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Abstract. The generating functions of simple Hurwitz numbers of the projective line are known

to satisfy many properties. They include a heat equation, the Eynard-Orantin topological recur-

sion, an infinite-order differential equation called a quantum curve equation, and a Schrödinger
like partial differential equation. In this paper we generalize these properties to simple Hurwitz

numbers with an arbitrary base curve.
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1. Introduction and the main results

The purpose of this paper is to determine functional properties of various generating
functions of simple Hurwitz numbers with an arbitrary fixed base curve B. We derive
a partial differential equation for the Laplace transform of these Hurwitz numbers. The
equation is completely analogous to the result of [28] for the usual simple Hurwitz numbers
based on P1. We also obtain an infinite-order differential equation, or a quantum curve, for
the case of an arbitrary base curve, that is parallel to the various Hurwitz problems studied
in [3, 25, 26] with the base curve P1 and its twisted version P1[a].

Our main motivation is to examine whether the topological recursion of Eynard-Orantin
[14, 15] and the existence of a quantum curve of [1, 7, 8, 9, 19] hold for the enumeration
problem of simple Hurwitz numbers over an arbitrary curve B. Consider a holomorphic
map f : C −→ B of a non-singular algebraic curve C onto a fixed base curve B. We choose
a general point 0 ∈ B and fix it once for all. The quantity we are interested in this paper
is the base B Hurwitz number HB

g,n(µ1, . . . , µn), which counts the automorphism weighted
number of the topological types of holomorphic maps f of a genus g domain curve with n
labeled preimages of 0 ∈ B of multiplicity (µ1, . . . , µn) ∈ Zn+, such that f is simply ramified
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other than these n points. Define its discrete Laplace transform

(1.1)

FBg,n(x1, . . . , xn) =
∑
~µ∈Zn

+

HB
g,n(µ1, . . . , µn)

n∏
i=1

e−wiµi

=
∑
~µ∈Zn

+

HB
g,n(µ1, . . . , µn)

n∏
i=1

xµii , xi = e−wi ,

which we call the free energy of type (g, n). Since P1 does not cover the base curve B of
genus g(B) > 0,

FB0,n(µ1, . . . , µn) = 0

for any n ≥ 1 and any value of (µ1, . . . , µn) ∈ Zn+ in this case. Our main result is the
following.

Theorem 1.1. For 2g − 2 + n > 0, the free energies FBg,n(x1, . . . , xn) satisfy the following
partial differential equation:

(1.2)

(
2g − 2 + n−

(
1− χ(B)

) n∑
i=1

xi
∂

∂xi

)
FBg,n

(
x[n]

)
=

1

2

∑
i 6=j

xixj
xi − xj

(
∂

∂xi
FBg,n−1

(
x[ĵ]

)
− ∂

∂xj
FBg,n−1

(
x[̂i]

))

+
1

2

n∑
i=1

u1
∂

∂u1
u2

∂

∂u2

∣∣∣∣∣
u1=u2=xiFBg−1,n+1

(
u1, u2, x[̂i]) +

∑
g1+g2=g

ItJ=[̂i]

FBg1,|I|+1(u1, xI)F
B
g2,|J |+1(u2, xJ)

 .
Here [n] = {1, . . . , n} is an index set, [̂i] = [n] \ {i}, and for any subset I ⊂ [n], we denote
xI = (xi)i∈I . We denote by χ(B) = 2− 2g(B) the Euler characteristic of the base curve B.
Note that the complexity 2g − 2 + n is reduced by 1 on the right-hand side of the recursion
when g(B) ≥ 1, similar to the Eynard-Orantin integral recursion of [14, 15].

Let us define the partition function of the base B Hurwitz numbers, as a holomorphic
function in x ∈ C and ~ with Re(~) < 0, by

(1.3) ZB(x, ~) = exp

 ∞∑
g=1

∞∑
n=1

1

n!
~2g−2+nFBg,n(x, x, . . . , x)

 .

Then it satisfies a quantum curve like infinite-order differential equation

(1.4) ~x
d

dx

[
1− ~1−χ(B)x e~x

d
dx

(
d

dx
x

)1−χ(B)
]
ZB(x, ~) = 0.

