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Abstract. We present in this paper a differential version of Mirzakhani’s
recursion relation for the Weil-Petersson volumes of the moduli spaces of bor-
dered Riemann surfaces. We discover that the differential relation, which is
equivalent to the original integral formula of Mirzakhani, is a Virasoro con-
straint condition on a generating function for these volumes. We also show that
the generating function for ψ and κ1 intersections on Mg,n is a 1-parameter
solution to the KdV hierarchy. It recovers the Witten-Kontsevich generating
function when the parameter is set to be 0.

1. Introduction

In her striking series of papers [18, 19], Mirzakhani obtained a beautiful recursion
formula for the Weil-Petersson volume of the moduli spaces of bordered Riemann
surfaces. Her recursion relation is an integral formula involving a kernel function
that appears in the work of McShane [17] on hyperbolic geometry of surfaces. We
have discovered that the differential version of the Mirzakhani recursion formula,
which is equivalent to the original integral form, is indeed a Virasoro constraint
condition imposed on a generating function of these volumes.

Mirzakhani proves in [19] that her recursion relation reduces to the Virasoro con-
straint condition as the length parameters of the boundary components of Riemann
surfaces go to infinity, and moreover, it recovers the celebrated Witten-Kontsevich
theorem of intersection numbers of tautological classes on the moduli spaces of sta-
ble algebraic curves. Our result reveals that the Virasoro structure exists essentially
in the Mirzakhani theory, and that it is not the consequence of the large boundary
limit.

The Virasoro constraint formulas for the generating functions of Gromov-Witten
invariants of various target manifolds have been extensively studied in recent years
[4, 8, 9, 22]. Although Mirzakhani’s hyperbolic method does not immediately apply
to these cases with higher dimensional target spaces, the Virasoro structure we
identify in this paper strongly suggests that the Virasoro constraint conjecture of
[5, 6] is a reflection of the combinatorial structure of building the domain Riemann
surface from simpler objects such as pairs of pants or three punctured spheres.

Although it is more than 15 years old, the Witten-Kontsevich theory [23, 15]
has never lost its place as one of the most beautiful and prime theories in the
study of algebraic curves and their moduli spaces. The theory provides a complete
computational method for all intersection numbers of the tautological cotangent
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classes (the ψ-classes) defined on the moduli space Mg,n of stable algebraic curves
of genus g with n marked points. Recently several new proofs have appeared
[21, 19, 14, 13]. We note that all these new proofs are based on very different ideas
and techniques, including random matrix theory, random graphs, Hurwitz theory,
representation theory of symmetric groups, symplectic geometry and hyperbolic
geometry.

The mystery of the Witten-Kontsevich theory has been the following question:
where does the KdV equation, and also the Virasoro constraint condition, come
from? Once we accept the Kontsevich matrix model expression of the generating
function of all cotangent class intersections, then both the KdV and the Virasoro
are an easy corollary of the analysis of matrix integrals. Thus the real question
is: where do these structures appear in the geometry of moduli spaces of algebraic
curves?

The insight of some of the the new proofs [14, 13], which do not rely on matrix
integrals but rather use the counting of ramified overings of P

1, is that the KdV
equation is a direct consequence of the cut and join mechanism of [10].

The proof [19] due to Mirzakhani utilizes hyperbolic geometry and has a markedly
different nature from the others, whose origins are rooted in algebraic geometry.
Mirzakhani’s work concerns the Weil-Petersson volume of the moduli space of bor-

dered Riemann surfaces Mg,n(L), where L = (L1, . . . , Ln) specifies the geodesic
lengths of the boundaries of Riemann surfaces. Here the moduli space is equipped
with the structure of a differentiable orbifold realized as the quotient of the Te-
ichmüller space by the action of a mapping class group. Mirzakhani shows that
these volumes satisfy a recursion relation, and that in the limit L → ∞ her recur-
sion formula recovers the Virasoro constraint condition for the generating function
of ψ-class intersection numbers of Mg,n, or equivalently, the generating function
of the Gromov-Witten invariants of a point. A striking theorem of [19] relates, via
the method of symplectic reduction, the Weil-Petersson volume of Mg,n(L) and the
intersection numbers involving both the first Mumford class κ1 and the ψ-classes
on Mg,n. As a consequence, she proves that the volume Vol

(
Mg,n(L)

)
, after an

appropriate normalization with powers of π, is a polynomial in L with rational
coefficients.

Since there is no particular reason to believe that there should be a direct relation
between the Weil-Petersson volume of the moduli spaces of bordered Riemann
surfaces and Virasoro constraint condition, our discovery suggests the existence of
another, more algebraic, point of view in the Mirzakhani theory.

Our Virasoro structure also bears an interesting consequence: it leads to the
natural normalization of the Weil-Petersson volume of the moduli spaces of bordered
(or unbordered) Riemann surfaces. Although the geometric orbifold picture and the
algebraic stack picture give the same moduli space for most of the cases, there is one
exception: the moduli space of one-pointed stable elliptic curves M1,1. If we define
this space as an orbifold, then its canonical Weil-Petersson volume is ζ(2) = π2/6.
On the other hand, the Virasoro constraint condition dictates that we need to have

Vol(M1,1) =
ζ(2)

2

as its canonical symplectic volume. This makes sense if we consider M1,1 as an
algebraic stack. The factor 2 difference is due to the fact that every elliptic curve
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with one marked point possesses a Z/2Z automorphism. It is remarkable that even
a purely hyperbolic geometry argument leads us to this stack picture.

To summarize our main results, let us consider the rational volume of Mg,n(L)
defined by

vg,n(L)
def
=

Vol
(
Mg,n(L)

)

2dπ2d
,

where d = 3g − 3 + n and

Vol
(
Mg,n(L)

) def
=

∫

Mg,n(L)

ωd
WP

d!

is the Weil-Petersson volume of Mg,n(L). Then the Mirzakhani recursion formula
reads

vg,n(L) =
2

L1

∫ L1

0

∫ ∞

0

∫ ∞

0

xyK(x+ y, t)vg−1,n+1(x, y,L1̂)dxdydt

+
2

L1

∑

g1+g2=g
I

‘
J={2,...,n}

∫ L1

0

∫ ∞

0

∫ ∞

0

xyK(x+ y, t)vg1,n1(x,LI)

× vg2,n2(y,LJ )dxdydt

+
1

L1

n∑

j=2

∫ L1

0

∫ ∞

0

x (K(x, t+ Lj) +K(x, t− Lj))

× vg,n−1(x,L{c1,j})dxdt,

where the kernel function of the integral transform is given by

K(x, t) =
1

1 + eπ(x+t)
+

1

1 + eπ(x−t)
,

and the symbol ̂ indicates the complement of the indices. Recall that our nor-
malized Weil-Petersson volume is a polynomial in L with coefficients given by in-
tersection numbers of κ1 and ψ-classes:

vg,n(L) =
∑

d0+···+dn

=d

n∏

i=0

1

di!

