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Abstract. The asymptotic expansion of a Hermitian matrix integral known as the

Penner model is rigorously calculated.

1. Introduction.

The purpose of this paper is to establish an asymptotic analysis of a Hermitian
matrix integral known as the Penner model, and to calculate its asymptotic ex-
pansion. It was proved by Penner [7] that this asymptotic series gives the orbifold
Euler characteristic of the moduli spaces of pointed algebraic curves. The formula
he obtained is in agreement with the result of Harer and Zagier [2].

Both Harer-Zagier [2] and Penner [7] use a Hermitian matrix integral to compute
the Euler characteristic χ(Mg,s) of the moduli space Mg,s of stable algebraic curves
of genus g with s smooth marked points. Among the two, Penner’s method is
conceptually easier to understand. He computes the asymptotic expansion of the
Hermitian matrix integral in two different ways: one by using the Feynman diagram
expansion, and the other by direct computation using analytic continuation. Since
the asymptotic expansion is unique, the two methods should give the same answer.
Penner [7] established, based on the work of ’t Hooft [8] and Bessis-Itzykson-Zuber
[1], that the Feynman diagram expansion of the matrix integral gives a generating
function of χ(Mg,s) for g ≥ 0 and s > 0 with 2− 2g− s < 0. He then computed the
matrix integral by using analytic continuation and obtained the expression of the
rational numbers χ(Mg,s) in terms of the special value ζ(1 − 2g) of the Riemann
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zeta-function. However, the formula he suggested to compute the matrix integral
does not seem to hold in the holomorphic category.

We show in this paper that Penner’s formula is true in the asymptotic category,
which is sufficient to give the asymptotic expansion of the Penner model. Once we
establish a rigorous asymptotic analysis, Penner’s method of computation of the
Euler characteristic works without any major modification.

The contribution of this paper is Theorem 4.2, which replaces a corresponding
analytic statement found in Penner’s paper. The formula we establish does not
hold in the analytic category. With this Theorem, computation of the asymptotic
expansion of the Penner model becomes more straightforward and easier.

2. The Feynman diagram expansion of the Hermitian matrix integral.

Let us begin with recalling the asymptotic expansion of a holomorphic function.
Let Ω be an open domain of the complex plane C having the origin 0 on its boundary,
and let h(z) be a holomorphic function defined on Ω. A formal power series

(2.1)
∞∑

ν=0

aνzν

is said to be an asymptotic expansion of h(z) on Ω at z = 0 if

(2.2) lim
z→0
z∈Ω

h(z)−
∑m

ν=0 aνzν

zm+1
= am+1

holds for all m ≥ 0. The above formula shows that if h(z) admits an asymptotic
expansion, then it is unique. However, one cannot recover the original holomorphic
function from its asymptotic expansion. A simple example is e−1/z defined on the
left-half plane {z ∈ C | Re(z) < 0}, whose asymptotic expansion at the origin is the
0-series. Sometimes this fact works positively: we will use it to simplify the matrix
integral in Section 4. Since the asymptotic expansion of a holomorphic function is
not equal to the original function, we use the following notation to indicate that
(2.1) is the asymptotic expansion of a holomorphic function h(z):

A
(
h(z)

)
=
∞∑

ν=0

aνzν .

If two holomorphic functions h(z) and f(z) defined on Ω have the same asymptotic
expansion at z = 0, we use the notation

h(z)
A≡ f(z) .
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Thus 0
A≡ e−1/z at z = 0 as holomorphic functions defined on the left-half plane.

The asymptotic expansion also applies to real analytic functions. For example, if
K is the positive real axis and h(z) is a real analytic function on K, then the same
formula (2.2) defines the asymptotic expansion of h(z) at z = 0.

The matrix integral we deal with in this paper is the following:

(2.3) Zn(t, m) =
∫
Hn

exp
(
− 1

2
trace(X2)

)
exp

trace
2m∑
j=3

tj
j

Xj

 dX ,

where Hn is the space of all n × n Hermitian matrices, and dX denotes the usual
Lebesgue measure of Hn as a real vector space of dimension n2. We note that
Zn(t, m) is a holomorphic function for all values of (t3, t4, · · · , t2m−1) ∈ C2m−3 and
t2m satisfying that Re(t2m) < 0. We can expand Zn(t, m) as a convergent power
series in t3, t4, · · · , t2m−1 about 0, and as an asymptotic series in t2m as t2m → 0
with Re(t2m) < 0.