If we introduce

y = ~x
d

dx
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and regard it as a commuting variable, then the total symbol of the above operator produces
a Lambert curve

(1.5) x = y
χ(B)−1e−y.

The partition function also satisfies a Schrödinger like partial differential equation

(1.6)

[
∂

∂~
− 1

2

(
x
∂

∂x

)2

+

(
1

2
− 1− χ(B)

~

)
x
∂

∂x

]
ZB(x, ~) = 0.

If we denote the above operators by P and Q, respectively, then they satisfy a commutation
relation:

(1.7) [P,Q] = −1

~
P.

This shows that the system of equations (1.4) and (1.6) are compatible. Moreover, the
partition function has the following simple expression

(1.8) ZB(x, ~) =
∞∑
m=0

(m!)1−χ(B)e
1
2
m(m−1)~

(
~1−χ(B)x

)m
.

Although the parameter ~ is a formal deformation parameter, if we write ~ = 2πiτ , then

(1.9) ZB(x, 2πiτ) =
∞∑
m=0

(m!)1−χ(B)eπim(m−1)τ
(

(2πiτ)1−χ(B)x
)m

is an entire function in x for Im(τ) > 0.

Remark 1.2. We note that the exact same formulas (1.2), (1.5), (1.6), and (1.8) hold for
the case of an orbifold base B = P1[a], a > 0, if we evaluate χ(B) = 1 + 1

a , interpret
the sum in (1.8) as running over non-negative multiples am of a, and replace (am)! by
(am)! 7−→ (m!am)a. Since the orbifold case requires a different set of preparations (see
[3, 10, 25]), we will report the generalization to the case of higher-genus twisted curve as a
base elsewhere.

When the base curve B is an elliptic curve E, a special case of simple Hurwitz numbers
exhibits a quasi-modular property. Dijkgraaf [6] considered a generating function

(1.10) Fg(q) =
∞∑
n=1

1

n!
HE
g,n(1, 1, . . . , 1)qn

for g > 1, and

(1.11) F1(q) = − 1

24
log q +

∞∑
n=1

1

n!
HE

1,n(1, 1, . . . , 1)qn.

The significant fact here is that Fg(q) for g > 1 is a quasi-modular form [6, 21]. The relation
between the free energies of type (g, n) for all n and Fg(q) is given by

(1.12) Fg(q) = lim
λ→0

∞∑
n=1

1

n!

1

λn
FEg,n(λq, λq, . . . , λq).

To motivate the present work, let us recall the corresponding counting problem of simple

Hurwitz number HP1

g,n(µ1, . . . , µn) for a pointed projective line (P1,∞), which has a long
history since Hurwitz [20]. Its modern interest is due, among other things, to its rich
functional properties [16, 17, 22, 32, 33], its relation with linear Hodge integrals on Mg,n
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[12, 18, 30], and the Bouchard-Mariño conjecture [5] and its solutions [2, 13, 28]. The
theorem established in [13, 28] shows that the discrete Laplace transform

(1.13) F P1

g,n(x1, . . . , xn) =
∑
~µ∈Zn

+

HP1

g,n(µ1, . . . , µn)
n∏
i=1

xµii

satisfies an integral recursion formula that was originally proposed by Eynard and Orantin
[14], as conjectured in [5]. The input curve for the recursion, the spectral curve, is shown
to be the original Lambert curve

(1.14) x = ye−y.

Then in [26, 34] it is discovered that there is a quantum curve of [1, 7, 8, 9, 19], which is
a generator of the holonomic system that characterizes the partition function of the simple
Hurwitz numbers of P1. The partition function for B = P1 is

ZP1
(x, ~) = exp

 ∞∑
g=0

∞∑
n=1

1

n!
~2g−2+nF P1

g,n(x, x, . . . , x)

 .

It is established in [26] that the P1 partition function has an expression

(1.15) ZP1
(x, ~) =

∞∑
m=0

1

m!
e

1
2
m(m−1)~

(x
~

)m
,

and that it satisfies two equations:[
~x

∂

∂x
− xe~x

∂
∂x

]
ZP1

(x, ~) = 0,(1.16) [
∂

∂~
− 1

2

(
x
∂

∂x

)2

+

(
1

2
+

1

~

)
x
∂

∂x

]
ZP1

(x, ~) = 0.(1.17)

If we denote the above operators as P1 and Q1, respectively, then they satisfy a commutation
relation

(1.18) [P1, Q1] = −1

~
P1.

