
THE LAPLACE TRANSFORM, MIRROR SYMMETRY, AND THE

TOPOLOGICAL RECURSION OF EYNARD-ORANTIN

MOTOHICO MULASE

Abstract. This paper is based on the author’s talk at the 2012 Workshop on Geometric Methods

in Physics held in Bia lowieża, Poland. The aim of the talk is to introduce the audience to the

Eynard-Orantin topological recursion. The formalism is originated in random matrix theory. It
has been predicted, and in some cases it has been proven, that the theory provides an effective

mechanism to calculate certain quantum invariants and a solution to enumerative geometry prob-

lems, such as open Gromov-Witten invariants of toric Calabi-Yau threefolds, single and double
Hurwitz numbers, the number of lattice points on the moduli space of smooth algebraic curves,

and quantum knot invariants. In this paper we use the Laplace transform of generalized Catalan
numbers of an arbitrary genus as an example, and present the Eynard-Orantin recursion. We

examine various aspects of the theory, such as its relations to mirror symmetry, Gromov-Witten

invariants, integrable hierarchies such as the KP equations, and the Schrödinger equations.
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1. Introduction

The purpose of this paper is to give an introduction to the Eynard-Orantin topological re-
cursion [22], by going through a simple mathematical example. Our example is constructed
from the Catalan numbers, their higher-genus analogues, and the mirror symmetry of these
numbers.

There have been exciting new developments around the Eynard-Orantin theory in the
last few years that involve various quantum topological invariants, such as single and double
Hurwitz numbers, open Gromov-Witten invariants, and quantum knot polynomials. A big
picture is being proposed, from which, for example, we can understand the relation between
the A-polynomial [11] of a knot and its colored Jones polynomials as the same as the mirror
symmetry in string theory.

From the rigorous mathematical point of view, the predictions on this subject coming
from physics are conjectural. In mathematics we need a simple example, for which we can
prove all the predicted properties, and from which we can see what is going on in a more
general context. The aim of this paper is to present such an example of the Eynard-Orantin
theory.
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The formalism of our interest is originated in the large N asymptotic analysis of the
correlation functions of resolvents of a random matrix of size N×N [3, 18]. The motivation
of Eynard and Orantin [22] is to find applications of the computational mechanism beyond
random matrix theory. Their formula takes the shape of an integral recursion equation on
a given Riemann surface Σ called the spectral curve of the theory. At that time already
Mariño was developing the idea of remodeled B-model of topological string theory on a
Riemann surface Σ in [37]. He noticed the geometric significance of [22], and formulated a
precise theory of remodeling B-model with Bouchard, Klemm, and Pasquetti in [7]. This
work immediately attracted the attention of the mathematics community. The currently
accepted picture is that the remodeled B-model defines symmetric differential forms on
Σ via the Eynard-Orantin recursion, and that these differentials forms are the Laplace
transform of the quantum topological invariants that appear on the A-model side of the
story. In this context the Laplace transform plays the role of the mirror symmetry.

This picture tells us that once we identify the spectral curve Σ, we can calculate the
quantum topological invariants in terms of complex analysis on Σ. The effectiveness of this
mechanism has been mathematically proven for single Hurwitz numbers [21, 45], orbifold
(or double) Hurwitz numbers [6], enumeration of the lattice points of Mg,n [10, 47, 48],
the Poincaré polynomials ofMg,n [41], the Weil-Petersson volume and its higher analogues

of Mg,n [23, 35, 38, 39, 42], and the higher-genus Catalan numbers [17]. A spectacular
conjecture of [7] states that the Laplace transform of the open Gromov-Witten invariants of
an arbitrary toric Calabi-Yau threefold satisfies the Eynard-Orantin topological recursion.
A significant progress toward this conjecture has been made in [24].

Furthermore, an unexpected application of the Eynard-Orantin theory has been proposed
in knot theory [2, 5, 9, 12, 26, 31]. A key ingredient there is the quantum curve that
characterizes quantum knot invariants.