It is a well established theorem ([1], [3], [7], [8], and [9]) that the Feynman
diagram technique gives the asymptotic expansion

(2.4) logA
(

Zn(t,m)
Zn(0)

)
=

∑
g≥0, s>0

2−2g−s<0


∑

connected ribbon graph Γ
with valency 3, 4, ··· , 2m,
χ(Γ)=2−2g−s, s(Γ)=s

ns

#Aut(Γ)
·

2m∏
j=3

t
vj(Γ)
j


with respect to t2m, as t2m → 0 with Re(t2m) < 0, where a ribbon graph (or
fatgraph) Γ is a 1-dimensional CW -complex with cyclic ordering of edges at each
vertex, χ(Γ) the Euler characteristic of the graph Γ, s(Γ) the number of closed
loops in Γ, Aut(Γ) the automorphism group of the ribbon graph, vj(Γ) the number
of j-valent vertices of Γ, and

Zn(0) =
∫
Hn

exp
(
− 1

2
trace(X2)

)
dX .

Let v(Γ) and e(Γ) be the total number of vertices and edges of the graph Γ, respec-
tively. Then

(2.5)


χ(Γ) = v(Γ)− e(Γ)
v(Γ) = v3(Γ) + v4(Γ) + · · ·+ v2m(Γ)
e(Γ) = 1

2

(
3 · v3(Γ) + 4 · v4(Γ) + · · ·+ 2m · v2m(Γ)

)
,

because Γ has valency in between 3 and 2m. Thus for every fixed g and s, the
second summation of (2.4) is a finite sum. It shows that the right-hand-side of (2.4)
is an element of the formal power series ring

C[[t3, t4, · · · , t2m]].
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Let us define the formal power series ring of infinitely many variables C[[t3, t4, t5, · · · ]].
The adic topology of this ring is given by the degree

deg tj = j, j ≥ 3
and the ideal Ij of C[[t3, t4, t5, · · · ]] generated by all the homogeneous polynomials
of degree j. We have a natural projection

πj : C[[t3, t4, t5, · · · ]] −→ C[[t3, t4, t5, · · · ]]
/
Ij .

For each fixed j, the projection image

πj

(
logA

(
Zn(t, m)
Zn(0)

))
∈ C[[t3, t4, t5, · · · ]]

/
Ij

is stable for all 2m ≥ j. Since
C[[t3, t4, t5, · · · ]] = lim←−

j

C[[t3, t4, t5, · · · ]]
/
Ij

and

(2.6)
{

π2m

(
logA

(
Zn(t,m)
Zn(0)

))}
m≥2

defines an element of the projective system, it gives a formal power series in infinitely
many variables. We denote the above element (2.6) symbolically by

(2.7) lim
m→∞

logA
(

Zn(t, m)
Zn(0)

)
,

which is a well-defined formal power series in infinitely many variables.
Going back to the Feynman diagram expansion (2.4), we have an equality

(2.8)

lim
m→∞

logA
(

Zn(t, m)
Zn(0)

)
=

∑
g≥0, s>0

2−2g−s<0


∑

connected ribbon graph Γ
with valency ≥3 and
χ(Γ)=2−2g−s, s(Γ)=s

ns

#Aut(Γ)
·
∏
j≥3

t
vj(Γ)
j


as a well-defined element of C[[t3, t4, t5, · · · ]]. For each fixed g and s, the maximum
possible valency of the graphs in the second summation is 4g + 2s− 2. To see this,
let Γ be a graph with the largest possible valency `. Since the Euler characteristic
of Γ is given by 2 − 2g − s = v(Γ) − e(Γ), the valency becomes maximum when Γ
has only one vertex. Thus

2− 2g − s = 1− 1
2

` .

This shows that the right-hand-side of (2.8) does not have any infinite products.
Another interesting fact about the Hermitian matrix integral (2.3) is that it is

a solution to the KP equations. We refer to [5] and [6] for more detail about this
topic.
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3. The Penner model.