The semi-classical limit of each of the equations (1.16) and (1.17) recovers the Lambert curve
(1.14), as shown in [26]. Then from this curve as the spectral curve, and using the functions
x and y on it, the Eynard-Orantin integral recursion [14] determines the differential forms

(1.19) d1d2 · · · dnF P1

g,n

defined on Σn for all (g, n), where Σ is the Lambert curve given by (1.14). It is a simple
consequence of the results in [13, 26, 28] that the differential form (1.19) uniquely recovers

the primitive F P1

g,n as a function in (y1, . . . , yn) ∈ Σn. From this point of view, the generating

function F P1

g,n

(
x(y1), . . . , x(yn)

)
is completely determined by the equation (1.16) or (1.17),

where x as a function in y is also given by (1.14).
Our motivating question is, do the similar properties hold when we consider the simple

Hurwitz numbers with an arbitrary curve as the base? Since the genus 0 base B Hurwitz
numbers HE

0,n(µ1, . . . , µn) do not exist for a base curve B with g(B) > 0, the philosophy

of [11] does not produce any spectral curve of the Eynard-Orantin integral recursion for
this counting problem. Yet we have a topological recursion (1.2) in the form of a partial
differential equation. We note the straightforward generalizations (1.4), (1.6), (1.8), and
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(1.5), that reduce to the P1 case (1.16), (1.17), (1.15), and (1.14), respectively, when χ(B) =
2.

The paper is organize as follows. In Section 2, we derive the cut-and-join equation of
simple Hurwitz numbers with an arbitrary base curve. Then in Section 3, we consider the
Laplace transform of the cut-and-join equation, which is exactly (1.2). Using this result
we derive the Schrödinger equation (1.6) in Section 4. Section 5 is devoted to explain-
ing the heat equation expression of the cut-and-join equation [16, 22, 33] and deriving its
consequences. In Section 6 we first prove the expansion (1.8), derive the quantum curve
(1.4), and then establish the commutator relation (1.7). In the final section we deduce the
Lambert curve (1.5) as the semi-classical limit.

2. A cut-and-join equation for simple Hurwitz numbers

The enumeration problem we consider in this paper is the number of topological types
of holomorphic maps f : C −→ B from a nonsingular curve C of genus g to a fixed base
curve B, with an arbitrary ramification over one point on B and simple ramification at all
other critical points. Let us denote by 0 ∈ B a general point arbitrarily chosen and fixed.
Such a homomorphic map f is referred to as a simple Hurwitz cover of B. We label each
inverse image of 0 ∈ B via f , and denote by (µ1, . . . , µn) ∈ Zn+ the degrees of f at each

inverse image of 0. The base B Hurwitz number HB
g,n(µ1, . . . .µn) counts the automorphism

weighted number of the topological types of simple Hurwitz covers.
The degree of the map f is given by

(2.1) d = |µ| =
n∑
i=1

µi.

Here use the notation |µ|, borrowing from the convention in the theory symmetric functions.
The Riemann-Hurwitz formula tells us that there are

(2.2) r = r(g, µ) = 2g − 2 + n− d
(
2g(B)− 1

)
simple ramification points. Instead of counting the topological types of f , we can fix r simple
branch points on B in general position other than 0 ∈ B and count the automorphism
weighted holomorphic maps f . We note that (2.1) and (2.2) imply a condition for the
degree and the genus for a base curve with g(B) ≥ 1:

n
(
2g(B)− 1

)
≤ d
(
2g(B)− 1

)
≤ 2g − 2 + n,(2.3)

n
(
g(B)− 1

)
≤ g − 1.(2.4)

In particular, Hg,n(~µ) = 0 for any n ≥ 1 if g < g(B). This poses a sharp contrast to the
Gromov-Witten theory of curves [31].

