)
and (Γ′, C′) are said to be isomorphic if C = φ∗(C′).

To visualize a ribbon graph ΓR, let us provide an oriented plane (with the ori-
entation represented by a counter clockwise rotation), and place every vertex on
the plane so that the cyclic ordering of half edges at each vertex is drawn in the
order of clockwise rotation. Since the half edges incident to a j-valent vertex V
are cyclically ordered, let us prepare indices i1, i2, · · · , ij to name each half edge.
But instead of using a single index to name a half edge, we use double indices
i1i2, i2i3, · · · , iji1 for the j half edges incident to V . In this way we can keep track
of the cyclic ordering better. Since we use double indices, we can also use double
lines to represent half edges. Now a half edge looks like a ribbon. This ribbon is
a subset of the oriented plane, and hence it inherits the natural orientation. The
orientation of each ribbon can be presented by an arrow on its boundary that is
consistent with the orientation of the ribbon. Thus a j-valent vertex V looks like
one in Figure 2.8.

When two vertices V and V ′ are connected by an edge, it is done in a way
that the orientation of the half edges are consistent (Figure 2.8). Thus we have an
oriented topological surface with boundary as a visualization of a ribbon graph ΓR.

Definition 2.19 (Boundary circuit of a ribbon graph). Let ΓR = (Γ, C) be a rib-
bon graph, and

−→
E 1 and

−→
E 2 be two directed edges of Γ. The edge

−→
E 2 is said to

be the successor of the edge
−→
E 1 at vertex V if the half edges E1+ and E2− are

incident to V , and E2− is right after E1+ with respect to the cyclic ordering at the
vertex V . A sequence (

−→
E 0, V0,

−→
E 1, V1, · · · ,

−→
E n, Vn) of directed edges and vertices

is said to be a boundary circuit of ΓR if

1. the directed edge
−→
E i+1 is the successor of

−→
E i at the vertex Vi for i =

0, 1, · · · , n− 1;
2. (

−→
E n, Vn) = (

−→
E 0, V0); and

3.
−→
E 0,

−→
E 1, · · · ,

−→
E n−1 are distinct as directed edges (i.e., the same edge can

appear in a sequence up to twice with opposite directions).



22 MOTOHICO MULASE

ij i1

i1

i2

i2
i3i3

i4

ij−1
ij

V
V

E

a 1

a 2

a 2
a 3

a 3
a 1

Figure 2.8. Two vertices with cyclic ordering connected to one
another with a consistent orientation. A half edge labeled by i1i2
is connected to a half edge labeled by a1a2. In this example, the
outward line i1 from V is connected with the inward line a2 going
into V ′, and the outward line a1 form V ′ with the inward line i2
going to V .

In the topological visualization of the ribbon graph ΓR, the boundary circuit
(
−→
E 0, V0,

−→
E 1, V1, · · · ,

−→
E n, Vn) is an oriented circle with n segments. We denote

by b(ΓR) the number of boundary circuits of a ribbon graph ΓR.

Figure 2.9. An example of a ribbon graph with two vertices,
three edges and one boundary circuit.

As we have observed in Figure 2.7, a graph drawn on an oriented surface is
naturally a ribbon graph. Conversely, a connected ribbon graph has a canonical
embedding into an oriented surface. Let ΓR be a ribbon graph. Since its boundary
circuit is an oriented circle, we can glue an oriented disk to each boundary circuit
with consistent orientation. Then we obtain a compact oriented topological surface
on which the underlying graph Γ is drawn. Let us denote by ΣΓR the compact
oriented topological surface thus obtained. The topological type of ΣΓR minus
b(ΓR) points is the same as the graph Γ. The genus of the surface is determined by
the equation

2 − 2g(ΣΓR) = χ(ΣΓR) = v(Γ) − e(Γ) + b(ΓR).(2.30)

By comparing Figure 2.7 and Figure 2.9, we see that the compact surface ΣΓR for
the ribbon graph Figure 2.9 is a torus. Indeed, we have

2 − 2g = 2 − 3 + 1 = 0,

hence g = 0.
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Definition 2.20 (Ribbon graph automorphism). A ribbon graph automorphism
is an automorphism of a graph that preserves the cyclic ordering at each vertex.
The group of automorphisms of a ribbon graph ΓR is denoted by Aut(ΓR). The
group of ribbon graph automorphisms that fix each boundary circuit is denoted by
Autb(ΓR).