Following Penner, let us make a substitution

(3.1) tj = −
(√

z
)j−2

, j = 3, 4, 5, · · ·

in (2.3), where
√

z is defined for Re(z) > 0. The condition Re(t2m) < 0 for t2m

translates into the condition Re(zm−1) > 0, which is satisfied if

(3.2) | arg(z)| < π

2m− 2

holds. Thus we have a holomorphic function
(3.3)

Pn(z,m) =
1

Zn(0)

∫
Hn

exp
(
− 1

2
trace(X2)

)
exp

− 2m∑
j=3

(
√

z)j−2

j
trace(Xj)

 dX

=
1

Zn(0)

∫
Hn

exp

− 2m∑
j=2

(
√

z)j−2

j
trace(Xj)

 dX

defined on the region of the complex plane determined by (3.2). Its asymptotic
expansion at z = 0 can be calculated by making the same substitution (3.1) in
(2.4):
(3.4)

logA (Pn(z,m)) =
∑

g≥0, s>0
2−2g−s<0


∑

connected ribbon graph Γ
with valency 3, 4, ··· , 2m,
χ(Γ)=2−2g−s, s(Γ)=s

(−1)e(Γ)

#Aut(Γ)

ns · (−z)2g+s−2 ,

where we used (2.5) to compute

2m∏
j=3

(
− (

√
z)j−2

)vj(Γ)

= (−1)
∑2m

j=3 vj(Γ) · z
1
2

∑2m
j=3 jvj(Γ)−

∑2m
j=3 vj(Γ)

= (−1)v(Γ)ze(Γ)−v(Γ)

= (−1)e(Γ)(−z)−χ(Γ) .

Note that the right-hand-side of (3.4) is a well-defined element of
(
C[n]

)
[[z]]. For

every ν > 0, the terms of logA (Pn(z,m)) of degree less than or equal to ν with
respect to z are stable for all m ≥ ν + 1. Again by the same argument we used in
Section 2, we can define an element

lim
m→∞

logA (Pn(z,m)) ∈
(
C[n]

)
[[z]] .
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Thus we have an equality

(3.5)

lim
m→∞

logA

 1
Zn(0)

∫
Hn

exp

− 2m∑
j=2

(
√

z)j−2

j
trace(Xj)

 dX



=
∑

g≥0, s>0
2−2g−s<0


∑

connected ribbon graph Γ
with valency ≥3,

χ(Γ)=2−2g−s, s(Γ)=s

(−1)e(Γ)

#Aut(Γ)

ns · (−z)2g+s−2

as a well-defined element of
(
C[n]

)
[[z]]. It has been established in [7] that

χ
(
Mg,s

)
= (−1)s ·

∑
connected ribbon graph Γ

with valency ≥3,
χ(Γ)=2−2g−s, s(Γ)=s

(−1)e(Γ)

#Aut(Γ)

for g ≥ 0 and s > 0 such that 2−2g−s < 0, where Mg,s is the moduli space of stable
algebraic curves with (unordered) s marked nonsingular points specified. Therefore,
the formal power series limm→∞ logA (Pn(z,m)) in n and z gives a generating
function of the orbifold Euler characteristic of the moduli spaces of pointed algebraic
curves.

4. The asymptotic analysis.

Let us now compute limm→∞ logA (Pn(z,m)). The standard analytic technique
to compute the Hermitian matrix integrals (2.3) and (3.3) is the following formula:

Formula 4.1. [1], [2], [4]. Let f(X) be a function on X ∈ Hn which is invariant
under the conjugation by a unitary matrix U ∈ U(n):

f(X) = f(U−1 ·X · U) = f(k0, k1, · · · , kn−1) ,

where k0, k1, · · · , kn−1 are the eigenvalues of the Hermitian matrix X. If f(X) is
integrable on Hn with respect to the measure dX, then∫

Hn

f(X)dX = c(n) ·
∫

Rn

f(k0, k1, · · · , kn−1)∆(k)2dk0dk1 · · · dkn−1 ,

where

c(n) =
πn(n−1)/2

n! · (n− 1)! · · · 2! · 1!
,
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and
∆(k) = ∆(k0, k1, · · · , kn−1) =

∏
i>j

(ki − kj) = det
(
kj

i

)
is the Vandermonde determinant.