〈
κd0

1

∏
τdi

〉
g,n

∞∏

i=1

L2di

i .

Instead of defining our generating function directly from these rational volumes, let
us consider the generating function of the mixed κ1 and ψ-class intersections

G(s, t0, t1, t2, . . .)
def
=

∑

g

〈
esκ1+

P
tiτi

〉
g

=
∑

g

∑

m,{ni}

〈
κm

1 τ
n0
0 τn1

1 · · ·
〉

g

sm

m!

∞∏

i=0

tni

i

ni!
.

The main results of the present paper are the following differential version of the
integral recursion formula.

Theorem 1.1. For every k ≥ −1, let us define

Vk = −1

2

∞∑

i=0

(2(i+ k) + 3)!!αis
i ∂

∂ti+k+1
+

1

2

∞∑

j=0

(2(j + k) + 1)!!

(2j − 1)!!
tj

∂

∂tj+k
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+
1

4

∑

d1+d2=k−1
d1,d2≥0

(2d1 + 1)!!(2d2 + 1)!!
∂2

∂td1∂td2

+
δk,−1t

2
0

4
+
δk,0

48
,

where αi = (−2)i

(2i+1)! . Then we have:

(1) The operators Vk satisfy Virasoro relations

[Vn, Vm] = (n−m)Vn+m.

(2) The function exp(G) satisfies the Virasoro constraint condition

Vk exp(G) = 0 for k ≥ −1.

Moreover, these properties uniquely determine G and enable one to calculate all co-

efficients of the expansion. Since G contains all information of the rational volumes

vg,n(L), we conclude that the Virasoro constraint condition is indeed equivalent to

the Mirzakhani recursion relation.

Since the generating function for ψ-class intersections

F (t0, t1, . . .) =
∑

g

〈
e

P
τiti

〉
g

=
∑

g

∑

{n∗}

〈∏
τni

i

〉
g

∏ tni

i

ni!

is a solution of the KdV hierarchy, it is natural to ask if G satisfies any integrable
equations. Indeed, we prove the following.

Theorem 1.2. The function exp(G) is a τ-function for the KdV hierarchy for any

fixed value of s. In fact, we have an explicit relation

(1.1) G(s, t0, t1, . . .) = F (t0, t1, t2 + γ2, t3 + γ3, . . .),

where γi = (−1)i

(2i+1)i!s
i−1.

We remark that it is well known to algebraic geometers that generating functions
F and G contain the same information [2, 3, 7, 12, 16, 26].

An important consequence of Theorem 1.2 is that G is also completely deter-
mined by the property of being a τ -function, together with the string equation
V−1 exp(G) = 0. It is fruitful to think of the string equation as being the initial
condition for the KdV flow. Since G is determined, we note that Theorem 1.2 is
again equivalent to Mirzakhani’s recursion formula.

Here we recall that in the theory of integrable systems, every variable has a
weighted degree so that all natural operators have homogenous weights. Coming
from the KdV equations, we assign deg tj = 2j + 1. The quantity γj has the same
degree, which defines that deg sj = 2j + 3. The Virasoro operator Vk then has
homogenous degree −2k for every k ≥ −1. Another way to view the degree of si

comes from the generalized Kontsevich integral

log

∫

HN

ei
P∞

j=0(− 1
2 )jsj

tr X2j+1

2j+1 e−
tr(X2Λ)

2 dX.

As indicated in the work of Mondello [20], there should be a substitution sj = cjs
j−1

which transforms the asymptotic expansion of the integral into the generating func-
tion G. Since sj has degree 2j+ 1, we confirm that sj must have degree 2j+ 3. As
well, we should point out that it is quite natural for (1.1) to leave variables t0 and
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t1 unchanged. The reason is that in any expression relating intersections involving
κ classes to those involving τ terms alone, τ0 and τ1 never make an appearance.

A few of the natural questions that crop up from this work are:

(1) Is there a matrix integral expression for the function G?
(2) Is it possible to prove that G is a solution to the KdV hierarchy without

appealing to the Witten-Kontsevich theorem?
(3) What is the direct geometric connection between the cut and join mecha-

nism and the Mirzakhani recursion?

We note that the essence of the original Virasoro constraint conjecture is that
the generating function of Gromov-Witten invariants should have a matrix integral
expression. The analysis of matrix integrals [1] indicates that once a matrix integral
formula is established, the Virasoro constraints and integrable systems of KdV type
are obvious consequences. Since the ribbon graph expansion method provides a
powerful tool to matrix integrals, the very existence of both the KdV equations
and the Virasoro constraint for the Weil-Petersson volume of the moduli spaces of
bordered Riemann surfaces points to a matrix model expression and ribbon graph
interpretation of the Mirzakhani formulas. These questions, however, are beyond
the scope of our present work.

This paper is organized as follows. In section 2 we review the work of Mirza-
khani [18, 19]. Since the Virasoro structure very delicately depends on all the subtle
points of the theory, we provide a detailed discussion on some of the key ingredients
of the work, including the case of genus one with one boundary, precise combinato-
rial description of cutting a surface along geodesics, and the choice of a canonical
orientation of the circle bundle when the Duistermaat-Heckman formula is applied
to the extended moduli spaces. Section 3 gives a proof of Theorem 1.1. Finally, in
section 4 we prove Theorem 1.2.

The second author would like to thank Greg Kuperberg and Albert Schwarz for
helpful conversations.