The map f : C −→ B of degree d is determined by a monodromy representation

ρ ∈ Hom
(
πi(B \ {0, 1, . . . , r, }), Sd

)
of the fundamental group of an (r + 1)-punctured curve into the symmetric group of d
letters. Here {1, . . . , r} ⊂ B is the label of r simple branched points on B chosen in general
position. Let γj , j = 0, . . . , r, be a simple loop around each point j ∈ B. Then a simple
Hurwitz cover is constructed by assigning each γj for j ≥ 1 to a transposition and γ0 to a
product of n disjoint cycles of length µ1, · · ·µn, subject to the commutator relation

ρ(γ1) · · · ρ(γr)ρ(γ0) = [α1, β1] · · · [αg(B), βg(B)],

where αi, βi ∈ Sd are some elements in the permutation group.
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The cut-and-join equation [16, 17, 20, 32] is the result of an analysis of what happens
when we multiply a transposition ρ(γr) to a product of disjoint cycles ρ(γ0). Since the
fundamental group of the base curve does not make any effect on this multiplication, the
exact same formula for HB

g,n(~µ) holds, as for the simple Hurwitz numbers for P1. The only
difference is the number r of simple ramification points.

Proposition 2.1 (The cut-and-join equation). For all g ≥ 0, n ≥ 1, and (µ1, . . . , µn) ∈ Zn+
subject to

(2.5) 2g − 2 + n−
(
2g(B)− 1

) n∑
i=1

µi > 0,

the simple Hurwitz numbers HB
g,n(µ1, . . . , µn) of degree d satisfy the following equation:

(2.6)
(
2g − 2 + n−

(
2g(B)− 1

)
d
)
HB
g,n(µ[n]) =

1

2

∑
i 6=j

(µi + µj)H
B
g,n−1

(
µi + µj , µ[̂i,ĵ]

)

+
1

2

n∑
i=1

∑
α+β=µi

αβ

HB
g−1,n+1(α, β, µ[̂i]) +

∑
g1+g2=g

ItJ=[̂i]

HB
g1,|I|+1(α, µI) H

B
g2,|J |+1(β, µJ)

 .

Here and throughout the paper we use the following notational convention. [n] = {1, . . . , n}
is an index set, and [̂i] = [n] \ {i}, etc. For a subset I ⊂ [n], µI = (µi)i∈I .

Remark 2.2. Unlike the case of P1, the cut-and-join equation does not determine all
values of simple Hurwitz numbers. When the degree d takes its maximum value 2g−2+n

2g(B)−1 ,

the equation gives a trivial equality 0 = 0.

The genus 1 simple Hurwitz numbers based on an elliptic curve B = E are easy to
calculate. From (2.3) we have n = d and r = 0 when g = g(B) = 1. Therefore, the
covering is unramified. If we allow disconnected domain, then the total number is equal to
the number of partitions

p(d) =
∣∣Hom

(
π1(E), Sd

)
//Sd

∣∣
of degree d (see for example, [6]). Let

φ(q) =
∞∏
m=1

(1− qm)

be the Euler function. Then we have

∞∑
n=1

1

n!
HE

1,n(1, . . . , 1)qn = − log φ(q) =

∞∑
n=1

∑
m|n

1

m

 qn,

hence

(2.7) HE
1,n(1, . . . , 1) = n!

∑
m|n

1

m
= (n− 1)!σ(n),

where σ is the sum of divisors function. This is an integer sequence, and its first ten terms
are 1, 3, 8, 42, 144, 1440, 5760, 75600, 524160, 6531840. This sequence has many interesting
properties (see OEIS, A038048).

More generally, let us consider the case when the equality holds in (2.4). We need this
analysis in Section 4. Because of (2.3), g− 1 = n

(
g(B)− 1

)
implies d = n and r = 0, hence
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the covering f : C −→ B that is counted is totally unramified. Here again the number
of disconnected unramified coverings is given by the classical dimension formula (see for
example [27] for elementary derivations):

∣∣Hom
(
π1(B), Sd

)
//Sd

∣∣ =
∑
λ`d

(
dimλ

d!

)χ(B)

.

Here λ ` d parametrizes irreducible representations of Sd, and dimλ is its dimension.

3. The discrete Laplace transform

The discrete Laplace transform FBg,n(x1, . . . , xn) of (1.1) is a polynomial of degree 2g−2+n
2g(B)−1

with the lowest degree term HB
g,n(1, 1, . . . , 1)x1 · · ·xn. The following proposition is an ana-

logue of the case of simple Hurwitz numbers of P1, and the proof is exactly the same as
that of [3, Lemma 4.1].

