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1. Introduction

The purpose of the present paper is to give a new set of axioms for two-dimensional 
topological quantum field theory (2D TQFT) formulated in terms of dual ribbon graphs. 
The key relations between ribbon graphs are edge-contraction operations, which corre-
spond to the degenerations in the moduli space Mg,n of stable curves of genus g with 
n labeled points that create a rational component with 3 special points. The structure 
of Frobenius algebra is naturally encoded in the category of dual ribbon graphs, where 
edge-contraction operations form morphisms and represent multiplication and comulti-
plication operations.

As Grothendieck impressively presents in [14], it is a beautiful and simple yet very 
surprising idea that a graph drawn on a compact topological surface gives an algebraic 
structure to the surface. When a positive real number is assigned to each edge as its 
length, a unique complex structure of the surface is determined. This association leads 
to a combinatorial model for the moduli space Mg,n of smooth algebraic curves of genus g
with n marked points [15,21,24,26,27]. By identifying these graphs as Feynman diagrams 
of [29] appearing in the asymptotic expansion of a particular matrix integral, and by 
giving a graph description of tautological cotangent classes on Mg,n, Kontsevich [17]
shows that Witten’s generating function [30] of intersection numbers of these classes 
satisfies the KdV equations. Kontsevich’s argument is based on his discovery that a
weighted sum of these intersection numbers is proportional to the Euclidean volume of 
the combinatorial model of Mg,n.

The Euclidean volume of Mg,n depends on the choice of the perimeter length of 
each face of the graph drawn on a surface. Kontsevich used the Laplace transform of 
the volume as a function of the perimeter length to obtain a set of relations among 
intersection numbers of different values of (g, n). These relations are equivalent to the 
conjectured KdV equations.

Recall that if each edge has an integer length, then the resulting Riemann surface 
by the Strebel correspondence [27] is an algebraic curve defined over Q [3,21]. Thus a 
systematic counting of curves defined over Q gives an approximation of the Euclidean 
volume of Kontsevich by lattice point counting. Since these lattice points naturally cor-
respond to the graphs themselves, the intersection numbers in question can be obtained 
by graph enumeration, after taking the limit as the mesh length approaches to 0. Now 
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we note that edge-contraction operations give an effective tool for graph enumeration 
problems. Then one can ask: what information do the edge-contraction operations tell us 
about the intersection numbers?

We found in [9,12,22] that the Laplace transform of the counting formula obtained by 
the edge-contraction operations on graphs is exactly the Virasoro constraint conditions 
of [6] for the intersection numbers. Indeed it gives the most fundamental example of 
topological recursion of [13].

Euclidean volume is naturally approximated by lattice point counting. It can be also 
approximated as a limit of hyperbolic volume. The latter idea applied to moduli spaces 
of hyperbolic surfaces gives the same Virasoro constraint conditions, as beautifully de-
scribed in the work of Mirzakhani [19,20]. Mirzakhani’s technique of symplectic and 
hyperbolic geometry can be naturally extended to character varieties of surface groups. 
Yet there are no Virasoro constraints for this type of moduli spaces. We ask: what do 
edge-contraction operations give us for the character varieties?

This is our motivation of the current paper. Instead of discussing the application of 
our result to character varieties, which will be carried out elsewhere, we focus in this 
paper our discovery of the relation between edge-contraction operations and 2D TQFT.

A TQFT of dimension d is a symmetric monoidal functor Z from the monoidal cate-
gory of (d − 1)-dimensional compact oriented topological manifolds, with d-dimensional 
oriented cobordism forming morphisms among (d − 1)-dimensional boundary manifolds, 
to the monoidal category of finite-dimensional vector spaces defined over a fixed field K
[2,25]. Since there is only one compact manifold in dimension 1, a 2D TQFT is asso-
ciated with a unique vector space A = Z(S1), and the Atiyah–Segal axioms of TQFT 
makes A a commutative Frobenius algebra. It has been established that 2D TQFTs are 
classified by finite-dimensional Frobenius algebras [1,5]. We ask the following question, 
in the reverse direction:

Question 1.1. Suppose we are given a finite-dimensional commutative Frobenius alge-
bra. What is the combinatorial realization of the algebra structure that leads to the 
corresponding 2D TQFT?

The answer we propose in this paper is the category of dual ribbon graphs, with 
edge-contraction operations as morphisms. This category does not carry the information 
of a specific Frobenius algebra. In our forthcoming paper, we will show that our category 
generates all Frobenius objects among any given monoidal category.

For a given Frobenius algebra A and a ribbon graph γg,n with n vertices drawn on a 
topological surface of genus g, we assign a multilinear map

γg,n : A⊗n −→ K.

The edge-contraction axioms of Section 4 determine the behavior of this map under the 
change of ribbon graphs via edge contractions. Theorem 4.7, our main result of this 
paper, exhibits a surprising statement that the map γg,n depends only on g and n, 
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Fig. 1.1. Top Row: A cyclic order of half-edges at a vertex induces a local ribbon structure to a graph. Second 
Row: Globally, a ribbon graph is the 1-skeleton of a cell-decomposition of a compact oriented surface. Third 
Row: A ribbon graph is thus a graph drawn on a compact oriented surface.

and is independent of the choice of the graph γg,n. We then evaluate γg,n for each 
v1⊗· · ·⊗vn ∈ A⊗n and prove that this map indeed defines the TQFT corresponding to A.

A ribbon graph (also called as a dessin d’enfant, fatgraph, embedded graph, or a map) 
is a graph with an assignment of a cyclic order of half-edges incident at each vertex. The 
cyclic order induces the ribbon structure to the graph, and it becomes the 1-skeleton 
of the cell-decomposition of a compact oriented topological surface of genus, say g, by 
attaching oriented open discs to the graph (see Fig. 1.1 for a ribbon graph of g = 1 and 
n = 2). Let n be the number of the discs attached. We call this ribbon graph of type
(g, n).

An assignment of a positive real number to each edge of a ribbon graph determines 
a concrete holomorphic coordinate system of the topological surface of genus g with n
labeled marked points [21], thus making it a Riemann surface. This construction gives 
the identification of the space of ribbon graphs of type (g, n) with positive edge lengths 
assigned, and the space Mg,n×Rn

+, as an orbifold. The operation of edge-contraction of 
an edge connecting two distinct vertices then defines the boundary operator, which in-
troduces the structure of orbi-cell complex on Mg,n×Rn

+. Each ribbon graph determines 
the stratum of this cell complex, whose dimension is the number of edges of the graph.