Remark. We have a natural subgroup inclusion relation

Autb(ΓR) ⊂ Aut(ΓR) ⊂ Aut(Γ),

where Γ is the underlying graph of a ribbon graph ΓR. When we study the orbifold
structure of moduli spaces of Riemann surfaces, we use the more restricted auto-
morphism group Autb(ΓR). On the other hand, in the Feynman diagram expansion
of Hermitian matrix integrals, it is the group Aut(ΓR) that naturally occurs.

We have thus established an intrinsic condition for the graph to be drawn
on an oriented surface. We can write down a generating function of the ribbon
graph automorphism groups. Our next attention is the analysis counterpart of this
generating function.

2.7. Hermitian Matrix Integrals. The goal of this section is to identify the
asymptotic expansion of a Hermitian matrix integral

ZH(t,N ;m) =
1
CN

∫
HN

exp
(
−1

2
trace(X2)

)
exp


 2m∑

j=3

tj
j

trace(Xj)


 dX(2.31)

in terms of ribbon graphs. Here HN denotes the space of all N × N hermitian
matrices, and for X =

[
xij

]
∈ HN , dX is the standard Lebesgue measure on

HN = RN2
:

dX =
N∧
i=1

dxii ∧
∧
i<j

(
dRe(xij) ∧ dIm(xij)

)
.

We note that

trace(X2) = trace(X†X) =
∑
i

(xii)2 + 2
∑
i<j

(Re(xij))2 + 2
∑
i<j

(Im(xij))2

is a positive definite quadratic form. The overall normalization constant is chosen
to be

CN =
∫
HN

exp
(
−1

2
trace(X2)

)
dX

=
∫

RN2
exp


−1

2

∑
i,j

xijxij


 N∏

i=1

dxii
∏
i<j

dRe(xij) ∧ dIm(xij)

=
(√

2π
)N

πN(N−1)/2 =
(√

2
)N(√

π
)N2

.

(2.32)

The integral ZH(t,N ;m) is absolutely convergent for Re(t2m) < 0 and arbitrary
t3, t4, · · · , t2m−1. Therefore, ZH(t,N ;m) is a holomorphic function in

t = (t3, t4, · · · , t2m−1, t2m) ∈ C2m−3 × Ωε,

where Ωε is the same domain as in (2.14). In exactly the same way as in the case
of the scalar integral (2.15), we obtain the expansion of ZH(t,N ;m) as a Taylor
series in t3, t4, · · · , t2m−1 and an asymptotic series in t2m:
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(2.33) A
(
ZH(t,N ;m)

)
=

1
CN

∑
v3≥0,v4≥0,··· ,v2m≥0

2m∏
j=3

t
vj

j

jvjvj !

∫
HN

exp
(
−1

2
trace(X2)

) 2m∏
j=3

(
trace(Xj)

)vj
dX.

We use the following lemmas to calculate this last integral.

Lemma 2.21 (Hermitian matrix differentiation). Let J =
[
yij

]
1≤i,j≤N be a Her-

mitian matrix valued variable, and let
∂

∂J
=

[
∂

∂yij

]
1≤i,j≤N

.

Then (
trace

(
∂

∂J

)j
)n

exp
(
trace(XtJ)

)∣∣∣∣∣
J=0

=
(
trace(Xj)

)n
.

Proof. A simple calculation shows

(2.34) trace
(

∂

∂J

)j

exp
(
trace(XtJ)

)∣∣∣∣∣
J=0

=


 ∑

a1,a2,··· ,aj

∂

∂ya1a2

∂

∂ya2a3

· · · ∂

∂yaja1


 exp


∑

a,b

xabyab




∣∣∣∣∣∣
J=0

= xa1a2xa2a3 · · ·xaja1 = trace(Xj).

Here we have used the fact that
∂

∂yij
yab = δiaδjb,

and in particular, if i  = j,
∂

∂yij
yji =

∂

∂yij
yij = 0.

The desired formula follows from repeating (2.34) n-times.

Lemma 2.22 (Source term for Hermitian matrix integral). Let J =
[
yij

]
1≤i,j≤N

and ∂
∂J =

[
∂

∂yij

]
1≤i,j≤N

be as above. Then

1
CN

∫
HN

exp
(
−1

2
trace(X2)

) (
trace(Xj)

)n
dX

=

(
trace

(
∂

∂J

)j
)n

exp
(

1
2
trace(J2)

)∣∣∣∣∣
J=0

.