Proposition 3.1. The discrete Laplace transform of the cut-and-join equation (2.6) is
precisely the partial differential equation (1.2).

Reflecting Remark 2.2, the differential equation (1.2) alone does not determine free en-

ergies FBg,n(x1, . . . , xn). This is because every homogeneous function of degree 2g−2+n
2g(B)−1 is in

the kernel of the Euler differential operator

2g − 2 + n−
(
2g(B)− 1

) n∑
i=1

xi
∂

∂xi

on the left-hand side of (1.2). Thus the highest degree terms of free energies are not
determined by this differential equation. We will determine the homogeneous highest degree
terms of the free energies in a different method in Section 5.

The genus 1 elliptic Hurwitz numbers (2.7) yields

(3.1) FE1,n(x1, . . . , xn) =

n!
∑
m|n

1

m

x1 · · ·xn.

4. A Schrödinger equation

In this section we prove (1.6), provided that g(B) > 0. We remark here that for g(B) = 0,
the proof is rather different [26], yet the same formula holds.

Theorem 4.1. The partition function (1.3) satisfies the Schrödinger-type equation (1.6):[
∂

∂~
− 1

2

(
x
∂

∂x

)2

+

(
1

2
− 2g(B)− 1

~

)
x
∂

∂x

]
ZB(x, ~) = 0.
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Proof. We use the same method of the proof of [26, Theorem 5.1, Theorem 5.3, Appendix A].
When (2.3) holds, the diagonal evaluation of (1.2) yields(

2g − 2 + n−
(
2g(B)− 1

)
x
d

dx

)
FBg,n(x, . . . , x)

=
n(n− 1)

2
x2 ∂2

∂u2

∣∣∣∣
u=x

FBg,n−1(u, x, . . . , x)

+
n

2
x2 ∂2

∂u1∂u2

∣∣∣∣
u1=u2=x

FBg−1,n+1(u1, u2, x, . . . , x)

+
n!

2

∑
g1+g2=g

n1+n2=n−1

x2

(n1 + 1)!(n2 + 1)!

d

dx
FBg1,n1+1(x, . . . , x) · d

dx
FBg2,n2+1(x, . . . , x).

(4.1)

For m ≥ 2g(B), let us define

Sm(x) :=
∑

2g−2+n=m−1

1

n!
FBg,n(x, . . . , x).

Note that Sm contains a contribution from domain curves with g − 1 = n(g(B) − 1), or
equivalently, d = n and r = 0, for which the cut-and-join equation is not valid. Therefore,
when we deduce an equation for Sm’s, we need to remove these boundary terms from the
equation. Now from (4.1) we obtain

(4.2)

(
m−

(
2g(B)− 1

)
x
d

dx

)
Sm+1(x)

− 1

2
x2 d

2

dx2
Sm(x)− 1

2

∑
m1+m2=m+1

x
d

dx
Sm1(x) · x d

dx
Sm2(x)

=
∑

2g−2+n=m
g−1=n(g(B)−1)

1

n!

(
m−

(
2g(B)− 1

)
x
d

dx

)
FBg,n(x, . . . , x)

− 1

2

∑
2g−2+n=m−1

g−1=(n+1)(g(B)−1)

1

(n− 1)!
x2 ∂2

∂u2

∣∣∣∣
u=x

FBg,n(u, x, . . . , x)

− 1

2

∑
2g−2+n=m−1

g=(n−1)(g(B)−1)

1

(n− 2)!
x2 ∂2

∂u1∂u2

∣∣∣∣
u1=u2=x

FBg,n(u1, u2, x, . . . , x)

− 1

2

∑
2g−2+n=m

g−1=n(g(B)−1)

∑
g1+g2=g

n1+n2=n+1

x2

n1!n2!

(
d

dx
FBg1,n1

(x, . . . , x)

)(
d

dx
FBg2,n2

(x, . . . , x)

)
.

We note here that in the boundary contribution g − 1 = n
(
g(B)− 1

)
, since n = d, the free

energies are single monomials proportional to x1x2 · · ·xn. Let us look at the right-hand side
of (4.2). The first line of the right-hand side is 0 because FBg,n(x, . . . , x) = HB

g,n(1, . . . , 1)xn,

and m = 2g − 2 + n = n
(
2g(B) − 1

)
, since r = 0. The second line is also 0, because

FBg,n(u, x, . . . , x) is linear in u.