Since the ribbon graphs we need for the consideration of TQFT have labeled vertices
but no labels for faces, we use the terminology cell graph of type (g, n) for a ribbon graph 
of genus g with n labeled vertices. A cell graph of type (g, n) is the dual of a ribbon 
graph of the same type (g, n). The set of all cell graphs of type (g, n) is denoted by Γg,n.

Ribbon graphs naturally form orbi-cell complex. Their dual cell graphs naturally form 
a category CG, as we shall define in Section 5. We then consider functors

ω : CG −→ Fun(C/K, C/K),

where (C, ⊗, K) is a monoidal category with the unit object K, and Fun(C/K, C/K) is 
the endofunctor category over the category of K-objects of C. Each cell graph corresponds 
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Fig. 1.2. The edge-contraction operation on a loop is a degeneration process. The graph on the left is a 
connected cell graph of type (0, 1). The edge-contraction on the loop L changes it to the one on the right. 
Here, a P1 with one marked point p degenerates into two P1’s with one marked point on each, connected 
by a P1 with 3 special points.

to an endofunctor, and edge-contraction operations among them correspond to natural 
transformations. Our consideration can be generalized to the cohomological field theory 
of Kontsevich–Manin [18]. After this generalization, we can construct a functor that 
gives a classification of 2D TQFT. Since we need more preparation, these topics will be 
discussed in our forthcoming paper.

Edge-contraction operations also provide an effective method for graph enumeration 
problems. It has been noted in [12] that the Laplace transform of edge-contraction oper-
ations on many counting problems corresponds to the topological recursion of [13]. In a 
separate paper [11], we give the construction of the mirror B-models corresponding to the 
simple and orbifold Hurwitz numbers, by using only the edge-contraction operations. In 
general, enumerative geometry problems, such as computation of Gromov–Witten type 
invariants, are solved by studying a corresponding problem on the mirror dual side. The 
effectiveness of the mirror problem relies on the technique of complex analysis. The ques-
tion is: How do we find the mirror of a given enumerative problem? In [11], we give an 
answer to this question for a class of graph enumeration problems that are equivalent to 
counting of orbifold Hurwitz numbers. The key is again the same edge-contraction oper-
ations. The base case, or the case for the “moduli space” M0,1, of the edge contraction 
in the counting problem identifies the mirror dual object, and a universal mechanism of 
complex analysis, known as the topological recursion of [13], solves the B-model side of 
the counting problem. The solution is a collection of generating functions of the original 
problem for all genera.

The edge-contraction operation causes the degeneration of P1 with one marked point p
into two P1’s with one marked point on each, connected by a P1 with 3 special points, 
two of which are nodal points and the third one representing the original marked point p. 
In terms of graph enumeration, the P1 with 3 special points does not play any role. So 
we break the original vertex into two vertices, and separate the graph into two disjoint 
pieces (Fig. 1.2).

Once we have our formulation of 2D TQFT and topological recursion in terms 
of edge-contraction operations, we can consider a TQFT-valued topological recursion. 
An immediate example is the Gromov–Witten theory of the classifying space BG of a 
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finite group G. In our forthcoming paper, we will show that a straightforward general-
ization of the topological recursion for differential forms with values in tensor products 
of a Frobenius algebra automatically splits into the product of the usual scalar-valued 
solution to the topological recursion and a 2D TQFT. Therefore, topological recursion 
implies TQFT. Here, we remark the similarity between the topological recursion and 
the comultiplication operation in a Frobenius algebra. Indeed, the topological recursion 
itself can be regarded as a comultiplication formula for an infinite-dimensional analogue 
of the Frobenius algebra (Vertex algebras, or conformal field theory).

The authors have noticed that the topological recursion appears as the Laplace trans-
form of edge-contraction operations in [12]. The geometric nature of the topological 
recursion was further investigated in [7,8,10], where it was placed in the context of 
Hitchin spectral curves for the first time, and the relation to quantum curves was dis-
covered. The present paper is the authors’ first step toward identifying the topological 
recursion in an algebraic and categorical setting. We note that Hitchin moduli spaces 
are diffeomorphic to character varieties of a surface group. The TQFT point of view of 
our current paper in the context of these character varieties, in particular, their Hodge 
structures, will be discussed elsewhere.

The paper is organized as follows. We start with a quick review of Frobenius alge-
bras, for the purpose of setting notations, in Section 2. We then recall two-dimensional 
TQFT in Section 3. In Sections 4, we give our formulation of 2D TQFT in terms of the 
edge-contraction axioms of cell graphs. A categorical formulation of our axioms is given 
in Section 5.

2. Frobenius algebras

In this paper, we are concerned with finite-dimensional, unital, commutative Frobe-
nius algebras defined over a field K. In this section we review the necessary account of 
Frobenius algebra and set notations.

Let A be a finite-dimensional, unital, associative, and commutative algebra over a 
field K. A non-degenerate bilinear form η : A ⊗A −→ K is a Frobenius form if

η
(
v1,m(v2, v3)

)
= η

(
m(v1, v2), v3

)
, v1, v2, v3 ∈ A, (2.1)

where m : A ⊗A −→ A is the multiplication. We denote by

λ : A ∼−→ A∗, 〈λ(u), v〉 = η(u, v), (2.2)

the canonical isomorphism of the algebra A and its dual. We assume that η is a symmetric 
bilinear form. Let 1 ∈ A denote the multiplicative identity. Then it defines a counit, or 
a trace, by

ε : A −→ K, ε(v) = η(1, v). (2.3)
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The canonical isomorphism λ introduces a unique cocommutative and coassociative coal-
gebra structure in A by the following commutative diagram.

A
δ−−−−→ A⊗A

λ

⏐⏐� ⏐⏐�λ⊗λ

A∗ −−−−→
m∗

A∗ ⊗A∗

(2.4)

It is often convenient to use a basis for calculations. Let 〈e1, e2, . . . , er〉 be a K-basis 
for A. In terms of this basis, the bilinear form η is identified with a symmetric matrix, 
and its inverse is written as follows:

η = [ηij ], ηij := η(ei, ej), η−1 = [ηij ]. (2.5)

The comultiplication is then written as

δ(v) =
∑
i,j,a,b

η
(
v,m(ei, ej)

)
ηiaηjbea ⊗ eb.

From now on, if there is no confusion, we denote simply by m(u, v) = uv. The symmetric 
Frobenius form and the commutativity of the multiplication makes

η
(
ei1 · · · eij , eij+1 · · · en

)
= ε(ei1 · · · ein), 1 ≤ j < n, (2.6)

completely symmetric with respect to permutations of the indices.
The following is a standard formula for a non-degenerate bilinear form:

v =
∑
a,b

η(v, ea)ηabeb. (2.7)

It immediately follows that

Lemma 2.1. The following diagram commutes:

A⊗A⊗A
m⊗id

A⊗A

id⊗δ

m

δ⊗id

A
δ

A⊗A.