Proof. Since the integral is absolutely convergent, we can interchange the integra-
tion and the differentiation with respect to a parameter, and we obtain

1
CN

∫
HN

exp
(
−1

2
trace(X2)

) (
trace(Xj)

)n
dX

=
1
CN

∫
HN

exp
(
−1

2
trace(X2)

) (
trace

(
∂

∂J

)j
)n

exp
(
trace(XtJ)

)∣∣∣∣∣
J=0

dX
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=

(
trace

(
∂

∂J

)j
)n

1
CN

∫
HN

exp
(
−1

2
trace(X2)

)
exp

(
trace(XtJ)

)
dX

∣∣∣∣∣
J=0

=

(
trace

(
∂

∂J

)j
)n

1
CN

∫
HN

exp
(
−1

2
trace(Xt − J)2

)
exp

(
1
2
trace(J2)

)
dX

∣∣∣∣∣
J=0

=

(
trace

(
∂

∂J

)j
)n

exp
(

1
2
trace(J2)

)∣∣∣∣∣
J=0

,

where we used the translational invariance of the Lebesgue measure dX on HN and
the fact that trace(X2) = trace

(
(Xt)2

)
and trace(XtJ) = trace(JXt).

As in the case of scalar integral, the quantity

2m∏
j=3

(
trace

(
∂

∂J

)j
)vj

exp
(

1
2
trace(J2)

)∣∣∣∣∣∣
J=0

is non-zero only when a pair of ∂
∂yij

’s in the differential operator operates on the
exponential function exp

(
1
2 trace(J2)

)
. Note that

∂

∂yij
· ∂

∂yk#
exp

(
1
2
trace(J2)

)∣∣∣∣
J=0

=
∂

∂yij
· ∂

∂yk#
exp


1

2

∑
a,b

yab yba




∣∣∣∣∣∣
J=0

=
1
2

∑
a,b

(δiaδjbδkbδ#a + δibδjaδkaδ#b)

=
1
2
(δi#δjk + δi#δjk)

=δi#δjk.

(2.35)

As before, let us introduce a set of dots D grouped into vj sets of j dots for given
indices v3, v4, · · · , v2m. Thus

|D| =
2m∑
j=3

jvj .

Since we are dealing with the differentiation by a matrix variable, a group of j dots
are labeled with double indices like

•a1a2 •a2a3 · · · •aja1

and these labels introduce a cyclic ordering of the dots. From (2.35), we know
that each pair of dots (•ij , •k#) in the differential operator contributes δi#δjk in the
computation of the derivative. Thus we have

2m∏
j=3

(
trace

(
∂

∂J

)j
)vj

exp
(

1
2
trace(J2)

)∣∣∣∣∣∣
J=0

=
∑

(P pairing scheme)

∑
(all indices)

∏
•ij and •k�

are paired in P

δi#δjk.

As before, the fibration π : D −→ V is defined by mapping a group of j dots to a
j-valent vertex. The projection changes a pairing scheme into a ribbon graph ΓR.
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To visualize the transition, consider the case that •i1i2 is paired, or connected, with
•a1a2 . The dot •i1i2 is one of the j dots cyclically ordered. So it can be identifies
with a half edge of a j-valent vertex V that is placed on an oriented plane. The
other dot •i1i2 belongs to another set of cyclically ordered dots, so we can identify
it with a half edge of another vertex V ′. (Of course it is possible that V = V ′.) The
contribution from this pair, δi1a2δi2a1 , can be visualized by connecting the outgoing
line labeled by i1 from V with the incoming line a2 at V ′, and i2 with a1. On the
ribbon graph level, the connection is exactly the same as in Figure 2.8. Thus the
quantity δi1a2δi2a1 , called a propagator in QFT, is attached to an edge E, and the
factor δi1a2 represents one of the oriented boundaries of the ribbon and the other
factor, δi2a1 , the other oriented boundary.

i

j k

l
δ il

δ jk

E

V V

i l

m

δ lpδ ti

pt
h

δmh

s

p

q

δpq
δst

t

Figure 2.10. A propagator around a boundary circuit that is an
n-gon.

What happens if we follow a boundary circuit starting with, say δi#? The next
dot •#m represents a half edge incident to vertex V ′ that follows •k# in the cyclic
ordering at V ′. It is connected to another dot, say •hp. Then the factor of the
next propagator following δi# is δ#p. In this way, we have a sequence of factors of
propagators

δi#δ#pδpq · · · δstδti
along a boundary circuit of the ribbon graph ΓR. Note that∑

i,#,p,q,··· ,s,t
δi#δ#pδpq · · · δstδti = trace(In) = N,

when the boundary circuit is an n-gon (Figure 2.10). Therefore, the product of all
propagators for all edges, after taking summation over every index involved, gives
N b(ΓR), where b(ΓR) is the number of boundary circuits of ΓR.