The third summation on the right-hand side is empty, because we need n
(
g(B) − 1

)
≤

g−1 = (n−1)
(
g(B)−1

)
−1, which does not happen. Similarly, the fourth line summation
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is also empty, because we are requiring g = g1 + g2, n+ 1 = n1 + n2, and

n1

(
g(B)− 1

)
≤ g1 − 1

n2

(
g(B)− 1

)
≤ g2 − 1

n
(
g(B)− 1

)
= g − 1.

We have thus obtained a recursion equation

(4.3)

(
m− (2g(B)− 1)x

d

dx

)
Sm+1(x)

=
1

2
x2 d

2

dx2
Sm(x) +

1

2

∑
m1+m2=m+1

x
d

dx
Sm1(x) · x d

dx
Sm2(x).

In terms of the generating function

F (x, ~) =
∞∑
m=1

~m−1Sm(x),

(4.3) becomes

(4.4)

(
∂

∂~
− 2g(B)− 1

~
x
d

dx

)
F (x, ~) =

1

2
x2 d

2

dx2
F (x, ~) +

1

2

(
x
d

dx
F (x, ~)

)2

.

Since ZB(x, ~) = expF (x, ~), (1.6) follows directly from (4.4). This completes the proof. �

Using the Schrödinger equation (1.6), we can determine the form of the solution ZB(x, ~).

Lemma 4.2. The partition function has the following expansion:

(4.5) ZB(x, ~) =

∞∑
m=0

cme
1
2
m(m−1)~

(
~1−χ(B)x

)m
,

where cm is a constant.

Proof. The partition function ZB(x, ~) of (1.3) is a formal power series in x and ~. Thus it
has an expansion of the form

ZB(x, ~) =
∞∑
m=0

cmfm(~)xm

with fm(~) ∈ C[[~]]. Then the Schrödinger equation (1.6) yields an ordinary differential
equation

f ′m =

(
1

2
m(m− 1) +m

1− χ(B)

~

)
fm,

whose solution is

fm(~) = c e
1
2
m(m−1)~~m

(
1−χ(B)

)
.

This completes the proof. �



10 X. LIU, M. MULASE, AND A. SORKIN

5. The heat equation and its consequences

As we have seen in Section 4, the Schrödinger equation (1.6) determines the solution
ZB(x, ~) only up to the form (4.5). To determine the coefficients, we need another technique.

In this section we use a heat equation technique of [22]. First we remark that the cut-
and-join equation gives rise to a heat equation for another generating function of base B
Hurwitz numbers. To determine a solution of a heat equation, we need to identify the
initial value. We will show that the initial condition exactly corresponds to determining
the highest degree terms of FBg,n(x1, . . . , xn). The exponential generating function of these
highest degree terms can be determined by a character formula of [31]. Thus we obtain the
unique solution of the heat equation, which in turn gives all base B Hurwitz numbers.

The generating function for base B Hurwitz numbers we consider is

H(t,p) =

∞∑
g=0

∞∑
n=1

Hg,n(t,p),(5.1)

Hg,n(t,p) =
1

n!

∑
~µ∈Zn

+

HB
g,n(~µ)pµt

r(g,µ),(5.2)

where r(g, µ) = 2g− 2 +n− |µ|
(
1−χ(B)

)
is the number of simple ramification points, and

pµ = pµ1 · · · pµn . The same argument of [16, 22, 23, 29, 33] shows that eH(t,p) satisfies a
heat equation, that is obtained from the cut-and-join equation. For a partition µ = (µ1 ≥
µ2 ≥ · · · ) of a finite length `(µ), we define the shifted power-sum function by

(5.3) pr[µ] :=

∞∑
i=1

[(
µi − i+

1

2

)r
−
(
−i+

1

2

)r]
.