The word quantum means many different things in modern mathematics. For example, a
quantum curve is a holonomic system of linear differential equations whose Lagrangian is an
algebraic curve embedded in the cotangent bundle of a base curve. Quantum knot invari-
ants, on the other hand, are invariants of knots defined by representation theory of quantum
algebras, and quantum algebras are deformations of usual algebras. In such a diverse usage,
the only common feature is the aspect of non-commutative deformations. Therefore, when
two completely different quantum objects turn out to be the same, we expect a deep math-
ematical theory behind the scene. In this vein, within the last two years, mathematicians
and physicists have discovered a new, miraculous mathematical procedure, although still
conjectural, that directly relates quantum curves and quantum knot invariants.

The notion of quantum curves appeared in Aganagic, Dijkgraaf, Klemm, Mariño, and
Vafa [1], and later in Dijkgraaf, Hollands, Su lkowski, and Vafa [13, 14]. When the A-model
we start with has a vanishing obstruction class in algebraic K-theory, then it is expected that
a quantum curve exists, and it is a differential operator. Let us call it P . A quantum knot
invariant is a function. Call it Z. Then the conjectural relation is simply the Schrödinger
equation PZ = 0. For this equation to make sense, in addition to the very existence of P ,
we need to identify the variables appearing in P and Z. The key observation is that both
P and Z are defined on the same Riemann surface, and that it is exactly the spectral curve
of the Eynard-Orantin topological recursion, being realized as a Lagrangian immersion.
Moreover, the total symbol of the operator P defines the Lagrangian immersion.

What is the significance of this Schrödinger equation PZ = 0, then? Recently Gukov and
Su lkowski [31], based on [12], provided the crucial insight that when the underlying spectral
curve is defined by the A-polynomial of a knot, the algebraic K-theory obstruction vanishes,
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and the equation PZ = 0 becomes the same as the AJ-conjecture of Garoufalidis [28]. This
means that the Eynard-Orantin theory conjecturally computes colored Jones polynomial as
the partition function Z of the theory, starting from a given A-polynomial.

In what follows, we present a simple example of the story. Although our example is not
related to knot theory, it exhibits all key ingredients of the theory, such as the Schrödinger
equation, relations to quantum topological invariants, the Eynard-Orantin recursion, the
KP equations, and mirror symmetry.

At the Bia lowieża Workshop in summer 2012, Professor L. D. Faddeev gave a beautiful
talk on the quantum dilogarithm, Bloch groups, and algebraic K-theory [25]. Our example
of this paper does not illustrate the fundamental connection to these important subjects,
because our spectral curve (2.4) has genus 0, and the K-theoretic obstruction to quantiza-
tion, similar to the idea of K2-Lagrangian of Kontsevich, vanishes. Further developments
are expected in this direction.

2. Mirror dual of the Catalan numbers and their higher genus extensions

The Catalan numbers appear in many different places of mathematics and physics,
often quite unexpectedly. The Wikipedia lists some of the mathematical interpretations.
The appearance in string theory [49] is surprising. Here let us use the following definition:

(2.1) Cm = the number of ways to place 2m pairs of parentheses in a legal manner.

A legal manner means the usual way we stack them together. If we have one pair, then
C1 = 1, because ( ) is legal, while )( is not. For m = 2, we have (( )) and ( )( ), hence
C2 = 2. Similarly, C3 = 5 because there are five legal combinations:

((( ))), (( ))( ), (( )( )), ( )(( )), ( )( )( ).

This way of exhaustive listing becomes harder and harder as m grows. We need a better
mechanism to find the value, and also a general closed formula, if at all possible. Indeed,
we have the Catalan recursion equation

(2.2) Cm =
∑

a+b=m−1

CaCb,

and a closed formula

(2.3) Cm =
1

m+ 1

(
2m

m

)
.

Although our definition (2.1) does not make sense for m = 0, the closed formula (2.3) tells
us that C0 = 1, and the recursion (2.2) works only if we define C0 = 1. We will give a proof
of these formulas later.