We have noted that the fibration π : D −→ V has an extra structure for the
case of Hermitian matrix integral. For every vertex V ∈ V, the fiber has a cyclic
ordering. Thus the automorphism of the fibration is

G =
2m∏
j=3

(
Z

/
jZ

)vj
�

2m∏
j=3

Svj ,
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whose order,
∏

j j
vjvj !, appears in the coefficient of (2.33). In the same way we

proved for the regular graph, the stabilizer subgroup of G of a pairing scheme is
identified with the ribbon graph automorphism group. We thus have

2m∏
j=3

1
jvjvj !

(
trace

(
∂

∂J

)j
)vj

exp
(

1
2
trace(J2)

)∣∣∣∣∣∣
J=0

=
∑

ΓR ribbon graph

vj(Γ
R)=vj ,j=3,··· ,2m

1
|Aut(ΓR)|N

b(ΓR).

Plugging it back to (2.33), we obtain

A
(
ZH(t,N ;m)

)
=

∑
ΓR ribbon graph

with valence j=3,4,··· ,2m

1
|Aut(ΓR)|N

b(ΓR)
2m∏
j=3

t
vj(Γ

R)
j .(2.36)

The argument of the Krull topology and taking the logarithm for the connected
graphs are the same as before. Finally, we have established

lim
m→∞

logA
(
ZH(t,N ;m)

)
=

∑
ΓR connected ribbon graph

1
|Aut(ΓR)|N

b(ΓR)
∏
j≥3

t
vj(Γ

R)
j .

(2.37)

2.8. Möbius Graphs and Non-Orientable Surfaces. We have observed that
a cyclic ordering of half edges at each vertex of a graph is an intrinsic condition
for the graph to be drawn on an oriented surface. Let us now turn our attention
to graphs drawn on a non-orientable surface. What is an intrinsic condition for a
graph to be on a non-orientable surface? And how do we find a canonical embedding
of a graph into a non-orientable surface? Before answering these questions, let us
review some basic facts about non-orientable surfaces.

Figure 2.11. A Möbius band.

The simplest non-orientable surface is a Möbius band (Figure 2.11). It is created
by gluing one pair of parallel edges of a rectangle in a certain manner. We start
with an oriented rectangle. Note that the orientation induces a natural orientation
of the boundary edges. If we glue a parallel pair of edges in a way preserving the
orientation, then we obtain an oriented cylinder. On the other hand, if we glue the
same parallel edges in a way inconsistent with the orientation of the rectangle, then
we obtain a Möbius band (Figure 2.12 top). The boundary of a Möbius band is a
circle. The homotopy type of a Möbius band is that of a circle, and hence, it has
Euler characteristic 0.
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Figure 2.12. Making a Möbius band from a rectangle.

It is well-known that when we cut a Möbius band along the middle circle, we
obtain an orientable cylinder (Figure 2.12 bottom). Following this cutting pro-
cess backward, we see that a Möbius band can be constructed by identifying the
antipodes of the top circle of a cylinder (Figure 2.13).

Figure 2.13. Möbius band is obtained by identifying the an-
tipodes of the top circle of a cylinder.

Compact non-orientable surfaces without boundary are classified by their Eu-
ler characteristic, which takes all integer values less than or equal to 1. A non-
orientable surface of genus g, denoted by Xg, is constructed as follows. First
we remove g+ 1 disjoint disks from a sphere. We then glue a Möbius band to each
boundary circle. The surface thus obtained is non-orientable and compact without
boundary. Since a Möbius band has Euler characteristic 0, Xg has Euler charac-
teristic 1 − g. We note here that gluing a Möbius band to a boundary circle is
topologically the same as identifying the antipodes on the boundary circle. There-
fore, X0 is homeomorphic to a real projective plane S2

/
〈ι〉, where ι : S2 −→ S2 is

the map of a sphere that interchanges the antipodes. X0 can be also constructed
by attaching a disk to the boundary of a Möbius band.

A non-orientable surface X1 of genus 1 is best known as a Klein bottle. It is
constructed by gluing the two ends of an oriented cylinder in a way inconsistent
with the orientation chosen (Figure 2.14).

Figure 2.14. A Klein bottle.