2. Mirzakhani’s Recursion Relation

2.1. Notations. Since the orbifold picture and the stack structure are the same
for the moduli spaces of algebraic curves except for genus 1 with one marked point,
we employ the orbifold view point throughout the paper. As mentioned above,
however, when we interpret the canonical volume of the moduli spaces, we need to
use the stack picture.

Let Mg,n denote the moduli space of smooth algebraic curves, or equivalently,
the moduli orbifold consisting of finite area hyperbolic metrics on a surface, of
topological type (g, n). A surface of type (g, n) is a surface with genus g and
n punctures. Since we are interested in the stable, noncompact case, we impose
2g− 2 + n > 0 and n > 0 throughout this paper. When referring to the underlying
topological type of the surface we will consistently employ the notation Sg,n. We
will also use the notation MS for the moduli space of surfaces of topological type
S.

Mirzakhani’s breathtaking theory is about the moduli space Mg,n(L) of genus
g hyperbolic surfaces with n geodesic boundary components of specified length
L = (L1, . . . , Ln). This space relates to the algebro-geometric moduli space via
the equality Mg,n = Mg,n(0). The moduli space of bordered Riemann surfaces is
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defined as an orbifold

Mg,n(L) = Tg,n(L)/Modg,n,

where Modg,n is the mapping class group of the surface of type (g, n), i.e., the set
of isotopy classes of diffeomorphisms which preserve the boundaries setwise, and
Tg,n(L) is the Teichmüller space. The Deligne-Munford type compactification of
this moduli space is obtained by pinching non-trivial cycles.

The tautological classes we consider in this paper are the κ1 and ψ classes. Let

π : Mg,n+1(= Cg,n) −→ Mg,n

be the forgetful morphism which forgets the n+ 1-st marked point, and

σi(C, x1, . . . , xn) = xi ∈ C, i = 1, 2, . . . , n

its canonical sections. We denote by ωC/M the relative dualizing sheaf, and let

Di = σi(Mg,n), which is a divisor in Mg,n+1. The tautological classes are defined
by

Li = σ∗
i (ωC/M),

ψi = c1(Li),

κ1 = π∗

(
c1

(
ωC/M(

∑O(Di)
)2

)
.

We are interested in the intersection numbers

〈
κm

1 τd1 · · · τdn

〉
g

=

∫

Mg,n

κm
1 ψ

d1
1 · · ·ψdn

n .

The class κ1 has a nice geometric interpretation, coming from the symplectic
structure of Mg,n. The Fenchel-Nielsen coordinates are associated with a pair of
pants decompostion of the surface Sg,n, which is a disjoint set of simple closed
curves Γ = {γ1, . . . , γd} such that Sg,n \ Γ is a disjoint union of pairs of pants
(triply punctured spheres). Since pairs of pants have no moduli (they are uniquely
fixed after specifying the boundary lengths), all that remains to recover the original
hyperbolic structure is to specify how the matching geodesics are glued together.
Hence for every curve γi in the pair of pants decomposition, one has the freedom
of two parameters (li, τi) where li is the length of the curve and τi is the twist
parameter. These coordinates give an isomorphism Tg,n = R

d
+ ×R

d. At the moduli
space level we must quotient out by the mapping class group action. Since one full
twist around a curve is a Dehn twist (element of Modg,n), we get local coordinates
of the form R

d
+ × (S1)d.

In Fenchel-Nielsen coordinates, the Weil-Petersson form is in Darboux coordi-
nates [24]:

ωWP =
∑

dli ∧ dτi.
This is a closed, nondegenerate 2-form on Tg,n which is invariant under the action
of the mapping class group, hence gives a well defined symplectic form on Mg,n.
Note that by Wolpert [25] the Weil-Petersson form extends as a closed current on
Mg,n. In particular, the Weil-Petersson volume

Volg,n(L)
def
=

∫

Mg,n(L)

ωd
WP

d!
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is a finite quantity. (Note that Wolpert defines the Weil-Petersson form to be half
of the above expression. Our convention is adopted from the algebraic geometry
community [2, 12, 26].) The relation to tautological classes is provided by the
well-known formula

ωWP = 2π2κ1.

For use in the sequel, we note that the vector field generated by a Fenchel-
Nielsen twist about a simple closed geodesic is symplectically dual to the length of
the geodesic. A Fenchel-Nielsen twist is defined by cutting the surface along the
curve, twisting one component with respect to the other and than regluing. As a
formula, we have

ωWP ( · , ∂
∂τi

) = dli.

2.2. McShane’s identity. A crucial step in Mirzakhani’s program [18, 19] is to use
McShane’s identity to write a constant function on the moduli space as a sum over
mapping class group orbits of simple closed curves. To state Mirzakhani’s general-
ization of McShane’s identity, we introduce the following notation for an arbitrary
hyperbolic surface X with boundaries (β1, . . . , βn) of length (L1, . . . , Ln): Ij de-
notes the set of simple closed geodesics γ such that (β1, βj , γ) bound a pair of pants;
and J the set of pairs of simple closed geodescis (α1, α2) such that (β1, α1, α2)
bound a pair of pants. Using the functions

D(x, y, z) = 2 log

(
ex/2 + e(y+z)/2

e−x/2 + e(y+z)/2

)
and

R(x, y, z) = x− log

(
cosh y

2 + cosh x+z
2

cosh y
2 + cosh x−z

2

)
,

Mirzakhani proves

Theorem 2.1 (Mirzakhani [18]). For X as above, we have

L1 =
∑

(α1,α2)∈J

D
(
L1, l(α1), l(α2)

)
+

n∑

j=2

∑

γ∈Ij

R
(
L1, Lj , l(γ)

)
.