Being a ubiquitous object, the Catalan numbers have many different generalizations.
What we are interested here is not those kind of generalized Catalan numbers. We want to
define higher-genus Catalan numbers. They are necessary if we ask the following question:

Question 2.1. What is the mirror symmetric dual object of the Catalan numbers?

The mirror symmetry was conceived in modern theoretical physics as a duality between
two different Calabi-Yau spaces of three complex dimensions. According to this idea, the
universe consists of the visible 3-dimensional spatial component, 1-dimensional time com-
ponent, and an invisible 6-dimensional component. The invisible component of the universe
is considered as a complex 3-dimensional Calabi-Yau space, and the quantum nature of
the universe, manifested in quantum interactions of elementary particles and black holes, is
believed to be hidden in the geometric structure of this invisible manifold. The surprising
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discovery is that the same physical properties can be obtained from two different settings:
a Calabi-Yau space X with its Kähler structure, or another Calabi-Yau space Y with its
complex structure. The duality between these two sets of data is the mirror symmetry.

The phrase, “having the same quantum nature of the universe,” does not give a math-
ematical definition. The idea of Kontsevich [34], the Homological Mirror Symmetry,
is to define the mirror symmetry as the equivalence of derived categories. Since categories
do not necessarily require underlying spaces, we can talk about mirror symmetries among
more general objects. For instance, we can ask the above question.

What I’d like to explain in this paper is that the answer to the question is a simple
function

(2.4) x = z +
1

z
.

It is quite radical: the mirror symmetry holds between the Catalan numbers and a function
like (2.4)!

If we naively understand the homological mirror symmetry as the derived equivalence
between symplectic geometry (the A-model side) and holomorphic complex geometry (the B-
model side), then it is easy to guess that (2.4) should define a B-model. According to Ballard
[4], the mirror symmetric partner to this function is the projective line P1, together with
its standard Kähler structure. The higher-genus Catalan numbers we are going to define
below are associated with the Kähler geometry of P1. Their mirror symmetric partners are
the symmetric differential forms that the Eynard-Orantin theory defines on the Riemann
surface of the function x = z + 1

z .
It is more convenient to give a different definition of the Catalan numbers that makes

the higher-genus extension more straightforward. Consider a graph Γ drawn on a sphere
S2 that has only one vertex. Since every edge coming out from this vertex has to come
back, the vertex has an even degree, say 2m. This means 2m half-edges are incident to the
unique vertex. Let us place an outgoing arrow to one of the half-edges near at the vertex
(see Figure 2.1). Since Γ is drawn on S2, the large loop of the left of Figure 2.1 can be
placed as in the right graph. These are the same graph on the sphere.

Figure 2.1. Two ways of representing the same arrowed graph on S2 with one
vertex. This graph corresponds to ((( ))).

Lemma 2.2. The number of arrowed graphs on S2 with one vertex of degree 2m is equal
to the Catalan number Cm.

Proof. We assign to each edge forming a loop a pair of parentheses. Their placement is
nested according to the graph. The starting parenthesis ‘(’ corresponds to the unique
arrowed half-edge. We then examine all half-edges by the counter clock-wise order. When a
new loop is started, we open a parenthesis ‘(’. When it is closed to form a loop, we complete
a pair of parentheses by placing a ‘)’. In this way we have a bijective correspondence between
graphs on S2 with one vertex of degree 2m and the nested pairs of 2m parentheses. �
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Now a higher-genus generalization is easy. A cellular graph of type (g, n) is the one-
skeleton of a cell-decomposition of a connected, closed, oriented surface of genus g with n
0-cells labeled by the index set [n] = {1, 2, . . . , n}. Two cellular graphs are identified if an
orientation-preserving homeomorphism of a surface into another surface maps one cellular
graph to another, honoring the labeling of each vertex. Let Dg,n(µ1, . . . , µn) denote the
number of connected cellular graphs Γ of type (g, n) with n labeled vertices of degrees
(µ1, . . . , µn), counted with the weight 1/|Aut(Γ)|. It is generally a rational number. The
orientation of the surface induces a cyclic order of incident half-edges at each vertex of a
cellular graph Γ. Since Aut(Γ) fixes each vertex, it is a subgroup of the Abelian group∏n
i=1 Z