Of course it is the same as gluing two Möbius bands to a two-punctured sphere.
To see that these two different constructions give the same result, let us start with
the standard construction, Figure 2.15 top left. Recall that gluing a Möbius band
is the same as identifying the antipodes of a boundary circle. First, we cut out a
piece ABEDGF from the sphere (Figure 2.15 top right). We then flip the cut-out
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piece over, and glue it back to the surface (Figure 2.15 bottom). Since we cut the
surface along the line segment AB, the segment becomes two arcs a and g. Arc
g is at the bottom of the colored piece of Figure 2.15 bottom, because the piece
is flipped over. Similarly, the line segment GD becomes two arcs c and e. Arc d
represents the same arc AHG, and b is equal to BCD. Originally the arc AFG is
glued to AHG by identifying the antipodes of the circle. But since the cut piece
is flipped over, arcs d and h are now glued straight, as indicated in Figure 2.15
bottom. The same gluing is done to arcs b and f . At this stage, the surface we
have thus constructed is again a sphere with two disks removed. Note that it is
homeomorphic to a cylinder. The pair-wise identification of a = g and c = e is
indeed the same as gluing two ends of an oriented cylinder in a manner that is
inconsistent with the orientation.

A B

G D

a

b

c

d

e

fgh

CEFH

Figure 2.15. Two different constructions of a Klein bottle.

The above consideration shows that gluing two Möbius bands to two boundary
circles of an oriented punctured sphere is the same as gluing these two circles in
an orientation-inconsistent manner. We can now modify our previous construction
of Xg in a more visual way. First, let us consider the case when g = 2k is even.
We remove g + 1 = 2k + 1 disjoint disks from an oriented sphere. To one of the
boundary circles, we glue a Möbius band. We note that the surface is already
non-orientable. Out of the remaining g = 2k boundary circles, let us form k pairs
of two circles. Instead of gluing two Möbius bands to a pair of circles, we simply
attach a cylinder. Of course we have to connect the two circles in an orientation-
inconsistent manner, but since the surface is already non-orientable, we can simply
connect the two circles in whichever way we want. In particular, we can just attach
a cylinder, or a handle, to a pair of circles. The surface thus obtained looks like
one in Figure 2.16.

Now consider an oriented surface Σg of even genus g = 2k. It has an orientation-
reversing involution

ι : Σg −→ Σg.
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Figure 2.16. A non-orientable surface X2 of genus 2. It is ob-
tained by gluing a Möbius band and a cylinder to a 3-punctured
sphere.

An easy way to visualize it is to place the surface Σg with half of the handles in one
side. An orientation-reversing involution can be given by the antipodal mapping
around the center of the surface (Figure 2.17). It is now obvious that

Xg
∼= Σg

/
〈ι〉.

We note that the center of the antipodes is not on the surface. Thus the action of
the involution does not have any fixed points on the surface.

Figure 2.17. The antipodal map as an orientation-reversing in-
volution of an oriented surface of even genus. The center of the
antipodes is not on the surface. Thus the involution does not have
any fixed points on the surface.

The case of an odd genus g = 2k + 1 is almost the same. We start with an
oriented sphere with g+1 = 2k+2 disjoint disks removed. Let us pair all boundary
circles into k + 1 groups. To the first pair, we attach an oriented cylinder in an
orientation-inconsistent manner. It makes sense because both the cylinder and the
(g + 1)-punctured sphere are oriented. The surface thus obtained is non-orientable
and has still 2k boundary circles. We then attach a cylinder to each pair of circles
to make a compact non-orientable surface without boundary. It looks like one in
Figure 2.18.

Figure 2.18. A non-orientable surface X3 of genus 3. The two
boundary circles have the natural orientation coming from the ori-
entation of the surface. The circles are glued to one another in an
orientation-inconsistent manner.

As before, for an odd genus case, we can also find an orientation-reversing invo-
lution ι of an oriented surface Σg of genus g such that Xg is the quotient of Σg by
the involution (Figure 2.19).

Thus we have shown the following.
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Figure 2.19. An orientation-reversing involution of an oriented
surface of odd genus.

Proposition 2.23 (Oriented covering of a non-orientable surface). For every com-
pact non-orientable surface Xg of genus g, there is a compact oriented surface Σg

and an orientation-reversing involution ι : Σg −→ Σg such that

Xg
∼= Σg

/
〈ι〉.

Remark. Since ι does not have any fixed points, the quotient is a topological man-
ifold, and we have

χ(Xg) =
1
2
χ(Σg) = 1 − g.

Proposition 2.23 motivates us to introduce the notion of Möbius graphs. These
are the graphs drawn on an orientable or non-orientable surface.