2.3. Integration over the moduli spaces. The idea is to find a fundamental
domain for a particular cover of Mg,n, enabling one to integrate functions over this
covering space. Then a specific class of functions defined on the moduli space (such
as those arising from McShane’s identity) can be lifted to this cover and integrated.
To that end, let Γ = {γ1, . . . , γn} be a collection of disjoint simple closed curves on
the surface Sg,n, where Sg,n is the underlying topology of the hyperbolic surface
X ∈ Mg,n. We define

Stab Γ = ∩Stab γi = {f ∈ Modg,n | f(γi) = γi, for i = 1, . . . , n},
and set

MΓ
g,n = Tg,n/ Stab Γ

= {(X, η1, . . . , ηn) |X ∈ Mg,n, ηi is a simple closed geodesic in Mod γi }.
Note that as a quotient of Teichmüller space, MΓ

g,n inherits the Weil-Petersson

symplectic form. Hence we can talk about integration over MΓ
g,n with respect to

the symplectic volume form. The advantage of integration on MΓ
g,n as opposed to

the usual moduli space is that we can exploit the existence of a hamiltonian torus
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γ

L1 L2

x

x

L1 L2

Figure 1. Decomposing a surface

action. In fact, by a result of Wolpert, the vector field generated by a Fenchel-
Nielsen twist along a geodesic is symplectically dual to the length function of the
geodesic (as a function on Teichmüller space). The space MΓ

g,n is the intermediate
covering space on which the circle actions on {γ1, · · · , γn} descend. The problem
with attempting to construct such a circle action on Mg,n is that there is no well
defined notion of a geodesic curve on an element of moduli space; the best one can
obtain is a mapping class group orbit of curves.

Thus we have the moment map for the torus action:

l : MΓ
g,n → R

n
+

(X,η) 7→
(
l(η1), . . . , l(ηn)

)
.

Hence we see that l−1(x)/T n is symplectomorphic to MSg,n\Γ(L,x,x). Recall
that MSg,n\Γ is the moduli space with underlying topological type the (possibly
disconnected) surface Sg,n\Γ and with boundary lengths following the rule outlined
in Figure 1.

The most straightforward way to prove the above assertion is to take a pair of
pants decomposition for the surface Sg,n which contains the curves Γ. Then l−1(x)
fixes the lengths of the geodesics η1, . . . , ηn, while quotienting by the torus action
removes the twist variable from these curves. This gives the diffeomorphism. The
symplectic equivalence follows immediately from the Fenchel-Nielsen coordinate
expression for the Weil-Petersson form. What emerges is an exceptionally clear
local picture for the space MΓ

g,n. In fact, it is a fibre bundle over R
n
+ where the

fibres are (locally) equal to the product of a torus and MSg,n\Γ(L,x,x).
Consider a map

f : MΓ
g,n → R,

which is a function of the lengths of the marked geodesics l(ηi). In other words,
f(X, η1, . . . , ηn) = f

(
l(η1), . . . , l(ηn)

)
. By the previously discussed decomposition

of MΓ
g,n we can write

(2.1)

∫

MΓ
g,n

f
(
l(η)

)
eωWP (L) =

∫

R
n
+

f(x)VolSg,n\Γ(L,x,x)x · dx.

Here eωWP means we are integrating over the maximal power of the Weil-Petersson

form
ωd

WP

d! , d = 3g−3+n. Note that if Sg,n \Γ is disconnected then MSg,n\Γ is the
direct product of the component moduli spaces, with the volume being the product
of each.
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2.4. Volume calculation. To relate the above discussion to integration on the
moduli space, Mirzakhani uses her generalized McShane identity. As a lead in
to the main results, consider the following simplified situation. Suppose γ is a
simple closed curve on Sg,n, with Mod γ its mapping class group orbit. Then given
any hyperbolic structure X on Sg,n, every α ∈ Mod γ has a unique geodesic in
its isotopy class. Denote lX(α) the corresponding geodesic length. Hence for any
function f : R+ → R and thinking of X ∈ [X ] as a representative of an element of
Mg,n we have the following well defined function on Mg,n:

fγ : Mg,n → R

[X ] 7→
∑

α∈Modγ

lX(α).

One can easily check that this function does not depend on the choice of repre-
sentative X ∈ [X ]. However, it is not a priori clear whether or not fγ will be a
convergent sum. At minimum one requires limx→∞ f(x) = 0. We can similarly
define a function

f̃γ : Mγ
g,n → R

by the rule

f̃γ(X, η) = f(lX(η)),

which gives the relation

fγ(X) =
∑

(X,η)∈π−1(X)

f̃γ(X, η).

In particular, since the pullback of the Weil-Petersson form is the Weil-Petersson
form on the cover, we have

∫

Mg,n

fγeωWP =

∫

Mγ
g,n

f̃γeωWP .

Note that for any curve γ ∈ Ij , we have Ij = Mod γ. This follows because two
curves are in the same orbit of the mapping class group if and only if the surfaces
obtained by cutting along the curves are homeomorphic, with a homeomorphism
preserving the boundary components setwise. The homeomorphism will extend
continuously to the curves to give the map of the entire surface. This tells us that
the set J is not the orbit of a single pair of curves (α1, α2) ∈ J . In fact, we further
refine this set of curves as follows. For any (α1, α2) ∈ J set P (β1, α1, α2) ⊂ Sg,n to
be the pair of pants bounded by the curves β1, α1, α2. Now we define (see Figure 2)

Jconn = {(α1, α2) ∈ J |Sg,n \ P (β1, α1, α2) is connected }
Jg1,{i1,...,in1}

= {(α1, α2) ∈ J |Sg,n \ P (β1, α1, α2) breaks into 2 pieces

one of which is a surface of type (g1, n1 + 1) with

boundary (αi, βi1 , . . . , βin1
) }.

Other than the obvious identification

Jg1,{i1,...,in1}
= Jg−g1,{1,...,n}\{i1,...,in1}

,

these subsets form disjoint orbits under the mapping class group. Moreover Modg,n

acts transitively on each set.
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α2

α1

Lj L1

γ

δ1

δ2

Figure 2. Removing a pair of pants from a surface

Hence we can write the Mirzakhani-McShane identity in the following form

L1 =
1

2

∑

g1+g2=g
A

‘
B=

{2,...,n}

∑

(α1,α2)∈Jg1,A

D
(
L1, l(α1), l(α2)

)

+
∑

(δ1,δ2)∈Jconn

D
(
L1, l(δ1), l(δ2)

)

+

n∑

j=2

∑

γ∈Ij

R
(
L1, Lj, l(γ)

)
.

There is a slight inaccuracy - we undercount by half for terms with n = 1 and
g1 = g2. However, we will see in a moment that this makes further calculations
somewhat simpler.