/
µiZ that rotates each vertex and the incident half-edges. Therefore,

(2.5) Cg,n(µ1, . . . , µn) = µ1 · · ·µnDg,n(µ1, . . . , µn)

is always an integer. The cellular graphs counted by (2.5) are connected graphs of genus
g with n vertices of degrees (µ1, . . . , µn), and at the j-th vertex for every j = 1, . . . , n, an
arrow is placed on one of the incident µj half-edges (see Figure 2.2). The placement of
n arrows corresponds to the factors µ1 · · ·µn on the right-hand side. We call this integer
the Catalan number of type (g, n). The reason for this naming comes from the fact that
C0,1(2m) = Cm, and the following theorem.

Figure 2.2. A cellular graph of type (1, 2).

Theorem 2.3. The generalized Catalan numbers of (2.5) satisfy the following equation.

(2.6) Cg,n(µ1, . . . , µn) =
n∑
j=2

µjCg,n−1(µ1 + µj − 2, µ2, . . . , µ̂j , . . . , µn)

+
∑

α+β=µ1−2

Cg−1,n+1(α, β, µ2, · · · , µn) +
∑

g1+g2=g
ItJ={2,...,n}

Cg1,|I|+1(α, µI)Cg2,|J |+1(β, µJ)

 ,
where µI = (µi)i∈I for an index set I ⊂ [n], |I| denotes the cardinality of I, and the third
sum in the formula is for all partitions of g and set partitions of {2, . . . , n}.

Proof. Consider an arrowed cellular graph Γ counted by the left-hand side of (2.6), and let
{p1, . . . , pn} denote the set of labeled vertices of Γ. We look at the half-edge incident to p1

that carries an arrow.

Case 1. The arrowed half-edge extends to an edge E that connects p1 and pj for some
j > 1.

We shrink the edge E and join the two vertices p1 and pj together. By this process we
create a new vertex of degree µ1 + µj − 2. To make the counting bijective, we need to be
able to go back from the shrunken graph to the original, provided that we know µ1 and µj .
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Thus we place an arrow to the half-edge next to E around p1 with respect to the counter-
clockwise cyclic order that comes from the orientation of the surface. In this process we
have µj different arrowed graphs that produce the same result, because we must remove
the arrow placed around the vertex pj in the original graph. This gives the right-hand side
of the first line of (2.6). See Figure 2.3.

1 jp p
E

Figure 2.3. The process of shrinking the arrowed edge E that connects vertices
p1 and pj , j > 1.

Case 2. The arrowed half-edge at p1 is actually a loop E that goes out and comes back to
p1.

The process we apply is again shrinking the loop E. The loop E separates all other
half-edges into two groups, one consisting of α of them placed on one side of the loop, and
the other consisting of β half-edges placed on the other side. It can happen that α = 0 or
β = 0. Shrinking a loop on a surface causes pinching. Instead of creating a pinched (i.e.,
singular) surface, we separate the double point into two new vertices of degrees α and β.
Here again we need to remember the position of the loop E. Thus we place an arrow to the
half-edge next to the loop in each group. See Figure 2.4.

E

Figure 2.4. The process of shrinking the arrowed loop E that is attached to p1.

After the pinching and separating the double point, the original surface of genus g with
n vertices {p1, . . . , pn} may change its topology. It may have genus g − 1, or it splits into
two pieces of genus g1 and g2. The second line of (2.6) records all such possibilities. This
completes the proof. �

Remark 2.4. For (g, n) = (0, 1), the above formula reduces to

(2.7) C0,1(µ1) =
∑

α+β=µ1−2

C0,1(α)C0,1(β),

which proves (2.2) since C0,1(2m) = Cm.