A⊗A⊗A

id⊗m

(2.8)

Or equivalently, for every v1, v2 in A, we have

δ(v1v2) = (id⊗m)
(
δ(v1), v2

)
= (m⊗ id)

(
v2, δ(v1)

)
.
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Proof. Noticing the commutativity and cocommutativity of A, we have

δ(v1v2) =
∑
i,j,a,b

η(v1v2, eiej)ηiaηjbea ⊗ eb

=
∑
i,j,a,b

η(v1ei, v2ej)ηiaηjbea ⊗ eb

=
∑

i,j,a,b,c,d

η(v1ei, ec)ηcdη(ed, v2ej)ηiaηjbea ⊗ eb

=
∑

i,j,a,b,c,d

η(v1, eiec)ηcdηiaη(edv2, ej)ηjbea ⊗ eb

=
∑

i,a,c,d

η(v1, eiec)ηcdηiaea ⊗ (edv2)

= (id⊗m)
(
δ(v1), v2). �

In the lemma above we consider the composition δ ◦m. The other order of operations 
plays an essential role in 2D TQFT.

Definition 2.2 (Euler element). The Euler element of a Frobenius algebra A is defined 
by

e := m ◦ δ(1). (2.9)

In terms of basis, the Euler element is given by

e =
∑
a,b

ηabeaeb. (2.10)

Another application of (2.7) is the following formula that relates the multiplication 
and comultiplication.

(λ(v1) ⊗ id) δ(v2) = v1v2. (2.11)

This is because

(λ(v1) ⊗ id) δ(v2) =
∑

a,b,k,�

(λ(v1) ⊗ id) η(v2, eke�)ηkaη�bea ⊗ eb

=
∑

a,b,k,�

η(v2e�, ek)ηkaη(v1, ea)η�beb

=
∑
b,�

η(v1, v2e�)η�beb = v1v2.
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3. 2D TQFT

The axiomatic formulation of conformal and topological quantum field theories was 
established in 1980s. We refer to Atiyah [2] and Segal [25]. We consider only two-
dimensional topological quantum field theories in this paper. Again for the purpose 
of setting notations, we provide a brief review of the subject in this section. We refer to 
fundamental literature, such as [16,28], for more detail of 2D TQFT.

A 2D TQFT is a symmetric monoidal functor Z from the cobordism category of 
oriented surfaces (a surface being a cobordism of its boundary circles) to the monoidal 
category of finite-dimensional vector spaces over a fixed field K with the operation of 
tensor products. The Atiyah–Segal TQFT axioms automatically make the vector space

Z(S1) = A (3.1)

a unital commutative Frobenius algebra over K.
Let Σg,n be an oriented surface of finite topological type (g, n), i.e., a surface obtained 

by removing n disjoint open discs from a compact oriented two-dimensional topological 
manifold of genus g. The boundary components are labeled by indices 1, . . . , n. We always 
give the induced orientation at each boundary circle. The TQFT then assigns to such a 
surface a multilinear map

Ωg,n
def= Z(Σg,n) : A⊗n −→ K. (3.2)

If we change the orientation at the i-th boundary, then the i-th factor of the tensor 
product is changed to the dual space A∗. Therefore, if we have k boundary circles with 
induced orientation and � circles with opposite orientation, then we have a multi-linear 
map

Ωg,k,�̄ : A⊗k −→ A⊗�.

The sewing axiom of Atiyah [2] requires that

Ωg2,�,n̄ ◦ Ωg1,k,�̄
= Ωg1+g2+�−1,k,n̄ : A⊗k −→ A⊗n

(see Fig. 3.1).
A 2D TQFT can be also obtained as a special case of a CohFT of [18].

Definition 3.1 (Cohomological field theory). We denote by Mg,n the moduli space of 
stable curves of genus g ≥ 0 and n ≥ 1 smooth marked points subject to the stability 
condition 2g − 2 + n > 0. Let

π : Mg,n+1 −→ Mg,n (3.3)
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Fig. 3.1. Sewing two surfaces along boundary circles.

be the forgetful morphism of the last marked point, and

gl1 : Mg−1,n+2 −→ Mg,n (3.4)

gl2 : Mg1,n1+1 ×Mg2,n2+1 −→ Mg1+g2,n1+n2 (3.5)

the gluing morphisms that give boundary strata of the moduli space. An assignment

Ωg,n : A⊗n −→ H∗(Mg,n,K) (3.6)

is a CohFT if the following axioms hold:

CohFT 0: Ωg,n is Sn-invariant, i.e., symmetric, and Ω0,3(1, v1, v2) = η(v1, v2).

CohFT 1: Ωg,n+1(v1, . . . , vn,1) = π∗Ωg,n(v1, . . . , vn).

CohFT 2: gl∗1Ωg,n(v1, . . . , vn) =
∑
a,b

Ωg−1,n+2(v1, . . . , vn, ea, eb)ηab.

CohFT 3: gl∗2Ωg1+g2,|I|+|J|(vI , vJ) =
∑
a,b

Ωg1,|I|+1(vI , ea)Ωg2,|J|+1(vJ , eb)ηab,

where I 
 J = {1, . . . , n}.

If a CohFT takes values in H0(Mg,n, K) = K, then it is a 2D TQFT. In what follows, 
we only consider CohFT with values in H0(Mg,n, K).

Remark 3.2. The forgetful morphism makes sense for a stable pointed curve, but it does 
not exist for a topological surface with boundary in the same way. Certainly we cannot 
just forget a boundary. For a TQFT, eliminating a boundary corresponds to capping 
a disc. In algebraic geometry language, it is the same as gluing a component of g = 0
and n = 1. Since H0(Mg,n, K) = K is not affected by the morphism (3.3)–(3.5), the 
equation

Ωg,n(1, v2, . . . , vn) = Ωg,n−1(v2, . . . , vn)

is identified with CohFT 3 for g2 = 0 and J = ∅, if we define
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Ω0,1(v) := ε(v) = η(1, v), (3.7)

even though M0,1 does not exist. We then have

Ωg,n(v1, . . . , vn) =
∑
a,b

Ωg,n+1(v1, . . . , vn, ea)η(1, eb)ηab

= Ωg,n+1(v1, . . . , vn,1)

by (2.7). In other words, the isomorphism of the degree 0 cohomologies

π∗ : H0(Mg,n,K) −→ H0(Mg,n+1,K) (3.8)

is replaced by its left inverse

σ∗
i : H0(Mg,n+1,K) −→ H0(Mg,n,K), (3.9)

where

σi : Mg,n −→ Mg,n+1 (3.10)

is one of the n tautological sections. Of course this consideration does not apply for 
CohFT.