This is a finite sum of `(µ) terms. Then we have [16, 33]

(5.4)
∑
i,j≥1

(
(i+ j)pipj

∂

∂pi+j
+ ijpi+j

∂2

∂pi∂pj

)
sµ(p) = p2[µ] · sµ(p),

where sµ(p) is the Schur function defined by

(5.5) sµ(p) =
∑
|λ|=|µ|

χµ(λ)

zλ
pλ, zµ =

`(µ)∏
i=1

mi!i
mi ,

mi = the number of parts in µ of length i, and χµ(λ) is the value of the irreducible character
of the representation µ of the symmetric group evaluated at the conjugacy class λ. Let us
denote the cut-and-join operator by

4 =
1

2

∑
i,j≥1

(
(i+ j)pipj

∂

∂pi+j
+ ijpi+j

∂2

∂pi∂pj

)
.

Then Schur functions are eigenfunctions of the operator:

4sµ(p) =
1

2
p2[µ] · sµ(p),

and the cut-and-join equation of simple Hurwitz numbers (2.6) yields a heat equation

(5.6)
∂

∂t
eH(t,p) = 4eH(t,p).
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We can solve a heat equation by the method of eigenfunction expansion. Thus we have an
expression

(5.7) eH(t,p) =
∑
µ

aµsµ(p)e
1
2
p2[µ]t

for a constant aµ associated with every partition µ. These constants are determined by
the initial value t = 0. From (5.2) we see that the initial value comes from the cases when
r(g, µ) = 0.

First we note that (2.2) implies that simple Hurwitz numbers with r = 0 correspond to
the case with only 1 branched point on the base curve B. If we allow disconnected domain
curves to cover B, then the number of coverings of degree d with a prescribed ramification
data given by a partition µ ` d over 0 ∈ B with no other ramification points is easy to
calculate. Let us denote by HB•

d (µ) such a number, where we do not label the inverse
images of 0 ∈ B this time. Then from [31, Eq.(0.10)] we obtain

(5.8) HB•
d (µ) =

∑
λ`d

(
dimλ

d!

)χ(B)

|Cµ|
χλ(µ)

dimλ
.

Here Cµ is the conjugacy class of the permutation group Sd determined by the cycle type µ,
a partition λ ` d is a label of an irreducible representation of Sd, and dimλ is its dimension.
The cardinality of the conjugacy class is given by

(5.9) |Cµ| =
d!∏

imi!imi
=
d!

zµ
.

The generating function of these disconnected simple Hurwitz numbers can be calculated,
appealing to (5.5) and (5.9), as follows:

(5.10)

∞∑
d=1

∑
µ`d

HB•
d (µ)pµ =

∞∑
d=1

∑
µ`d

∑
λ`d

(
dimλ

d!

)χ(B)

|Cµ|
χλ(µ)

dimλ
pµ

=
∞∑
d=1

∑
λ`d

d!

dimλ

(
dimλ

d!

)χ(B)∑
µ`d

χλ(µ)

zµ
pµ

=
∑
λ

(
|λ|!

dimλ

)1−χ(B)

sλ(p),

where the last sum runs over all partitions λ.
Note that eH(t,p) is the generating function of simple Hurwitz numbers allowing discon-

nected domain curves. Therefore, the initial value eH(0,p) counts the disconnected base
B Hurwitz numbers with only one branched point at 0 ∈ B. In other words, we have
determined the initial condition by (5.10). The result is

(5.11) eH(0,p) =
∑
µ

(
|µ|!

dimµ

)1−χ(B)

sµ(p) =
∑
µ

aµsµ(p).

Since Schur functions are linear basis for symmetric functions, we establish the following.

Theorem 5.1. The exponential generating function of the base B simple Hurwitz numbers
is given by

(5.12) eH(t,p) =
∑
µ

(
|µ|!

dimµ

)1−χ(B)

sµ(p)e
1
2
p2[µ]t.
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6. The quantum curve

As noted in [26], the diagonal specialization FBg,n(x, x, . . . , x) corresponds to substituting
the power-sum symmetric function

(6.1) pj = xj1 + xj2 + xj3 + · · ·

by its principal specialization pj = xj . More precisely, we have the following.

Lemma 6.1. Let us define the principal specialization of the power-sum symmetric
functions by

pj(s) =
(
s1−χ(B)x

)j
pµ(s) = pµ1(s) · · · pµn(s) =

(
s1−χ(B)x

)|µ|
.

Then we have

(6.2) ZB(x, ~) = eH(~,p(~)).