Note that we define C0,1(0) = 1. Only for the (g, n) = (0, 1) case this irregularity of
non-zero value happens for µ1 = 0. This is because a degree 0 single vertex is connected,
and gives a cell-decomposition of S2. We can imagine that a single vertex on S2 has an
infinite cyclic group as its automorphism, so that C0,1(0) = 1 is consistent. In all other
cases, if one of the vertices has degree 0, then the Catalan number Cg,n is simply 0 because
of the definition (2.5).
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Following Kodama-Pierce [32], we introduce the generating function of the Catalan num-
bers by

(2.8) z = z(x) =
∞∑
m=0

Cm
1

x2m+1
.

Then by the quadratic recursion (2.7), we find that the inverse function of z(x) that vanishes
at x =∞ is given by

x = z +
1

z
,

which is exactly (2.4). We remark that solving the above equation as a quadratic equation
for z yields

z =
x−
√
x2 − 4

2
=
x

2

1−

√
1−

(
2

x

)2
 =

x

2

∞∑
m=1

(−1)m−1

( 1
2

m

)(
2

x

)2m

,

from which the closed formula (2.3) follows.

3. The Laplace transform of the generalized Catalan numbers

Let us compute the Laplace transform of the generalized Catalan numbers. Why are we
interested in the Laplace transform? The answer becomes clear only after we examine the
result of computation.

So we define the discrete Laplace transform

(3.1) FCg,n(t1, . . . , tn) =
∑

(µ1,...,µn)∈Zn
+

Dg,n(µ1, . . . , µn) e−〈w,µ〉

for (g, n) subject to 2g − 2 + n > 0, where the Laplace dual coordinates w = (w1, . . . , wn)
of (µ1, . . . , µn) is related to the function coordinate t = (t1, . . . , tn) by

(3.2) ewi = xi = zi +
1

zi
=
ti + 1

ti − 1
+
ti − 1

ti + 1
, i = 1, 2, . . . , n,

and 〈w, µ〉 = w1µ1 + · · · + wnµn. The Eynard-Orantin differential form of type (g, n)
is given by

(3.3)

WC
g,n(t1, . . . , tn) = d1 · · · dnFCg,n(t1, . . . , tn)

= (−1)n
∑

(µ1,...,µn)∈Zn
+

Cg,n(µ1, . . . , µn) e−〈w,µ〉dw1 · · · dwn.

Due to the irregularity that a single point is a connected cellular graph of type (0, 1), we
define

(3.4) WC
0,1(t) = −

∞∑
µ=0

C0,1(µ)
1

xµ
· dx
x

= −z(x)dx,

including the µ = 0 term. Since dFC0,1 = WC
0,1, we find

(3.5) FC0,1(t) = −1

2
z2 + log z + const.

Using the value of Kodama and Pierce [32] for D0,2(µ1, µ2), we calculate (see [17])

(3.6) FC0,2(t1, t2) = − log(1− z1z2),
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and hence

(3.7) WC
0,2(t1, t2) =

dt1 · dt2
(t1 − t2)2

− dx1 · dx2

(x1 − x2)2
=

dt1 · dt2
(t1 + t2)2

.

The 2-form dx1·dx2
(x1−x2)2

is the local expression of the symmetric second derivative of the loga-

rithm of Riemann’s prime form on a Riemann surface. Thus WC
0,2 is the difference of this

quantity between the Riemann surface of x = z + 1
z and the x-coordinate plane. This rela-

tion is true for all known examples, and hence W0,2 is defined as the second log derivative of
the prime form of the spectral curve in [22]. It is important to note that in our definition,
WC

0,2(t1, t2) is regular at the diagonal t1 = t2.