Each of the terms in the above sum can be lifted to a function on an appropriate
cover MΓ

g,n. We see that
∫

Mg,n(L)

L1e
ωWP =

1

2

∑

g1+g2=g
A

‘
B=

{2,...,n}

∑

(α1,α2)∈Jg1,A

∫

Mg,n(L)

D(L1, l(α1), l(α2))e
ωW P

+
∑

(δ1,δ2)∈Jconn

∫

Mg,n(L)

D(L1, l(δ1), l(δ2))e
ωWP

+
n∑

j=2

∑

γ∈Ij

∫

Mg,n(L)

R(L1, Lj, l(γ))e
ωWP .

Hence

L1 Volg,n(L) =
1

2

∑

g1+g2=g
A

‘
B={2,...,n}

∫

M
{α1,α2}
g,n

D(L1, l(η1), l(η2))e
ωWP

+
1

2

∫

M
{δ1,δ2}
g,n

D(L1, l(η1), l(η2))e
ωWP

+

n∑

j=2

∫

Mγ
g,n

R(L1, Lj, l(γ))e
ωWP .
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Note that the factor 1
2 that appears in front of the second term in the sum

is needed because the mapping class group orbit double counts the set of curves
(δ1, δ2). In other words, there is a diffeomorphism exchanging δ1 and δ2. Similarly,
the factor 1

2 discrepancy for the term in the first sum with g1 = g2 and n = 1 has
now disappeared and the presented sum is unambiguously correct. Applying the
results of the previous section we see that

L1 Volg,n(L) =
1

2

∑

g1+g2=g
A

‘
B

∫

R
2
+

xyD(L1, x, y)Volg1,n1(x,LA)Volg2,n2(y,LB)dxdy

+
1

2

∫

R
2
+

xyD(L1, x, y)Volg−1,n+1(x, y,L1̂)dxdy

+
n∑

j=2

∫

R+

xR(L1, Lj, x)Volg,n−1(x,Lc1,j)dx.

For any subset A = {i1, . . . , lk} ⊂ {1, . . . , n} the notation LA means the vector
(Li1 , . . . , Lik

) while LÂ = L{1,...,n}\A.
There is one additional subtlety that crops up at this point. Note that for the

case of M1,1(L), there is an order two automorphism obtained by rotating around
the boundary by half a turn. There are two ways to deal with this issue. The
approach taken in [18] is to divide the appropriate integrals by 2 every time such
a term appears in the above integral. Our approach, which is computationally
equivalent, is to define the volume of M1,1(L) to be half the value obtained by
calculations using the above techniques. In other words, we have initial conditions

Vol0,3(L) = 1

Vol1,1(L) =
1

48
(L2 + 4π2).

We will see that this viewpoint simplifies further calculations; as well, it agrees with
known results from algebraic geometry.

The final step is to differentiate both sides with respect to L1 and then integrate,
which has the effect of simplifying the integrands on the right side of the equation.
The result is

Volg,n(L) =
1

2L1

∑

g1+g2=g
A

‘
B

∫ L1

0

∫ ∞

0

∫ ∞

0

xyH(t, x+ y)

× Volg1,n1(x,LA)Volg2,n2(y,LB)dxdydt

+
1

2L1

∫ L1

0

∫ ∞

0

∫ ∞

0

xyH(t, x+ y)

× Volg−1,n+1(x, y,L1̂)dxdydt

+
1

2L1

n∑

j=2

∫ L1

0

∫ ∞

0

x
(
H(x, L1 + Lj) +H(x, L1 − Lj)

)

× Volg,n−1(x,Lc1,j)dxdt,

where

H(x, y) =
1

1 + e(x+y)/2
+

1

1 + e(x−y)/2
.
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Figure 3. Capping off a bordered surface

2.5. Relation to intersection numbers. In this subsection we review the idea
of Mirzakhani to write the integral over Mg,n(L) as an integral of an appropriately
modified volume form over Mg,n. This will relate the Weil-Petersson volumes to
intersection numbers of tautological classes. Following [19], let

M̂g,n = {(X, p1, . . . , pn) |X ∈ Mg,n(L),L ∈ R
n
≥0, pi ∈ βi}

be the moduli space of bordered hyperbolic surfaces of arbitrary boundary length,
with the additional information of a marked point on each boundary component.
If Li = 0, then we can think of pi as a point on a horocycle about the cusp.

The marked point can be used as a twist parameter, so by gluing on pairs of
pants with two cusps and the third boundary having length matching the surface’s

boundary, we obtain a map M̂g,n → Mg,2n. In fact, we have M̂g,n = MΓ

g,2n where
Γ = {γ1, . . . , γn} is a collection of curves which group the cusps into pairs. We refer
to Figure 3 for a descriptive picture of this construction.

This tells us that M̂g,n has a symplectic structure from the Weil-Petersson form
on MΓ

g,2n. Moreover it has a hamiltonian torus action given by rotating the marked
points on the boundary. However, we need to take some care here. We are interested

in studying the symplectic action in a neighborhood of surfaces X ∈ M̂g,n with
l(βi) = 0. Moreover, we want to construct the action in such a way that these
points are not fixed by the torus action. In other words, we need to non-trivially
extend the action to the cusped surfaces.

It is a simple matter of defining the twists to be proportional to the lengths of
the boundaries. In other words, we scale the action so that a twist parameter of 1 is
always the identity. The model is the change from the cartesian (x, y) coordinates
in the plane to the polar coordinate (r, θ). In the first case rotation around the
origin leaves it fixed, but (0, θ) is not fixed by θ 7→ θ + ǫ. From the point of view

of M̂g,n, the marking on the boundary degenerates to a marking on a horocycle
of the cusp. The result, after a change of coordinates to the reparametrized twist
coordinate θi = τi/li, is

ωWP =
∑

lidli ∧ dθi,

and the moment map corresponding to the twist vector field ∂
∂θi

is 1
2 l

2
i .

Given the map L : M̂g,n → R
n
≥0 determined by mapping the marked surface

X ∈ M̂g,n to the lengths of its boundary components, we see that L−1(x) is a

principal torus bundle over Mg,n(x). In fact, over Mg,n(0) it is the principal
bundle associated to the vector bundle L1⊕· · ·⊕Ln. At first glance this is a rather



MIRZAKHANI’S RECURSION AND VIRASORO CONSTRAINTS 13

counter-intuitive statement, as marked points on the boundary map naturally to
the tangent bundle, rather than the cotangent bundle. However, the principal
torus bundle in question is naturally oriented from the induced orientations on the
boundaries coming from the orientation of the surface. This orientation is opposite
to the natural complex orientation on the tangent bundle. This is most easily seen
by studying the clockwise orientation induced on the unit circle from the standard
orientation of the plane.