Remark 3.3. In the same spirit, although M0,2 does not exist either, we can define

Ω0,2(v1, v2) := η(v1, v2) (3.11)

so that we exhaust all cases appearing in the Atiyah–Segal axioms for 2D TQFT. In 
particular, for g2 = 0 and J = {n}, we have

Ωg,n(v1, . . . , vn) = Ωg,n

⎛⎝v1, . . . , vn−1,
∑
a,b

η(vn, eb)ηabea

⎞⎠
=

∑
a,b

Ωg,n(v1, . . . , vn−1, ea)Ω0,2(vn, eb)ηab.

Thus Ω0,2(v1, v2) functions as the identity operator of the Atiyah–Segal axiom [2].

Remark 3.4. A marked point pi of a stable curve Σ ∈ Mg,n is an insertion point for 
the cotangent class ψi = c1(Li), where Li is the pull-back of the relative canonical 
sheaf on the universal curve π : Mg,n+1 −→ Mg,n by the i-th tautological section 
σi : Mg,n −→ Mg,n+1. If we cut a small disc around pi ∈ Σ, then the orientation induced 
on the boundary circle is consistent with the orientation of the unit circle in T ∗

pi
Σ. This 

orientation is opposite to the orientation that is naturally induced on Tpi
Σ. In general, 
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if V is an oriented real vector space of dimension n, then V ∗ naturally acquires the 
opposite orientation with respect to the dual basis if n ≡ 2, 3 mod 4.

As we have noted, in terms of sewing axioms, if a boundary circle on a topological 
surface Σ of type (g, n) is oriented according to the induced orientation, then this is 
an input circle to which we assign an element of A. If a boundary circle is oppositely 
oriented, then it is an output circle and Σ produces an output element at this boundary. 
Thus if Σ1 has an input circle and Σ2 an output circle, then we can sew the two surfaces 
together along the circle to form a connected sum Σ1#Σ2, where the output from Σ2 is 
placed as input for Σ1.

Proposition 3.5. The genus 0 values of a 2D TQFT is given by

Ω0,n(v1, . . . , vn) = ε(v1 · · · vn), (3.12)

provided that we define

Ω0,3(v1, v2, v3) := ε(v1v2v3). (3.13)

Proof. This is a direct consequence of CohFT 3 and (2.7). �
One of the original motivations of TQFT [2,25] is to identify the topological invariant

Z(Σ) of a closed manifold Σ. In our current setting, it is defined as

Z(Σg) := ε
(
λ−1(Ωg,1)

)
(3.14)

for a closed oriented surface Σg of genus g. Here, Ωg,1 : A −→ K is an element of A∗, 
and λ : A ∼−→ A∗ is the canonical isomorphism.

Proposition 3.6. The topological invariant Z(Σg) of (3.14) is given by

Z(Σg) = ε(eg), (3.15)

where eg ∈ A represents the g-th power of the Euler element of (2.9).

Lemma 3.7. We have

e := m ◦ δ(1) = λ−1(Ω1,1). (3.16)

Proof. This follows from

Ω1,1(v) =
∑
a,b

Ω0,3(v, ea, eb)ηab =
∑
a,b

η(v, eaeb)ηab = η(v, e)

for every v ∈ A. �
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Proof of Proposition 3.6. Since the starting case g = 1 follows from the above Lemma, 
we prove the formula by induction, which goes as follows:

Ωg,1(v) =
∑
a,b

Ωg−1,3(v, ea, eb)ηab

=
∑
i,j,a,b

Ω0,4(v, ea, eb, ei)Ωg−1,1(ej)ηabηij

=
∑
i,j,a,b

η(veaeb, ei)Ωg−1,1(ej)ηabηij

=
∑
i,j

η(ve, ei)Ωg−1,1(ej)ηij

= Ωg−1,1(ve)

= Ω1,1(veg−1)

= η(veg−1, e) = η(v, eg). �
A closed genus g surface is obtained by sewing g genus 1 pieces with one output 

boundaries to a genus 0 surface with g input boundaries. Since the Euler element is the 
output of the genus 1 surface with one boundary, we obtain the same result

Z(Σg) = Ω0,g(
g︷ ︸︸ ︷

e, . . . , e).

Finally we have the following:

Theorem 3.8. The value or the 2D TQFT is given by

Ωg,n(v1, . . . , vn) = ε(v1 · · · vneg). (3.17)

Proof. The argument is the same as the proof of Proposition 3.6:

Ωg,n(v1, . . . , vn) = Ω1,n(v1eg−1, v2, . . . , vn)

=
∑
a,b

Ω0,n+2(v1eg−1, v2, . . . , vn, ea, eb)ηab

= ε(v1 · · · vneg). �
Example 3.9. Let G be a finite group. The center of the complex group algebra ZC[G]
is a semi-simple Frobenius algebra over C. For every conjugacy class c of G, the sum of 
group elements in c,

v(C) :=
∑

u ∈ C[G],

u∈C
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is central and defines an element of ZC[G]. Although we do not discuss it any further 
here, the corresponding TQFT is equivalent to counting problems of character varieties 
of the fundamental group of n-punctured topological surface of genus g into G.

4. The edge-contraction axioms

In this section we give a formulation of 2D TQFTs based on the edge-contraction 
operations on cell graphs and a new set of axioms. The main theorem of this section, 
Theorem 4.7, motivates our construction of the category of cell graphs and the Frobenius 
ECO functor in Section 5.

Definition 4.1 (Cell graphs). A connected cell graph of topological type (g, n) is the 
1-skeleton (the union of 0-cells and 1-cells) of a cell-decomposition of a connected compact 
oriented topological surface of genus g with n labeled 0-cells. We call a 0-cell a vertex, a 
1-cell an edge, and a 2-cell a face, of a cell graph.

Remark 4.2. The dual of a cell graph is usually referred to as a ribbon graph, or a dessin 
d’enfant of Grothendieck. A ribbon graph is a graph with cyclic order assigned to incident 
half-edges at each vertex. Such assignments induce a cyclic order of half-edges at each 
vertex of the dual graph. Thus a cell graph itself is a ribbon graph. We note that vertices 
of a cell graph are labeled, which corresponds to the usual face labeling of a ribbon 
graph.