Definition 2.24 (Möbius graphs). A 2-color ribbon graph is a ribbon graph with
an element of Z/2Z assigned to every edge. An orientation-color change at a
vertex is an operation on a 2-color ribbon graph that reverses the cyclic order of
the vertex and the color of an edge by adding 1 ∈ Z/2Z if one of its half edges
is incident to the vertex. Thus if an edge is doubly incident to a vertex, then
the color of this edge does not change after an orientation-color change at the
vertex. Two 2-color ribbon graphs are said to be equivalent if one is obtained
from the other by a successive application of orientation-color change operations.
An equivalence class of a 2-color ribbon graph is called a Möbius graph. A
Möbius graph automorphism is a pair consisting of a permutation of vertices
and a permutation of half edges that preserve the incidence relation, color at each
edge, and either preserve or reverse the cyclic ordering at each vertex. We can make
a ribbon graph a Möbius graph by giving color 0 at each edge. A Möbius graph is
said to be orientable if it is equivalents to a ribbon graph, and non-orientable
otherwise.

We can give a topological realization of a Möbius graph by indicating the
color of an edge with twisting (color 1) or no twisting (color 0). The topological
realization is an orientable or non-orientable surface with boundary. Figure 2.20
shows two equivalent Möbius graphs. We note that a Möbius graph has boundary
circuits, which are the boundary components of the topological realization, but
they are no longer canonically oriented. We can construct a compact connected
surface ΣΓM , orientable or non-orientable, from a connected Möbius graph ΓM by
attaching a disk to each boundary circuit of ΓM .

Remark. The notion of Möbius graphs has appeared in the literature in many dif-
ferent names, such as voltage graphs with a rotation system and the voltage group
Z

/
2Z (cf. [?]). The graphs on a surface, orientable or non-orientable, are studies

in the context of map coloring problem for surfaces of genus g > 1 in [?]. Since we
do not consider any other voltage groups than Z

/
2Z, we use the more topologically

appealing terminology.
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Figure 2.20. Two equivalent Möbius graphs consisting of two
vertices, three edges, and one boundary circuit. The graphs are
interchanged one another by an orientation-color change operation
at the right hand side vertex.

The opposite of a ribbon graph is the ribbon graph obtained by reversing the
cyclic order at every vertex. Generically the opposite is a different ribbon graph,
but they are equivalent as a Möbius graph.

For every connected non-orientable Möbius graph ΓM , there is a connected ori-
entable Möbius graph Γ2 and a fixed-point free involution ι : Γ2 −→ Γ2 such that

Γ2/〈ι〉 ∼= ΓM .(2.38)

We call Γ2 the covering graph of ΓM , which is unique up to isomorphism. This
corresponds to the situation of Proposition 2.23.

The construction of Γ2 is as follows. First we apply the orientation-color change
operation, if necessary, to place all vertices of ΓM on an oriented plane so that
the cyclic ordering at each vertex is consistent with the orientation of the plane.
(Of course ΓM does not have to be planer and its edges may not be placed on the
plane.) We then prepare two copies of ΓM , calling them ΓM and Γ′M . Let E be
an edge of ΓM of color 1, incident to vertices V1 and V2 (which can be the same
vertex), and E′, V ′1 and V ′2 be the corresponding edge and vertices of Γ′M . Remove
E and E′ from ΓM ∪ Γ′M and connect V1 and v′2 with an edge V1V ′2 , and give it
color 1. Likewise, connect V2 and V ′1 with an edge V ′1V2 and give it color 1. Let us
call this procedure cross-bridge construction (see Figure 2.21).

V
 1

V
 1

V
 1

V
 1

V
 1

V
 1

V
 2

V
 1

V
 2

V
 1

Figure 2.21. The cross-bridge construction.

The covering Γ2 is obtained by applying the cross-bridge construction to every
edge of ΓM of color 1. The involution ι maps every vertex V ∈ ΓM to its counterpart
V ′ ∈ Γ′M , every edge of color 0 of ΓM to its counterpart of Γ′M preserving its
incidence, and a new edge V1V ′2 to its cross-bridge partner V ′1V2. Figure 2.22 shows
the covering graph of the Möbius graph of Figure 2.20.

Let us show that Γ2 is orientable. First, consider the subset of ΓM consisting of
all vertices and edges of color 0. On this subset we can introduce an orientation
consistent with the oriented plane. To the counterpart subset of Γ′M , we give the



MODULI OF RIEMANN SURFACES 33

L

Figure 2.22. The covering graph Γ2 of Figure 2.20. It has 4
vertices, 6 edges, and 2 boundary circuits. The Möbius graph
on the left is equivalent to the ribbon graph on the right. The
180◦ rotation ι about the vertical line L is an orientation reversing
involution, and the quotient Γ2/〈ι〉 is the original Möbius graph of
Figure 2.20.

opposite orientation. These two subsets of Γ2 are connected only with edges of
color 1. Therefore, the orientation of the subsets can be extended consistently to
the whole graph Γ2. By construction, the involution ι is orientation reversing with
respect to any orientation we choose on Γ2. To see that the covering does not
depend on the choice of an element of the equivalence class of ΓM , let us apply an
orientation-color change operation at a vertex V of ΓM , and call it ΓM

V . The cross-
bridge construction is performed on ΓM

V and its copy Γ′MV to make the covering
Γ2
V . Let V ′ be the copy of V on Γ′MV . Apply the orientation-color change operation

simultaneously to V and V ′, and then interchange V and V ′. This operation makes
Γ2
V and Γ2 equivalent.
We note that the covering Γ2 has twice as many boundary circuits as ΓM does.