Using symplectic reduction, we see that the reduced space L−1(x)/T n is sym-
plectomorphic to Mg,n(x) with the Weil-Petersson form. We may use the tech-
niques of the Duistermaat–Heckman theorem to compare ωWP (L) to ωWP (0). The
result is

ωWP (L) = ωWP (0) − 1

2

∑
L2

i Curv(Li),

where Curv(Li) is the curvature of the bundle. Since c1(Li) = −Curv(Li) we get

ωWP (L) = ωWP (0) +
1

2

∑
L2

iψi.

2.6. A rational recursion relation. Using Wolpert’s equivalence κ1 = ωWP

2π2 we
define the rational volume of Mg,n(L) to be

vg,n(L)
def
=

Volg,n(2πL)

2dπ2d
d = 3g − 3 + n

=
1

d!

∫

Mg,n

(κ1 +
∑

L2
iψi)

d

=
∑

d0+···+dn

=d

n∏

i=0

1

di!

〈
κd0

1

∏
τdi

〉
g,n

∞∏

i=1

L2di

i .

We reformulate Mirzakhani’s recursion relation for Volg,n into a recursion relation
for vg,n. Making the above change of variables to the recursion relation gives

vg,n(L) =
2

L1

∫ L1

0

∫ ∞

0

∫ ∞

0

xyK(x+ y, t)vg−1,n+1(x, y,L1̂)dxdydt

+
2

L1

∑

g1+g2=g
I

‘
J={2,...,n}

∫ L1

0

∫ ∞

0

∫ ∞

0

xyK(x+ y, t)

× vg1,n1(x,LI)vg2,n2(y,LJ )dxdydt

+
1

L1

n∑

j=2

∫ L1

0

∫ ∞

0

x (K(x, t+ Lj) +K(x, t− Lj))

× vg,n−1(x,L{c1,j})dxdt,

with normalizations v0,3(L) = 1 and v1,1(L) = 1
24 (1 + L2).

The integral kernel K(x, t) is defined as

K(x, t) =
1

1 + eπ(x+t)
+

1

1 + eπ(x−t)
,

which gives the following integral identities:

h2k+1(t)
def
=

∫ ∞

0

x2k+1

(2k + 1)!
K(x, t)dx(2.2)
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=

k+1∑

m=0

(−1)m−1(22m − 2)
B2m

(2m)!

t2k+2−2m

(2k + 2 − 2m)!
,

h2i+2j+3(t) =

∫ ∞

0

∫ ∞

0

x2i+1y2j+1

(2i+ 1)!(2j + 1)!
K(x+ y, t)dxdy.(2.3)

Note that B2m is the 2m-th Bernoulli number.

3. From Mirzakhani’s Recursion Relation to the Virasoro Algebra

Our aim is to show that the Mirzakhani recursion relations are equivalent to an
algebraic constraint on the generating function for κ1 and ψ class intersections. We
introduce the formal generating function for all κ1 and ψ class intersections

G(s, t0, t1, t2, . . .)
def
=

∑

g

〈
esκ1+

P
tiτi

〉
g

=
∑

g

∑

m,{ni}

〈
κm

1 τ
n0
0 τn1

1 · · ·
〉

g

sm

m!

∞∏

i=0

tni

i

ni!
.

The main result of the paper is the following.

Theorem 3.1. There exist a sequence of differential operators V−1, V0, V1, . . . sat-

isfying Virasoro relations

[Vn, Vm] = (n−m)Vn+m

and annihilating exp(G):

Vk exp(G) = 0 for k = −1, 0, 1, . . .

This property uniquely fixes G and enables one to calculate all coefficients of the

expansion.

The proof is obtained by differentiating Mirzakhani’s recursion relation. For
reference, we note that

(3.1)
∂2k1

∂L2k1
1

· · · ∂
2kn

∂L2kn
n

vg,n(L)

=
∑

d0+···+dn=d
di≥ki

1

d0!

n∏

i=1

(
(2di)!

di!(2(di − ki))!
L

2(di−ki)
i

) 〈
κd0

1 τd1 · · · τdn

〉
g
,

and

(3.2)
∂2k1

∂L2k1
1

· · · ∂
2kn

∂L2kn
n

vg,n(0) =
1

k0!

n∏

i=1

(
(2ki)!

ki!

) 〈
κk0

1 τk1 · · · τkn

〉
,

where k0 = 3g − 3 + n−
∑n

i=1 ki.
The recursion relation gives the following identity for (g, n) 6= (0, 3), (1, 1).

∂2k1

∂L2k1
1

· · · ∂
2kn

∂L2kn
n

vg,n(0)

=
∂2k1

∂L2k1
1

2

L1

∫ L1

0

∫ ∞

0

∫ ∞

0

xyK(x+ y, t)
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× ∂2k2

∂L2k2
2

· · · ∂
2kn

∂L2kn
n

vg−1,n+1(x, y,L1̂)dxdydt
∣∣∣
L=0

+
∂2k1

∂L2k1
1

2

L1

∑

g1+g2=g
I

‘
J

∫ L1

0

∫ ∞

0

∫ ∞

0

xyK(x+ y, t)

× ∂2k(I)

∂L
2k(I)
I

vg1,n1(x,LI)
∂2k(J )

∂L
2k(J )
J

vg2,n2(x,LJ )dxdydt
∣∣∣
L=0

+

n∑

j=2

∂2(k1+kj)

∂L2k1
1 ∂L

2kj

j

1

L1

∫ L1

0

∫ ∞

0

x(K(x, t+ Lj) +K(x, t− Lj))

× ∂2k(c1,j)

∂L
2k(c1,j)
c1,j

vg,n−1(x,Lc1,j)dxdt
∣∣∣
L=0

.

Plugging in the expressions for derivatives of volume functions (3.1), (3.2) and
integrating against the kernel function using (2.2) and (2.3) gives

1

k0!

n∏

i=1

(2ki)!

ki!