Remark 4.3. We identify two cell graphs if there is a homeomorphism of the surfaces 
that brings one cell-decomposition to the other, keeping the labeling of 0-cells. The only 
possible automorphisms of a cell graph come from cyclic rotations of half-edges at each 
vertex.

We denote by Γg,n the set of connected cell graphs of type (g, n) with labeled vertices.

Definition 4.4 (Edge-contraction axioms). The edge-contraction axioms are the following 
set of rules for the assignment

Ω : Γg,n −→ (A∗)⊗n (4.1)

of a multilinear map

Ω(γ) : A⊗n −→ K

to each cell graph γ ∈ Γg,n. We consider Ω(γ) an n-variable function Ω(γ)(v1, . . . , vn), 
where we assign vi ∈ A to the i-th vertex of γ.

• ECA 0: For the simplest cell graph γ0 = • ∈ Γ0,1 that consists of only one vertex 
without any edges, we define
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Fig. 4.1. The edge-contraction operation that shrinks a straight edge connecting Vertex i and Vertex j.

Fig. 4.2. The edge-contraction operation that shrinks a loop attached Vertex i.

Ω(•)(v) = ε(v), v ∈ A. (4.2)

• ECA 1: Suppose there is an edge E connecting the i-th vertex and the j-th vertex for 
i < j in γ ∈ Γg,n. Let γ′ ∈ Γg,n−1 denote the cell graph obtained by contracting E. 
Then

Ω(γ)(v1, . . . , vn) = Ω(γ′)(v1, . . . , vi−1, vivj , vi+1, . . . , v̂j , . . . , vn), (4.3)

where v̂j means we omit the j-th variable vj at the j-th vertex, which no longer 
exists in γ′ (see Fig. 4.1).

• ECA 2: Suppose there is a loop L in γ ∈ Γg,n at the i-th vertex. Let γ′ denote the 
possibly disconnected graph obtained by contracting L and separating the vertex to 
two distinct vertices labeled by i and i′. For the purpose of labeling all vertices, we 
assign an ordering i − 1 < i < i′ < i + 1 (see Fig. 4.2).
If γ′ is connected, then it is in Γg−1,n+1. We call L a loop of a handle. We then 
impose

Ω(γ)(v1, . . . , vn) = Ω(γ′)(v1, . . . , vi−1, δ(vi), vi+1, . . . , vn), (4.4)

where the outcome of the comultiplication δ(vi) is placed in the i-th and i′-th slots.
If γ′ is disconnected, then write γ′ = (γ1, γ2) ∈ Γg1,|I|+1 × Γg2,|J|+1, where

{
g = g1 + g2

I 
 J = {1, . . . , î, . . . , n}
. (4.5)

In this case L is a separating loop. Here, vertices labeled by I belong to the connected 
component of genus g1, and those labeled by J on the other component. Let (I−, i, I+)
(reps. (J−, i, J+)) be reordering of I 
 {i} (resp. J 
 {i}) in the increasing order. We 
impose
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Ω(γ)(v1, . . . , vn) =
∑

a,b,k,�

η(vi, eke�)ηkaη�bΩ(γ1)(vI− , ea, vI+)Ω(γ2)(vJ− , eb, vJ+),

(4.6)

which is similar to (4.4), just the comultiplication δ(vi) is written in terms of the 
basis. Here, cocommutativity of A is assumed in this formula.

Remark 4.5. We do not assume the permutation symmetry of Ω(γ)(v1, . . . , vn). The 
cumbersome notation of the axioms is due to keeping track of the ordering of indices.

Remark 4.6. Let us define m(γ) = 2g−2 +n for γ ∈ Γg,n. The edge-contraction operations 
are reduction of m(γ) exactly by 1. Indeed, for ECA 1, we have

m(γ′) = 2g − 2 + (n− 1) = m(γ) − 1.

ECA 2 applied to a loop of a handle produces

m(γ′) = 2(g − 1) − 2 + (n + 1) = m(γ) − 1.

For a separating loop, we have

2g1 − 2 + |I| + 1
+) 2g2 − 2 + |J | + 1

2g1 + 2g2 − 4 + |I| + |J | + 2 = 2g − 2 + n− 1.

This reduction is used in the proof of the following theorem.

Theorem 4.7 (Graph independence). As the consequence of the edge-contraction axioms, 
every connected cell graph γ ∈ Γg,n gives rise to the same map

Ω(γ) : A⊗n 
 v1 ⊗ · · · ⊗ vn �−→ ε(v1 · · · vneg) ∈ K, (4.7)

where e is the Euler element of (2.9). In particular, Ω(γ)(v1, . . . , vn) is symmetric with 
respect to permutations of indices.

Corollary 4.8 (ECA implies TQFT). Define Ωg,n(v1, . . . , vn) = Ω(γ)(v1, . . . , vn) for any 
γ ∈ Γg,n. Then {Ωg,n} is the 2D TQFT associated with the Frobenius algebra A. Every 
2D TQFT is obtained in this way, hence the two descriptions of 2D TQFT are equivalent.

Proof of Corollary 4.8 assuming Theorem 4.7. Since both ECAs and 2D TQFT give the 
unique value

Ω(γ)(v1, . . . , vn) = ε(v1 · · · vneg) = Ωg,n(v1, . . . , vn)
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Fig. 4.3. Removal of a disc-bounding edge.

for all (g, n) from (3.17), we see that the two sets of axioms are equivalent, and also that 
the edge-contraction axioms produce every 2D TQFT. �

To illustrate the graph independence, let us first examine three simple cases.

Lemma 4.9 (Edge-removal lemma). Let γ ∈ Γg,n.

(1) Suppose there is a disc-bounding loop L in γ (the graph on the left of Fig. 4.3). Let 
γ′ ∈ Γg,n be the graph obtained by removing L from γ.

(2) Suppose there are two edges E1 and E2 between two distinct vertices Vertex i and 
Vertex j, i < j, that bound a disc (the middle graph of Fig. 4.3). Let γ′ ∈ Γg,n be 
the graph obtained by removing E2.

(3) Suppose two loops, L1 and L2, are attached to the i-th vertex (the graph on the 
right of Fig. 4.3). If they are homotopic, then let γ′ ∈ Γg,n be the graph obtained by 
removing L2 from γ.