Note that the function z(x) is absolutely convergent for |x| > 2. Since its inverse function
is a rational function given by (2.4), the Riemann surface of the inverse function, i.e., the
maximal domain of holomorphy of x(z), is P1 \ {0,∞}. At z = ±1 the function x = z + 1

z
is branched, and this is why z(x) has the radius of convergence 2, measured from ∞. The
coordinate change

z =
t+ 1

t− 1
brings the branch points to 0 and ∞.

Theorem 3.1 ([46]). The Laplace transform FCg,n(t[n]) satisfies the following differential
recursion equation for every (g, n) subject to 2g − 2 + n > 0.

(3.8)
∂

∂t1
FCg,n(t[n])

= − 1

16

n∑
j=2

[
tj

t21 − t2j

(
(t21 − 1)3

t21

∂

∂t1
FCg,n−1(t[ĵ])−

(t2j − 1)3

t2j

∂

∂tj
FCg,n−1(t[1̂])

)]

− 1

16

n∑
j=2

(t21 − 1)2

t21

∂

∂t1
FCg,n−1(t[ĵ])

− 1

32

(t21 − 1)3

t21

[
∂2

∂u1∂u2
FCg−1,n+1(u1, u2, t2, t3, . . . , tn)

]∣∣∣∣
u1=u2=t1

− 1

32

(t21 − 1)3

t21

stable∑
g1+g2=g

ItJ={2,3,...,n}

∂

∂t1
FCg1,|I|+1(t1, tI)

∂

∂t1
FCg2,|J |+1(t1, tJ).

Here we use the index convention [n] = {1, 2, . . . , n} and [ĵ] = {1, 2, . . . , ĵ, . . . , n}. The final
sum is for partitions subject to the stability condition 2g1−1+ |I| > 0 and 2g2−1+ |J | > 0.

The proof follows from the Laplace transform of (2.6). Since the formula for the gener-
alized Catalan numbers contain unstable geometries (g, n) = (0, 1) and (0, 2), we need to
substitute the values (3.5) and (3.6) in the computation to derive the recursion in the form
of (3.8).

Since the form of the equation (3.8) is identical to [41, Theorem 5.1], and since the initial
values FC1,1 and FC0,3 of [46] agree with that of [41, (6.1), (6,2)], the same conclusion of [41]
holds. Therefore,

Theorem 3.2. The Laplace transform FCg,n(t1, . . . , tn) in the stable range 2g − 2 + n > 0
satisfies the following properties.
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• The reciprocity: FCg,n(1/t1, . . . , 1/tn) = FCg,n(t1, . . . , tn).

• The polynomiality: FCg,n(t1, . . . , tn) is a Laurent polynomial of degree 3(2g − 2 + n).
• The highest degree asymptotics as the Virasoro condition: The leading terms of
FCg,n(t1, . . . , tn) form a homogeneous polynomial defined by

(3.9) FC-top
g,n (t1, . . . , tn) =

(−1)n

22g−2+n

∑
d1+···+dn
=3g−3+n

〈τd1 · · · τdn〉g,n
n∏
i=1

[
(2di − 1)!!

(
ti
2

)2di+1
]
,

where 〈τd1 · · · τdn〉g,n is the ψ-class intersection numbers of the Deligne-Mumford

moduli stack Mg,n. The recursion Theorem 3.1 restricts to the highest degree terms
and produces the DVV formulation [16] of the Witten-Kontsevich theorem [33, 51],
which is equivalent to the Virasoro constraint condition for the intersection numbers
on Mg,n.
• The Poinaré polynomial: The principal specialization FCg,n(t, t, . . . , t) is a polynomial

in

(3.10) s =
(t+ 1)2

4t
,

and coincides with the virtual Poincaré polynomial of Mg,n × Rn+.
• The Euler characteristic: In particular, we have

FCg,n(1, 1 . . . , 1) = (−1)nχ(Mg,n).

Remark 3.3. The above theorem explains why the Laplace transform of the generalized
Catalan numbers is important. The function FCg,n(t1, . . . , tn) knows a lot of topological

information of both Mg,n and Mg,n.