〈
κk0

1 τk1 · · · τkn

〉

=
∑

d0+d1+d2
=k0+k1−2

(2d1 + 1)!(2d2 + 1)!

d0!d1!d2!

n∏

i=2

(2ki)!

ki!

〈
κd0

1 τd1τd2τ k(1̂)

〉
g−1,n+1

× ∂2k1

∂L2k1
1

2

L1

∫ L1

0

h2(d1+d2)+3(t)dt
∣∣∣
L1=0

+
∑

g1+g2=g
I

‘
J

∑

d0+d1=3g1−3
+n1−k(I)

d
′

0+d
′

1=3g2−3
+n2−k(J )

(2d1 + 1)!(2d
′

1 + 1)!

d0!d1!d
′

0!d
′

1!

n∏

i=2

(2ki)!

ki!

〈
κd0

1 τd1τ k(I)

〉
g1,n1

×
〈
κ

d
′

0
1 τd′

1
τ k(J )

〉
g2,n2

∂2k1

∂L2k1
1

2

L1

∫ L1

0

h2(d1+d
′
1)+3(t)dt

∣∣∣
L1=0

+

n∑

j=2

∑

d0+d1=
k0+k1+kj−1

(2d1 + 1)!

d0!d1!

∏

i6=1,j

(2ki)!

ki!

〈
κd0

1 τd1τ k(c1,j)

〉
g,n−1

× ∂2k1

∂L2k1
1

2

L1

∫ L1

0

h
(2kj)
2d1+1(t)dt

∣∣∣
L1=0

.

We rewrite this sum by introducing the sequence of nonnegative integers {n0,
n1, n2, . . .} such that nj = # |{ki | i 6= 1, ki = j}|, and relabel k1 = k. In other
words, we have

〈
κk0

1 τk1 · · · τkn

〉
g

=
〈
κk0

1 τkτ
n0
0 τn1

1 · · ·
〉

g
.
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We further define

(3.3) βi = (−1)i−12i(22i − 2)
B2i

(2i)!
,

which results in the equation

(3.4) (2k + 1)!!
〈
κk0

1 τk

∞∏

i=0

τni

i

〉
g

=
1

2

∑

d0+d1+d2=
k0+k−2

k0!

d0!
β(k0−d0)(2d1 + 1)!(2d2 + 1)!

〈
κd0

1 τd1τd2

∞∏

i=0

τni

i

〉
g−1,n+1

+
1

2

∑

g1+g2=g
{li}+{mi}={ni}

∑

d0+d1=3g1−3
+n1−k(I)

d
′

0+d
′

1=3g2−3
+n2−k(J )

k0!

d0!d
′

0!
β(k0−d0−d

′
0)

(2d1 + 1)!(2d
′

1 + 1)!

×
∞∏

i=0

ni!

li!mi!

〈
κd0

1 τd1

∏
τ li
i

〉
g1

〈
κ

d
′

0
1 τd′

1

∏
τmi

i

〉
g2

+

∞∑

j=0

∑

d0+d1=
k0+k+j−1

k0!

d0!
β(k0−d0)

(2d1 + 1)!

(2j − 1)!
nj

〈
κd0

1 τd1τ
−1
j

∏
τni

i

〉
g
.

By looking at expressions of the form

∂G

∂ti
=

∑

g

∑

m,{ni}

〈
κm

1 τiτ
n0
0 τn1

1 · · ·
〉

g

sm

m!

∞∏

i=0

tni

i

ni!
,

sitj
∂G

∂tk
=

∑

g

∑

m,{ni}

m!

(m− i)!
nj

〈
κm−i

1 τ−1
j τkτ

n0
0 τn1

1 · · ·
〉

g

sm

m!

∞∏

i=0

tni

i

ni!
,

si ∂2G

∂tj∂tk
=

∑

g

∑

m,{ni}

m!

(m− i)!

〈
κm−i

1 τjτkτ
n0
0 τn1

1 · · ·
〉

g

sm

m!

∞∏

i=0

tni

i

ni!
,

si ∂G

∂tj

∂G

∂tk
=

∑

g
m,{ni}

∑

g1+g2=g
d1+d2=m−i

{ki}+{li}={ni}

m!

d1!d2!

〈
κd1

1 τjτ
k0
0 · · ·

〉
g1

〈
κd2

1 τkτ
l0
0 · · ·

〉
g2

sm

m!

∞∏

i=0

tni

i

ni!
,

we see that (3.4) leads to the following expression for all k > 0:

(2k + 3)!!
∂

∂tk+1
G =

∞∑

i,j=0

(2(i+ j + k) + 1)!!

(2j − 1)!!
βis

itj
∂

∂ti+j+k
G

+
1

2

∞∑

i=0

∑

d1+d2=
i+k−1

(2d1 + 1)!!(2d2 + 1)!!βis
i

(
∂2G

∂td1∂td2

+
∂G

∂td1

∂G

∂td2

)
.

Note that similar expressions are possible for k = −1, 0 by taking special care of the
base cases (g, n) = (0, 3), (1, 1). We introduce the family of differential operators
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for k ≥ −1

V̂k = − (2k + 3)!!

2

∂

∂tk+1
+ δk,−1(

t20
4

+
s

48
) +

δk,0

48

+
1

2

∞∑

i,j=0

(2(i+ j + k) + 1)!!

(2j − 1)!!
βis

itj
∂

∂ti+j+k

+
1

4

∞∑

i=0

∑

d1+d2=
i+k−1

(2d1 + 1)!!(2d2 + 1)!!βis
i ∂2

∂td1∂td2

.

We have proven the following statement.

Theorem 3.2. For k ≥ −1

V̂k exp(G) = 0.

A reasonable question is: what is the algebra spanned by the operators V̂k? The
answer is that they span a subalgebra of the Virasoro algebra. One can check
directly that the operators satisfy the relations

[V̂n, V̂m] = (n−m)

∞∑

i=0

βis
iV̂n+m+i.