Thus we have

Pn(z,m) =
c(n)

Zn(0)

∫
Rn

∆(k)2
n−1∏
i=0

exp

− 2m∑
j=2

(
√

z)j−2

j
kj

i

 dki

 .

The following is our main result.

Theorem 4.2. Let Iν = zν · C[[z]] denote the ideal of C[[z]] generated by zν , and

πν : C[[z]] −→ C[[z]]
/
Iν

the natural projection. For a polynomial p(k) ∈ C[k], consider the following two
asymptotic series:

a(z,m) = A

∫ ∞
−∞

p(k) · exp

− 2m∑
j=2

(
√

z)j−2

j
kj

 dk

 ∈ C[[z]]

as z → +0 with |arg(z)| < π
2m−2 , and

b(z) = A
(√

z(ez)1/z

∫ ∞
0

p

(
1− zx√

z

)
· x1/z · e−x · dx

)
∈ C[[z]]

as z → +0 with z > 0. Then for every m > 2, we have

πm

(
a(z,m)

)
= πm

(
b(z)

)
as an element of C[[z]]

/
Im. In other words,

lim
m→∞

A

∫ ∞
−∞

p(k) · exp

− 2m∑
j=2

(
√

z)j−2

j
kj

 dk


= A

(√
z(ez)1/z

∫ ∞
0

p

(
1− zx√

z

)
· x1/z · e−x · dx

)
holds with respect to the Im-adic topology of C[[z]].
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Proof. Putting y =
√

z k, we have∫ ∞
−∞

p(k) · exp

− 2m∑
j=2

(
√

z)j−2

j
kj

 dk =
1√
z

∫ ∞
−∞

p

(
y√
z

)
· exp

−1
z

2m∑
j=2

yj

j

 dy

=
∫ ∞
−∞

dν(y, m) ,

where

dν(y, m) =
1√
z
· p
(

y√
z

)
· exp

−1
z

2m∑
j=2

yj

j

 dy .

Let us decompose the integral into three pieces:

(4.3)
∫ ∞
−∞

dν(y, m) =
∫ −1

−∞
dν(y, m) +

∫ 1

−1

dν(y, m) +
∫ ∞

1

dν(y, m) .

Note that the polynomial
2m∑
j=2

yj

j

of degree 2m takes positive values on the intervals (−∞,−1] and [1,∞). Since
p(k) is a polynomial, it is obvious that the asymptotic expansion of the first and
the third integrals of the right-hand-side of (4.3) for z → +0 with z > 0 are the
0-series. Therefore, we have∫ ∞

−∞
dν(y, m)

A≡
∫ 1

−1

dν(y, m) .

On the interval [−1, 1], if we fix a z such that | arg(z)| < π, then the convergence

lim
m→∞

exp

−1
z

2m∑
j=2

yj

j

 = (1− y)1/z · ey/z

is absolute and uniform with respect to y. Therefore, in a new variable t = 1 − y,
we have

lim
m→∞

∫ 1

−1

dν(y, m) =
1√
z

∫ 1

−1

p

(
y√
z

)
(1− y)1/z ey/z dy

=
1√
z

e1/z

∫ 2

0

p

(
1− t√

z

)
t1/z e−t/z dt

=
1√
z

e1/z

∫ ∞
0

p

(
1− t√

z

)
t1/z e−t/z dt

− 1√
z

e1/z

∫ ∞
2

p

(
1− t√

z

)
t1/z e−t/z dt .
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This last integral is

1√
z

e1/z

∫ ∞
2

p

(
1− t√

z

)
t1/z e−t/z dt =

1√
z

∫ ∞
2

p

(
1− t√

z

)
e(1+log t−t)/z dt .

Since 1+log t− t < 0 for t ≥ 2, the asymptotic expansion of this integral as z → +0
with z > 0 is the 0-series. Therefore, since the integrals do not depend on the
integration variables, we have

lim
m→∞

A

∫ ∞
−∞

p(k) · exp

− 2m∑
j=2

(
√

z)j−2

j
kj

 dk


= A

(
1√
z

e1/z

∫ ∞
0

p

(
1− t√

z

)
t1/z e−t/z dt

)
= A

(√
z e1/z z1/z

∫ ∞
0

p

(
1− zx√

z

)
x1/z e−x dx

)
as a formal power series in z. This completes the proof of Theorem.