In each of the above cases, we have

Ω(γ)(v1, . . . , vn) = Ω(γ′)(v1, . . . , vn). (4.8)

Proof. (1) Contracting a disc-bounding loop attached to the i-th vertex creates (γ0, γ′) ∈
Γ0,1 × Γg,n, where γ0 consists of only one vertex and no edges. Then ECA 2 reads

Ω(γ)(v1, . . . , vn) =
∑

a,b,k,�

η(vi, eke�)ηkaη�bγ0(ea)Ω(γ′)(v1, . . . , vi−1, eb, vi+1 . . . , vn)

=
∑

a,b,k,�

η(vi, eke�)ηkaη�bη(1, ea)Ω(γ′)(v1, . . . , vi−1, eb, vi+1 . . . , vn)

=
∑
b,k,�

η(vi, eke�)δk1η�bΩ(γ′)(v1, . . . , vi−1, eb, vi+1 . . . , vn)

=
∑
b,�

η(vi, e�)η�bΩ(γ′)(v1, . . . , vi−1, eb, vi+1 . . . , vn)

= Ω(γ′)(v1, . . . , vi−1, vi, vi+1 . . . , vn).
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(2) Contracting Edge E1 makes E2 a disc-bounding loop at Vertex i. We can remove 
it by (1). Note that the new Vertex i is assigned with vivj . Restoring E1 makes the graph 
exactly the one obtained by removing E2 from γ. Thus (4.8) holds.

(3) Contracting Loop L1 makes L2 a disc-bounding loop. Hence we can remove it 
by (1). Then restoring L1 creates a graph obtained from γ by removing L2. Thus (4.8)
holds. �
Remark 4.10. The three cases treated above correspond to eliminating degree 1 and 2
vertices from the ribbon graph dual to the cell graph. In combinatorial moduli theory, 
we normally consider ribbon graphs that have no vertices of degree less than 3 [21].

Definition 4.11 (Reduced graph). We call a cell graph reduced if it does not have any 
disc-bounding loops or disc-bounding bigons. In other words, the dual ribbon graph of 
a reduced cell graph has no vertices of degree 1 or 2.

We can see from Lemma 4.9 (1) that every γ0,1 ∈ Γ0,1 gives rise to the same map

Ω(γ0,1)(v) = ε(v). (4.9)

Likewise, Lemma 4.9 (1) and (2) show that every γ0,2 ∈ Γ0,2 gives the same map

Ω(γ0,2)(v1, v2) = η(v1, v2).

This is because we can remove all edges and loops but one that connects the two vertices, 
and from ECA 1, the value of the assignment is ε(v1v2).

Proof of Theorem 4.7. We use the induction on m = 2g−2 +n. The base case is m = −1, 
or (g, n) = (0, 1), for which the theorem holds by (4.9). Assume that (4.7) holds for all 
(g, n) with 2g − 2 + n < m. Now let γ ∈ Γg,n be a cell graph of type (g, n) such that 
2n − 2 + n = m.

Choose an arbitrary straight edge of γ that connects two distinct vertices, say Vertex 
i and Vertex j, i < j. By contracting this edge, we obtain by ECA 1,

Ω(γ)(v1, . . . , vn) = Ω(γg,n−1)(v1, . . . , vi−1, vivj , vi+1 . . . , v̂j , . . . , vn) = ε(v1 . . . vneg).

If we have chosen an arbitrary loop attached to Vertex i, then its contraction by ECA 2 
gives two cases, depending on whether the loop is a loop of a handle, or a separating 
loop. For the first case, by appealing to (2.7) and (2.10), we obtain

Ω(γ)(v1, . . . , vn) =
∑

a,b,k,�

η(vi, eke�)ηkaη�bΩ(γg−1,n+1)(v1, . . . , vi−1, ea, eb, vi+1, . . . , vn)

=
∑

η(viek, e�)ηkaη�bΩ(γg−1,n+1)(v1, . . . , vi−1, ea, eb, vi+1, . . . , vn)

a,b,k,�
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=
∑
a,k

ηkaΩ(γg−1,n+1)(v1, . . . , vi−1, ea, viek, vi+1, . . . , vn)

=
∑
a,k

ηkaε(v1 · · · vneg−1eaeb)

= ε(v1 · · · vneg).

For the case of a separating loop, again by appealing to (2.7), we have

Ω(γ)(v1, . . . , vn)

=
∑

a,b,k,�

η(vi, eke�)ηkaη�bΩ(γg1,|I|+1)
(
vI− , ea, vI+

)
Ω(γg2,|J|+1)

(
vJ− , eb, vJ+

)
=

∑
a,b,k,�

η(vi, eke�)ηkaη�bε
(
ea

∏
c∈I

vceg1

)
ε

(
eb

∏
d∈J

vdeg2

)

=
∑

a,b,k,�

η(viek, e�)ηkaη�bη
(∏

c∈I

vc, eaeg1

)
ε

(
eb

∏
d∈J

vdeg2

)

=
∑
a,k

ηkaη

(∏
c∈I

vceg1 , ea

)
ε

(
viek

∏
d∈J

vdeg2

)

= ε

(
vi
∏
c∈I

vceg1
∏
d∈J

vdeg2

)
= ε(v1 · · · vneg1+g2).

Therefore, no matter how we apply ECA 1 or ECA 2, we always obtain the same result. 
This completes the proof. �
Remark 4.12. There is a different proof of the graph independence theorem, using a 
topological idea of deforming graphs similar to the one used in [23].

As we see, the key reason for the graph independence of Theorem 4.7 is the property 
of the Frobenius algebra A that we have, namely, commutativity, cocommutativity, asso-
ciativity, coassociativity, and the Frobenius relation (2.1). These properties are manifest 
in the following graph operations. Although the next proposition is an easy conse-
quence of Theorem 4.7, we derive it directly from the ECAs so that we can see how 
the algebraic structure of the Frobenius algebra is encoded into the TQFT. Indeed, the 
graph-independence theorem also follows from Proposition 4.13. This fact motivates us 
to introduce the category of cell graphs and the Frobenius ECO functor in the next 
section.

Proposition 4.13 (Commutativity of edge contractions). Let γ ∈ Γg,n.
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(1) Suppose Vertex i is connected to two distinct vertices Vertex j and Vertex k by two 
edges, Ej and Ek. The graph we obtain, denoted as γ′ ∈ Γg,n−2, by first contract-
ing Ej and then contracting Ek, is the same as contracting the edges in the opposite 
order. The two different orders of the application of ECA 1 then gives the same 
answer. For example, if i < j < k, then we have

Ω(γ)(v1, . . . , vn) = Ω(γ′)(v1, . . . , vi−1, vivjvk, vi+1, . . . , v̂j , . . . , v̂k, . . . , vn). (4.10)

(2) Suppose two loops L1 and L2 are connected to Vertex i. Then the contraction of the 
two loops in different orders gives the same result.