On the surface, this looks to be a deformation of the Virasoro relations (setting
s = 0 recovers Virasoro). However, this is, in fact, a simple reparametrization
of the representation. These statements can all be proved by direct calculations.
Here we make some simplifications. Let us introduce new variables {T2j+1}j=0,1,...

defined by

T2i+1 =
ti

(2i+ 1)!!
,

which transform the operators V̂k into

V̂k = −1

2

∂

∂T2k+3
+ δk,−1(

t20
4

+
s

48
) +

δk,0

16

+
1

2

∞∑

i,j=0

(2j + 1)βis
iT2j+1

∂

∂T2(i+j+k)+1

+
1

4

∞∑

i=0

∑

d1+d2=
i+k−1

βis
i ∂2

∂T2d1+1∂T2d2+1
.

This admits the following ‘boson’ representation, similar to that used by Kac and
Schwarz [11]. Define operators Jp for p ∈ Z by

Jp =

{
(−p)T−p if p < 0,

∂
∂Tp

if p > 0.

Then

V̂k = −1

2
J2k+3 +

∞∑

i=0

βis
iEk+i,



18 MOTOHICO MULASE AND BRAD SAFNUK

where

Ek =
1

4

∑

p∈Z

J2p+1J2(k−p)−1 +
δk,0

16
.

To recover operators satisfying the Virasoro constraint we need a better handle on
the constants βi, as defined by (3.3). Starting from the defining formula for the
Bernoulli numbers

∞∑

n=0

B2n

(2n)!
z2n =

z

2

ez/2 + e−z/2

ez/2 − e−z/2
,

we see that

∞∑

i=0

βis
i =

√
2s(cot

√
s/2 − cot

√
2s)

=

√
2s

sin
√

2s
.

This motivates the definition of the constants αi by the series

∞∑

i=0

αis
i =

sin
√

2s√
2s

,

from which we obtain the operators

Vk
def
=

∞∑

i=0

αis
iV̂k+i

= −1

2

∞∑

i=0

αis
iJ2k+3 + Ek.(3.5)

We are now ready to prove the following.

Proposition 3.3. The operators Vk, k ≥ −1 satisfy the Virasoro relations

[Vn, Vm] = (n−m)Vn+m.

Proof. The first step is to verify that operators Ek satisfy the Virasoro relations,
which is a straightforward calculation. Since [J2k+3, Em] = (2k + 3)J2(k+m)+3 we
see that

[Vn, Vm] =

[
−1

2

∞∑

i=0

αis
iJ2(n+i)+3 + En,−

1

2

∞∑

j=0

αis
iJ2(m+j)+3 + Em

]

= −1

2

∞∑

i=0

αis
i

([
J2(n+i)+3, Em

]
+

[
En, J2(m+i)+3

])

= (n−m)Vn+m.

�
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4. Relationship to KdV hierarchy

The Witten-Kontsevich theorem [23, 15] states that the generating function for
ψ class intersections

F (t0, t1, . . .) =
∑

g

〈
e

P
τiti

〉
g

=
∑

g

∑

{n∗}

〈∏
τni

i

〉
g

∏ tni

i

ni!

is a τ -function for the KdV hierarchy. The property of being a τ function, combined
with the string equation

〈
τ0

n∏

i=1

τdi

〉
g

=
n∑

j=1

〈 n∏

i=1

τdi−δij

〉
g
,

completely determines the function F . Another way of determining F is the Vira-
soro constraint condition. Let us define the sequence of operators Lk for k ≥ −1:

(4.1) Lk = − (2k + 3)!!

2

∂

∂tk+1
+

1

2

∞∑

j=0

(2(j + k) + 1)!!

(2j − 1)!!
tj

∂

∂tj+k

+
1

4

∑

d1+d2=k−1
d1,d2≥0

(2d1 + 1)!!(2d2 + 1)!!
∂2

∂td1∂td2

+
δk,−1t

2
0

4
+
δk,0

48
.

The Witten-Kontesevich theorem, together with the string equation, implies

Lk(expF ) = 0

for k ≥ −1. This property is also sufficient to uniquely fix F . Note that L−1e
F = 0

is equivalent to the string equation. The consistency of the infinite set of differential
equations follows from the fact that operators Ln satisfy the Virasoro relations:

[Ln, Lm] = (n−m)Ln+m.

Recall the operators Vk defined in equation 3.5 (rewritten in terms of the variables
ti)

Vk = −1

2

∞∑

i=0

(2(i+ k) + 3)!!αis
i ∂

∂ti+k+1
+

1

2

∞∑

j=0

(2(j + k) + 1)!!

(2j − 1)!!
tj

∂

∂tj+k

+
1

4

∑

d1+d2=k−1
d1,d2≥0

(2d1 + 1)!!(2d2 + 1)!!
∂2

∂td1∂td2

+
δk,−1t

2
0

4
+
δk,0

48
,

where αi = (−2)i

(2i+1)! . The change of variables

t̃i =

{
ti for i = 0, 1 ,

ti − (2i− 1)!!αi−1s
i−1 otherwise,

transforms the operators Vk into

Vk = −1

2
(2k + 3)!!

∂

∂t̃k+1

+
1

2

∞∑

j=0

(2(j + k) + 1)!!

(2j − 1)!!
t̃j

∂

∂t̃j+k
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+
1

4

∑

d1+d2=k−1
d1,d2≥0

(2d1 + 1)!!(2d2 + 1)!!
∂2

∂t̃d1∂t̃d2

+
δk,−1t̃

2
0

4
+
δk,0

48
.

But these are precisely the operators Lk (4.1). We have thus proven the following.

Theorem 4.1.

G(s, t0, t1, . . .) = F (t0, t1, t2 + γ2, t3 + γ3, . . .),

where γi = (−1)i

(2i+1)i!s
i−1. In particular, for any fixed value of s, G is a τ function

for the KdV hierarchy.

That the more general generating function G is expressible in terms of F is not a
surprise. It has been known since at least the work of Witten [23] that intersections
involving κ classes are expressible in terms of ψ classes. Moreover, Faber’s formula
[7] for this correspondence gives an explicit proof of the above theorem. In fact,
one has

κn
1 =

∑

σ∈Sn

(σ=γ1···γk

is cycle decomp)

(−1)n−k

∏k
i=1(|γi| − 1)!

π{q1,...qk}∗
(ψ|γ1|+1

q1
· · ·ψ|γk|+1

qk
),

which gives a short, direct proof of Theorem 4.1. This is essentially the approach
taken by Zograf [26] for his calculation of the Weil-Petersson volumes of Mg,n.
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