Taking the n-fold differentiation of (3.8), we obtain a residue form of the recursion. The
formula given in (3.12) is an example of the Eynard-Orantin topological recursion.

Theorem 3.4 ([17]). The Laplace transform of the Catalan numbers of type (g, n) defined
as a symmetric differential form

WC
g,n(t1, . . . , tn) = (−1)n

∑
(µ1,...,µn)∈Zn

+

Cg,n(µ1, . . . , µn) e−〈w,µ〉dw1 · · · dwn

satisfies the Eynard-Orantin recursion with respect to the Lagrangian immersion

(3.11) Σ = C 3 z 7−→ (x(z), y(z)) ∈ T ∗C,

{
x(z) = z + 1

z

y(z) = −z
.

The recursion formula is given by a residue transformation equation

(3.12) WC
g,n(t1, . . . , tn) =

1

2πi

∫
γ
KC(t, t1)

[
n∑
j=2

(
WC

0,2(t, tj)W
C
g,n−1(−t, t2, . . . , t̂j , . . . , tn)

+WD
0,2(−t, tj)WC

g,n−1(t, t2, . . . , t̂j , . . . , tn)

)
+WC

g−1,n+1(t,−t, t2, . . . , tn) +

stable∑
g1+g2=g

ItJ={2,3,...,n}

WC
g1,|I|+1(t, tI)W

C
g2,|J |+1(−t, tJ)

]
.
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The kernel function is defined to be

(3.13) KC(t, t1) =
1

2

∫ −t
t W0,2( · , t1)

W0,1(−t)−W0,1(t)
= − 1

64

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2
· 1

dt
· dt1,

which is an algebraic operator contracting dt, while multiplying dt1. The contour integration
is taken with respect to t on the curve defined in Figure 3.1.

t1

t1tj

tj

t-plane

dt

r

r

Figure 3.1. The integration contour γ.

Remark 3.5. The recursion (3.12) is a universal formula compared to (3.8), because the
only input is the spectral curve Σ that is realized as a Lagrangian immersion, which deter-
mines W0,1, and W0,2 can be defined by taking the difference of the log of prime forms of Σ
and C.

4. The partition function for the generalized Catalan numbers and the
Schrödinger equation

Let us now consider the exponential generating function of the Poincaré polynomial
FCg,n(t, . . . , t). This function is called the partition function for the generalized Catalan
numbers:

(4.1) ZC(t, ~) = exp

 ∞∑
g=0

∞∑
n=1

1

n!
~2g−2+nFCg,n(t, t, . . . , t)

 .

The constant ambiguity in (3.5) makes the partition function well defined up an overall
non-zero constant factor.

Theorem 4.1 ([44]). The partition function satisfies the following Schrödinger equation

(4.2)

(
~2 d

2

dx2
+ ~x

d

dx
+ 1

)
ZC(t, ~) = 0,

where t is considered as a function in x by

t = t(x) =
z(x) + 1

z(x)− 1

and (2.8). Moreover, the partition function has a matrix integral expression

(4.3) ZC(z, ~) =

∫
HN×N

det(1−
√
sX)Ne−

N
2

trace(X2)dX

with the identification (3.10) and ~ = 1/N . Here dX is the normalized Lebesgue measure
on the space of N ×N Hermitian matrices HN×N . It is a well-known fact that this matrix
integral is the principal specialization of a KP τ -function [40].
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The currently emerging picture [5, 12, 31] is the following. If we start with the A-
polynomial of a knot K and consider the Lagrangian immersion it defines, like the one in
(3.11), then the partition function Z of the Eynard-Orantin recursion, defined in a much
similar way as in (4.1) but with a theta function correction factor of [5], is the colored Jones
polynomial of K, and the corresponding Schrödinger equation like (4.2) is equivalent to the
AJ-conjecture of [28].

Our example comes from an elementary enumeration problem, yet as Theorem 3.2 sug-
gests, the geometric information contained in this example is quite non-trivial.
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