(3) Suppose a loop L and a straight edge E are attached to Vertex i, where E connects 
to Vertex j, i �= j. Then contracting L first and followed by contracting E, gives the 
same result as we contract L and E in the other way around.

Proof. (1) There are three possible cases: i < j < k, j < i < k, and j < k < i. In each 
case, the result is replacing vi by vivjvk, and removing two vertices. The associativity 
and commutativity of the multiplication of A make the result of different contractions 
the same.

(2) There are two cases here: After the contraction of one of the loops, (a) the other 
loop remains to be a loop, or (b) becomes an edge connecting the two vertices created 
by the contraction of the first loop.

In the first case (a), the contraction of the two loops makes Vertex i in γ into three 
different vertices i1, i2, i3 of the resulting graph γ′, which may be disconnected. The loop 
contractions in the two different orders produce triple tensor products

(1 ⊗ δ)δ(vi) = (δ ⊗ 1)δ(vi),

which are equal by the coassociativity

A⊗A
1⊗δ

A

δ

δ

A⊗A⊗A.

A⊗A

δ⊗1

For (b), the contraction of the loops in either order will produce m ◦ δ(vi) on the same 
i-th slot of the same graph γ′ ∈ Γg−1,n.

(3) This amounts to proving the equation

δ(vivj) = (1 ⊗m)
(
δ(vi), vj

)
= (m⊗ 1)

(
vj , δ(vi)

)
,

which is Lemma 2.1. �
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Remark 4.14. If we have a system of subsets Γ′
g,n ⊂ Γg,n for all (g, n) that is closed 

under the edge-contraction operations, then all statements of this section still hold by 
replacing Γg,n by Γ′

g,n.

Remark 4.15. Chen [4] proved the graph independence for a special case of A = ZC[S3], 
the center of the group algebra for symmetric group S3, by direct computation. This 
result led the authors to find a general proof of Theorem 4.7.

The edge-contraction operations are associated with gluing morphisms of Mg,n that 
are different from those in (3.4) and (3.5). ECA 1 of (4.3) is associated with

α : M0,3 ×Mg,n−1 −→ Mg,n. (4.11)

The handle cutting case of ECA 2 of (4.4) is associated with

β1 : M0,3 ×Mg−1,n+1 −→ Mg,n, (4.12)

and the separating loop contraction with

β2 : M0,3 ×Mg1,|I|+1 ×Mg2,|J|+1 −→ Mg1+g2,|I|+|J|+1. (4.13)

Although there are no cell graph operations that are directly associated with the forgetful 
morphism π and the gluing maps gl1 and gl2, there is an operation on cell graphs similar 
to the connected sum of topological surfaces.

Definition 4.16 (Connected sum of cell graphs). Let γ′ be a cell graph with the following 
conditions.

(1) There is a vertex q in γ′ of degree d.
(2) There are d distinct edges incident to q. In particular, none of them is a loop.
(3) There are exactly d faces in γ′ incident to q.

Given an arbitrary cell graph γ with a degree d vertex p, we can create a new cell 
graph γ#(p,q)γ

′, which we call the connected sum of γ and γ′. The procedure is the 
following. We label all half-edges incident to p with {1, 2, . . . , d} according to the cyclic 
order of the cell graph γ at p. We also label all edges incident to q in γ′ with {1, 2, . . . , d}, 
but this time opposite to the cyclic oder given to γ′ at q. Cut a small disc around p and q, 
and connect all half-edges according to the labeling. The result is a cell graph γ#(p,q)γ

′.

Remark 4.17. The connected sum construction can be applied to two distinct vertices p
and q of the same graph, provided that these vertices satisfy the required conditions.

Remark 4.18. The total number of vertices decreases by 2 in the connected sum. There-
fore, two 1-vertex graphs cannot be connected by this construction.
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Fig. 4.4. The connected sum of a cell graph with a particular type (0, 3) cell graph gives the inverse of the 
edge-contraction operation on E that connects two distinct vertices. The connected sum with the (0, 3)
piece has to be done so that the edges incidents on each side of E match the original graph.

Fig. 4.5. The edge-contraction operation on a loop L is the inverse of two connected sum operations, with a 
type (0, 3) piece in the middle.

The connected sum construction provides the inverse of the edge-contraction op-
erations as the following diagrams show. It is also clear from these figures that the 
edge-contraction operations are degeneration of curves producing a rational curve with 
three special points, as indicated in Introduction (see Figs. 4.4 and 4.5).

5. Category of cell graphs and Frobenius ECO functors

In the previous section, we started from a Frobenius algebra A and constructed the 
corresponding TQFT through edge-contraction axioms. The key step is the assignment 
of the linear map Ω(γ) : A⊗n −→ K to each cell graph γ ∈ Γg,n. As we have no-
ticed, edge-contraction operations encode the structure of a Frobenius algebra. These 
considerations suggest that cell graphs are functors, and edge-contraction operations are 
natural transformations. In this section, we define the category of cell graphs, and define 
Frobenius ECO functors, which make edge-contraction operations correspond to natural 
transformations.

Let (C, ⊗, K) be a monoidal category with a bifunctor ⊗ : C×C −→ C and its left and 
right identity object K ∈ Ob(C). The example we keep in mind is the monoidal category 
(Vect, ⊗, K) of vector spaces defined over a field K with the vector space tensor product 
operation. Fore brevity, we call the bifunctor ⊗ just as a tensor product. A K-object in C
is a pair (V, f : V −→ K) consisting of an object V and a morphism f : V −→ K. We 
denote by C/K the category of K-objects in C. A K-morphism h : (V1, f1) −→ (V2, f2)
is a morphism h : V1 −→ V2 in C that satisfies the commutativity



O. Dumitrescu, M. Mulase / Journal of Algebra 494 (2018) 1–27 23
V1
f1−−−−→ K

h

⏐⏐� ∥∥∥
V2 −−−−→

f2
K

. (5.1)

We note that every morphism h : V1 −→ V2 in C yields a new object (V1, f1) from a given 
(V2, f2) as in (5.1). This is the pull-back object. The category C/K itself is a monoidal 
category with respect to the tensor product, and the final object (K, idK : K −→ K)
of C/K as its identity object.

We denote by Fun(C/K, C/K) the endofunctor category, consisting of monoidal func-
tors

α : C/K −→ C/K

as its objects. Let α and β be two endofunctors, and τ a natural transformation between 
them. Natural transformations form morphisms in the endofunctor category.