By applying Theorem 4.2 for each ki, we obtain

(4.4)

lim
m→∞

A

∫
Rn

∆(k)2 ·
n−1∏
i=0

exp

− 2m∑
j=2

(
√

z)j−2

j
kj

i

 dki


= A

((√
z e1/z z1/z

)n
∫ ∞

0

· · ·
∫ ∞

0

∆
(

1− zx√
z

)2

·
n−1∏
i=0

x
1/z
i e−xi dxi

)

= A

((√
z e1/z z1/z

)n

z
n(n−1)

2

∫ ∞
0

· · ·
∫ ∞

0

∆(x)2 ·
n−1∏
i=0

x
1/z
i e−xi dxi

)
.

We can use the standard technique of orthogonal polynomials for the above integral.
Let pj(x) be a monic orthogonal polynomial in x of degree j with respect to the
measure

dµ(x) = x1/ze−xdx

defined on K = (0,∞] for a positive z > 0:∫
K

pi(x)pj(x)dµ(x) = δij ‖ pj(x) ‖2 .

Because of the multilinearity of the determinant, we have

∆(x) = det
(
xj

i

)
= det (pj(xi)) .
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Therefore,
(4.5)∫

Kn

∆(x)2dµ(x0) · · · dµ(xn−1) =
∫

Kn

det (pj(xi)) det (pj(xi)dµ(xi))

=
∫

Kn

∑
σ∈Sn

∑
τ∈Sn

n−1∏
i=0

pσ(i)(xi)
n−1∏
i=0

pτ(i)(xi)dµ(xi)

=
∑

σ∈Sn

∑
τ∈Sn

n−1∏
i=0

∫
K

pσ(i)(x)pτ(i)(x)dµ(x)

=
∑

σ∈Sn

n−1∏
i=0

∫
K

pσ(i)(x)pσ(i)(x)dµ(x)

= n!
n−1∏
i=0

‖ pi(x) ‖2 .

For a real number z > 0, the Laguerre polynomial

L1/z
m (x) =

m∑
j=0

(
m + 1/z

m− j

)
(−1)j

j!
xj =

(−1)m

m!
xm + · · ·

of degree m satisfies the orthogonality condition

(4.6)
∫ ∞

0

L
1/z
i (x)L1/z

j (x)e−xx1/z = δij
(j + 1/z)!

j!
.

Thus we can use

(4.7) pi(x) = (−1)i · i! · L1/z
i (x)

for the computation. From (4.4)–(4.7), we have

(4.8)

lim
m→∞

A

∫
Rn

∆(k)2 ·
n−1∏
i=0

exp

− 2m∑
j=2

(
√

z)j−2

j
kj

i

 dki


= A

((√
z e1/z z1/z

)n

z
n(n−1)

2 n!
n−1∏
i=0

i! ·
(

i +
1
z

)
!

)

= A

(
(ez)

n
z · z n2

2 · n!
n−1∏
i=0

i! ·
(
−1 +

1
z

)
! ·
(

i +
1
z

)n−i
)

.
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Applying Formula 4.1 and (4.8) to (3.5), we conclude
(4.9)

lim
m→∞

logA

 1
Zn(0)

∫
Hn

exp

− 2m∑
j=2

(
√

z)j−2

j
trace(Xj)

 dX


= logA

(
1

Zn(0)
· π

n(n−1)
2 · (ez)

n
z · z n2

2 ·
n−1∏
i=0

(
−1 +

1
z

)
! ·
(

i +
1
z

)n−i
)

= logA

(
1

Zn(0)
· π

n(n−1)
2 · (ez)

n
z · z n2

2 ·
(

Γ
(

1
z

))n

·
n−1∏
i=0

(
i +

1
z

)n−i
)

= const +
n

z
+

n

z
log z +

n2

2
log z + n logA

(
Γ
(

1
z

))
+

n−1∑
i=0

(n− i) log
1 + iz

z

= const +
n

z
+

n

z
log z − n

2
log z + n logA

(
Γ
(

1
z

))
+
∞∑

r=1

(−1)r−1

r

(
n−1∑
i=0

(n− i)ir
)

zr.