It follows from the fact that a boundary circuit of a Möbius graph always passes
through even number of twisted (i.e., color 1) edges. To see this, consider an ε-
neighborhood Bε of a boundary circuit of the topological model of the graph that
passes through n twisted edges. The ε-neighborhood Bε is orientable since it is a
part of the disk attached to create the compact surface ΣΓM . We note that Bε

consists of n twisted ε-bands and other non-twisted bands. Since it is orientable,
n is even. Now, from the cross-bridge construction, one sees that the lift of a
boundary circuit of ΓM consists of two boundary circuits of Γ2 of the same length.

The fixed-point free and orientation-reversing involution

ι : Γ2 −→ Γ2

induces a fixed-point free and orientation-reversing involution

ι : ΣΓ2 −→ ΣΓ2(2.39)

of the compact orientable surface ΣΓ2 . The quotient surface ΣΓ2/〈ι〉 is the non-
orientable surface ΣΓM .

Let ΓM be a connected non-orientable Möbius graph. The genus g(ΓM ) of ΓM

is the genus of the compact orientable surface ΣΓ2 associated with the covering
Γ2 of ΓM . Let v(ΓM ), e(ΓM ), and b(ΓM ) (resp.) denote the number of vertices,
edges, and the boundary circuits of ΓM (resp.). Then we have the genus-Euler
characteristic relation

v(ΓM ) − e(ΓM ) + b(ΓM ) = 1 − g(ΓM ),(2.40)
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since the Euler characteristic of ΣΓ2 is 2− 2g(Γ2) and since Γ2 is a double covering
of ΓM .

2.9. Symmetric Matrix Integrals. (This section is under construction.)
Our next target is an integral over the space of real symmetric matrices. Let SN

denote the space of all real symmetric matrices of size N . The goal of this section
is to identify the asymptotic expansion of

ZS(t,N ;m) =
1
CN

∫
SN

exp
(
−1

2
trace(X2)

)
exp


 2m∑

j=3

tj
cj

trace(Xj)


 dX,(2.41)

where the overall normalization constant CN and the coefficient 1/cj of the param-
eter tj are determined later.

First of all, we have to define the measure of integration dX. Let X =
[
xij

]
ij

be a real symmetric matrix of size N . Since xij = xji, we define

dX =
∧
i<j

dxij ∧
∧
i

dxii.

The measure dX is the standard Lebesgue measure of SN , which is a real vector
space of dimension N(N + 1)/2. We note that

trace(X2) = trace(XtX) =
∑
i,j

(xij)2 = 2
∑
i<j

(xij)2 +
∑
i

(xii)2(2.42)

is a positive definite quadratic form. From (2.42), it is obvious what we should
choose as the normalization constant. So we define

CN =
∫
SN

exp
(
−1

2
trace(X2)

)
dX =

√
π
N(N−1)/2√2π

N
= 2

N
2 π

N(N+1)
4 .(2.43)

We also note that if we choose positive constants cj > 0, then the integral
ZS(t,N ;m) is absolutely convergent forRe(t2m) < 0 and arbitrary t3, t4, · · · , t2m−1.
Therefore, ZS(t,N ;m) is a holomorphic function in

t = (t3, t4, · · · , t2m−1, t2m) ∈ C2m−3 × Ωε,

where Ωε is the same domain as in (2.14). In exactly the same way as in the case
of the scalar integral (2.15), we obtain the expansion of ZS(t,N ;m) as the Taylor
series in t3, t4, · · · , t2m−1 and the asymptotic series in t2m:

(2.44) A
(
ZS(t,N ;m)

)
=

1
CN

∑
v3≥0,v4≥0,··· ,v2m≥0

2m∏
j=3

t
vj

j

c
vj

j vj !

∫
SN

exp
(
−1

2
trace(X2)

) 2m∏
j=3

(
trace(Xj)

)vj
dX.

We use the following lemmas to calculate this last integral.