V

h

f

α(V )

α(h)

α(f)

τ
β(V )

β(f)

K K
τ

K

W

g

α(W )
α(g)

τ
β(W )

β(g)

The final object of Fun(C/K, C/K) is the functor

φ : (V, f : V −→ K) −→ (K, idK : K −→ K) (5.2)

which assigns the final object of the codomain C/K to everything in the domain C/K. 
With respect to the tensor product and the above functor φ as its identity object, the 
endofunctor category Fun(C/K, C/K) is again a monoidal category.

Definition 5.1 (Subcategory generated by V ). For every choice of an object V of C, we 
define a category of K-objects T (V •)/K as the full subcategory of C/K whose objects 
are (V ⊗n, f : V ⊗n −→ K), n = 0, 1, 2, . . . . We call T (V •)/K the subcategory generated 
by V in C/K.

Definition 5.2 (Monoidal category of cell graphs). The finite coproduct (or cocartesian)
monoidal category of cell graphs CG is defined as follows.

• The set of objects Ob(CG) consists of a finite disjoint union of cell graphs.
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• The coproduct in CG is the disjoin union, and the coidentity object is the empty 
graph.

The set of morphism Hom(γ1, γ2) from a cell graph γ1 to γ2 consists of equivalence classes 
of sequences of edge-contraction operations and graph automorphisms. For brevity of 
notation, if E is an edge connecting two distinct vertices of γ1, then we simply denote 
by E itself as the edge-contraction operation shrinking E, as in Fig. 4.1. If L is a loop 
in γ1, then we denote by L the edge-contraction operation of Fig. 4.2. Let

H̃om(γ1, γ2) =
{

composition of a sequence of edge-contractions
and graph automorphisms that changes γ1 to γ2

}
.

This is the set of words consisting of edge-contraction operations and graph automor-
phisms that change γ1 to γ2 when operated consecutively. If there is no such operations, 
then we define H̃om(γ1, γ2) to be the empty set. The morphism set Hom(γ1, γ2) is the set 
of equivalence classes of H̃om(γ1, γ2). The equivalence relation in the extended morphism 
set is generated by the following cases of equivalences.

(1) Suppose γ1 has a non-trivial automorphism σ. Then for every edge E of γ1, E and 
σ(E) are equivalent.

(2) Suppose Vertex i of γ1 ∈ Γg,n is connected to two distinct vertices Vertex j and 
Vertex k by two edges, Ej and Ek. The graph we obtain, denoted as γ2 ∈ Γg,n−2, by 
first contracting Ej and then contracting Ek, is the same as contracting the edges in 
the opposite order. The two words E1E2 and E2E1 are equivalent.

(3) Suppose two loops L1 and L2 of γ1 are connected to Vertex i. Then the contraction 
operations of the two loops in different orders give the same result. The two words 
L1L2 and L2L1 are equivalent.

(4) Suppose a loop L and a straight edge E in γ1 are attached to Vertex i, where E
connects to Vertex j, i �= j. Then contracting L first and followed by contracting E, 
gives the same result as we contract L and E in the other way around. The two 
words EL and LE are equivalent.

(5) Suppose γ1 has two edges (including loops) E1 and E2 that have no common vertices, 
and γ2 is obtained by contracting them. Then E1E2 is equivalent to E2E1.

(6) Suppose two edges E1 and E2 are both incident to two distinct vertices. Then E1E2

is equivalent to E2E1.

Example 5.3. A few simple examples of morphisms are given below.

Hom(•E1 •E2 •, • •) = {E1, E2},

Hom(•E1 •E2 •, •) = {E1E2},
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Hom
(

E1
•©•
E2

, •©
)

= {E1} = {σ(E1)} = {E2},

Hom
(

E1
•©•
E2

, • •
)

= {E1E2}.

The cell graph on the left of the third and fourth lines has an automorphism σ that 
interchanges E1 and E2. Thus as the edge-contraction operation, E2 = E1 ◦ σ = σ(E1).

Remark 5.4. If γ ∈ Γg,n, then Hom(γ, γ) = {idγ}.

We have seen in the last section that when we have made a choice of a unital 
commutative Frobenius algebra A, a cell graph γ ∈ Γg,n defines a multilinear map 
ΩA(γ) : A⊗n −→ K subject to edge-contraction axioms. For a different Frobenius alge-
bra B, we have a different multilinear map ΩB(γ) : B⊗n −→ K, subject to the same 
axioms. These two maps are unrelated, unless we have a Frobenius algebra homomor-
phism h : A −→ B. Theorem 4.7 tells us that we have a K-morphism of (5.1) which 
induces ΩA(γ) as the pull-back of ΩB(γ).

A

h

A⊗n
ΩA(γ)

K

B B⊗n

ΩB(γ)
K

This consideration suggests that Ω(γ) is a functor defined on the category of Frobenius 
algebras. But since we are encoding the Frobenius algebra structure into the category of 
cell graphs, the extra choice of Frobenius algebras is redundant.

We are thus led to the following definition.

Definition 5.5 (Frobenius ECO functor). An Frobenius ECO functor is a monoidal func-
tor

ω : CG −→ Fun(C/K, C/K) (5.3)

satisfying the following conditions.

• The graph γ0 = • of (4.2) of type (0, 1) consisting of only one vertex and no edges 
corresponds to the identity endofunctor:

• −→ (id : C/K −→ C/K). (5.4)

• A graph γ ∈ Γg,n of type (g, n) corresponds to a functor

γ �−→
[
(V, f : V −→ K) −→ (V ⊗n, ωV (γ) : V ⊗n −→ K)

]
. (5.5)
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The Frobenius ECO functor assigns to each edge-contraction operation a natural trans-
formation of endofunctors C/K −→ C/K.

Remark 5.6. The unique construction of the Frobenius ECO functor for (Vect, ⊗, K)
requires us to generalize our categorical setting to include CohFT of Kontsevich–
Manin [18]. Then we will be able to show that this unique functor actually generates all 
Frobenius objects of (Vect, ⊗, K). This topic will be treated in our forthcoming paper.

Let us consider the monoidal (not full) subcategory A ⊂ (Vect, ⊗, K) consisting of 
commutative Frobenius algebras.

Theorem 5.7 (Construction of 2D TQFTs). There is a canonical Frobenius ECO functor

Ω : CG −→ Fun(A/K,A/K). (5.6)

When we start with a Frobenius algebra A, this functor generates a network of multilinear 
maps

ΩA(γ) : A⊗n −→ K

for all cell graphs γ ∈ Γg,n for all values of (g, n). This is the 2D TQFT corresponding 
to the Frobenius algebra A.

Proof. This follows from the graph independence of Theorem 4.7. �
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