Let us recall Stirling’s formula:

(4.10) logA
(

Γ
(

1
z

))
= −1

z
log z − 1

z
+

1
2

log z +
∞∑

r=1

b2r

2r(2r − 1)
z2r−1 + const ,

where br is the Bernoulli number defined by

x

ex − 1
=
∞∑

r=0

br

r!
xr .

We are not interested in the constant term of (4.9) because the asymptotic series
in question, (3.5), has no constant term. We can see that substitution of (4.10) in
(4.9) eliminates all the logarithmic terms as desired:

lim
m→∞

logA

 1
Zn(0)

∫
Hn

exp

− 2m∑
j=2

(
√

z)j−2

j
trace(Xj)

 dX


=
∞∑

r=1

b2r

2r(2r − 1)
· n · z2r−1 +

∞∑
r=1

(−1)r−1

r

(
n−1∑
i=0

(n− i)ir
)

zr.

Let

φr(x) =
r−1∑
q=0

(
r

q

)
bqx

r−q
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denote the Bernoulli polynomial. Then we have

n−1∑
i=1

ir =
φr+1(n)
r + 1

.

Thus for r > 0,

n−1∑
i=0

(n− i)ir =
nφr+1(n)

r + 1
− φr+2(n)

r + 2

=
r∑

q=0

1
r + 1

(
r + 1

q

)
bq · nr+2−q −

r+1∑
q=0

1
r + 2

(
r + 2

q

)
bq · nr+2−q

=
r∑

q=0

r! (1− q)
q! (r + 2− q)!

bq · nr+2−q − br+1 · n .

Therefore, we have

(4.11)

∞∑
r=1

b2r

2r(2r − 1)
· n · z2r−1 +

∞∑
r=1

(−1)r−1

r

(
n−1∑
i=0

(n− i)ir
)

zr

= −
∞∑

r=1

1
2r

b2r · n · z2r−1 +
∞∑

r=1

r∑
q=0

(−1)r (r − 1)! (q − 1)
q! (r + 2− q)!

bq · nr+2−q · zr

= −
∞∑

r=1

1
2r

b2r · n · z2r−1 +
∞∑

r=1

(−1)r−1 1
r(r + 1)(r + 2)

nr+2 · zr

+
∞∑

r=2

[r/2]∑
q=1

(−1)r (r − 1)! (2q − 1)
(2q)! (r + 2− 2q)!

b2q · nr+2−2q · zr.

It is time to switch the summation indices r and q to g and s as in (3.5). The
first sum of the third line of (4.11) is the case when we specify a single point on an
algebraic curve of arbitrary genus g = r. The second sum is for genus 0 case with
more than two points specified. So we use s = r + 2 for the number of points. In
the third sum, q = g ≥ 0 is the genus and r + 2 − 2q = s ≥ 2 is the number of
points. Thus (4.11) is equal to

(4.12)

∞∑
g=1

ζ(1− 2g) · n · z2g−1 +
∞∑

s=3

(−1)s−1 1
s(s− 1)(s− 2)

ns · zs−2

+
∞∑

g=1

∞∑
s=2

(−1)s−1 (2g + s− 3)!
(2g − 2)! s!

ζ(1− 2g) · ns · z−2+2g+s ,

12



where we used Euler’s formula

ζ(1− 2g) = −b2g

2g
,

and the fact that b0 = 1 and b2q+1 = 0 for q ≥ 1. Note that the first two summations
of (4.12) are actually the special cases of the third summation corresponding to s = 1
and g = 0. Thus we have recovered the formula due to Harer-Zagier [2] and Penner
[7]: ∑

g≥0, s>0
2−2g−s<0

(−1)s χ
(
Mg,s

)
ns · (−z)−2+2g+s

= lim
m→∞

logA

 1
Zn(0)

∫
Hn

exp

− 2m∑
j=2

(
√

z)j−2

j
trace(Xj)

 dX


= −

∑
g≥0, s>0

2−2g−s<0

(2g + s− 3)!
(2g − 2)! s!

ζ(1− 2g) · ns · (−z)−2+2g+s .
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