Lemma 2.25 (Matrix differentiation). Let J =
[
yij

]
1≤i,j≤N be a symmetric ma-

trix valued variable, and let
∂

∂J
=

[
1
2

∂
∂yij

]
1≤i,j≤N

.

Then (
trace

(
∂

∂J

)j
)n

exp
(
trace(XtJ)

)∣∣∣∣∣
J=0

=
(
trace(Xj)

)n
.
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Proof.

trace
(

∂

∂J

)j

exp
(
trace(XtJ)

)∣∣∣∣∣
J=0

=


(

1
2

)j ∑
a1,a2,··· ,aj

∂

∂ya1a2

∂

∂ya2a3

· · · ∂

∂yaja1


 exp


∑

a,b

xabyab




∣∣∣∣∣∣
J=0

=
(

1
2

)j

∑

a,b

xab(δa1aδa2b + δa1bδa2a)





∑

a,b

xab(δa2aδa3b + δa2bδa3a)


 · · ·


∑

a,b

xab(δajaδa1b + δajbδa1a)




=
(

1
2

)j

(xa1a2 + xa2a1)(xa2a3 + xa3a2) · · · (xaja1 + xa1aj )

=xa1a2xa2a3 · · ·xaja1

=trace(Xj).

The desired formula follows from repeating the above computation n-times.

Lemma 2.26 (Source term for symmetric matrix integral). Let J =
[
yij

]
1≤i,j≤N

and ∂
∂J =

[
1
2

∂
∂yij

]
1≤i,j≤N

be as above. Then

1
CN

∫
SN

exp
(
−1

2
trace(X2)

) (
trace(Xj)

)n
dX

=

(
trace

(
∂

∂J

)j
)n

exp
(

1
2
trace(J2)

)∣∣∣∣∣
J=0

.

Proof. Since the integral is absolutely convergent, we can interchange the integra-
tion and the differentiation with respect to a parameter, and we obtain

1
CN

∫
SN

exp
(
−1

2
trace(X2)

) (
trace(Xj)

)n
dX

=
1
CN

∫
SN

exp
(
−1

2
trace(X2)

) (
trace

(
∂

∂J

)j
)n

exp
(
trace(XtJ)

)∣∣∣∣∣
J=0

dX

=

(
trace

(
∂

∂J

)j
)n

1
CN

∫
SN

exp
(
−1

2
trace(X2)

)
exp

(
trace(XtJ)

)
dX

∣∣∣∣∣
J=0

=

(
trace

(
∂

∂J

)j
)n

1
CN

∫
SN

exp
(
−1

2
trace(X − J)2

)
exp

(
1
2
trace(J2)

)
dX

∣∣∣∣∣
J=0

=

(
trace

(
∂

∂J

)j
)n

exp
(

1
2
trace(J2)

)∣∣∣∣∣
J=0

,

where we used the translational invariance of the Lebesgue measure dX on SN .
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As in the case of scalar integral, the quantity
2m∏
j=3

(
trace

(
∂

∂J

)j
)vj

exp
(

1
2
trace(J2)

)∣∣∣∣∣∣
J=0

is non-zero only when a pair of 1
2

∂
∂yij

’s in the differential operator operates on the
exponential function exp

(
1
2 trace(J2)

)
. Note that(

1
2

∂

∂yij

) (
1
2

∂

∂yk#

)
exp

(
1
2
trace(J2)

)∣∣∣∣
J=0

=
(

1
2

∂

∂yij

) (
1
2

∂

∂yk#

)
exp


1

2

∑
a,b

(yab)2




∣∣∣∣∣∣
J=0

=
(

1
2

)2 ∑
a,b

(δiaδjb + δibδja)(δkaδ#b + δkbδ#a)

=
1
4
(δikδj# + δi#δjk + δi#δjk + δikδj:)

=
1
2
(δikδj# + δi#δjk).

As before, let us introduce vj sets of j dots for given indices v3, v4, · · · , v2m. Since
we are dealing with the differentiation by a matrix variable, the j dots are labeled
with double indices like

•a1a2 •a2a3 · · · •aja1

and these labels introduce a cyclic ordering of the dots. Then we have

2m∏
j=3

(
trace

(
∂

∂J

)j
)vj

exp
(

1
2
trace(J2)

)∣∣∣∣∣∣
J=0

=
∑

P pairing scheme

∏
•ij and •k�

are paired in P

1
2
(δikδj# + δi#δjk)

=
(

1
2

) 1
2

∑2m
j=3 jvj ∑

P pairing scheme

∏
•ij and •k�

are paired in P

(δikδj# + δi#δjk).

Now let us choose the constant cj such that

1
cj

=
(
√

2)j

j
.(2.45)

To be continued...
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