Proof. We have

H(~,p(~)) =
∑
g,n≥1

∑
µ∈Zn

+

1

n!
~2g−2+n−|µ|

(
1−χ(B)

)
HB
g,n(µ1, . . . , µn)pµ(~)

=
∑
g,n≥1

1

n!
~2g−2+nFEg,n(x, x, . . . , x),

which yields (6.2). �

From the expansion formulas (5.12) and (4.5), together with the equality (6.2), we obtain

(6.3)
∑
µ

(
|µ|!

dimµ

)1−χ(B)

e
1
2
p2[µ]~sµ

(
p(~)

)
=

n∑
m=0

cme
1
2
m(m−1)~

(
~1−χ(B)x

)m
.

As explained in [26, Section 6] and also in [25], this equality is exactly the effect of the
principal specialization of Lemma 6.1, which turns the summation over all partitions into
the sums over just one-row partitions. We have thus determined the coefficients cm in the
expansion (4.5). It is given by

(6.4) cm = (m!)1−χ(B).

This completes the proof of (1.8). The convergence of the infinite series is obvious from the
shape of (1.8) or (1.9), since

lim sup
m→∞

∣∣∣(m!)1−χ(B)e
1
2
m(m−1)~

∣∣∣ 1
m

= 0

if Re(~) < 0.
The expansion (1.8) allows us to derive the quantum curve-type equation (1.4). Since[
~1−χ(B)xe~x

d
dx

(
d

dx
x

)1−χ(B)
]

(m!)1−χ(B)e
1
2
m(m−1)~

(
~1−χ(B)x

)m
=
(
(m+ 1)!

)1−χ(B)
e

1
2
m(m+1)~

(
~1−χ(B)x

)m+1
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for every m ≥ 0, we have

(6.5)

(
1− ~1−χ(B)xe~x

d
dx

(
d

dx
x

)1−χ(B)
)
ZB(x, ~) = 1.

By differentiating (6.5) we obtain (1.4).

Lemma 6.2. Let

P = ~x
d

dx

(
1− ~1−χ(B)xe~x

d
dx

(
d

dx
x

)1−χ(B)
)
,(6.6)

Q =
∂

∂~
− 1

2

(
x
∂

∂x

)2

+

(
1

2
− 1− χ(B)

~

)
x
∂

∂x
.(6.7)

Then

[P,Q] = −1

~
P.

Proof. We first note that Q commutes with x d
dx and d

dxx. Since[
~1−χ(B)xe~x

d
dx , Q

]
=

[
~1−χ(B)xe~x

d
dx ,

∂

∂~

]
+

[
~1−χ(B)x,−1

2

(
x
∂

∂x

)2

+

(
1

2
− 1− χ(B)

~

)
x
∂

∂x

]
e~x

d
dx

= − (1− χ(B)) ~−χ(B)xe~x
d
dx − ~1−χ(B)x2 d

dx
e~x

d
dx

+ ~1−χ(B)x2 d

dx
e~x

d
dx +

1

2
~1−χ(B)xe~x

d
dx − ~1−χ(B)

(
1

2
− 1− χ(B)

~

)
xe~x

d
dx

= 0,

(1.7) follows from

0 =

[
1

~
P,Q

]
=

1

~
[P,Q] +

[
1

~
, Q

]
P =

1

~
[P,Q] +

1

~2
P.

�

7. Semi-classical limit

The semi-classical analysis of the operators P and Q are performed in the following way.
Suppose our counting problem had genus 0 contributions FB0,n(x1, . . . , xn). Then we define

(7.1) Sm(x) :=
∑

2g−2+n=m−1

1

n!
FBg,n(x, . . . , x)

as before, and consider a formal expression

(7.2) Z
B

(x, ~) = e
∑∞

m=0 ~m−1Sm(x) = e
1
~S0(x)+S1(x)ZB(x, ~).

Let us introduce a variable u such that x = eu, and regard the coefficients Sm as functions
in u. Since

x
d

dx
=

d

du
,

we have

P = ~
d

du

(
1− ~1−χ(B)eue~

d
du

(
1 +

d

du

)1−χ(B)
)
.
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Then

(7.3)
e−S1e−

1
~S0Pe

1
~S0eS1 = S′0 − eu

(
S′0
)2−χ(B)

e
1
~

(
S0(u+~)−S0(u)

)
+O(~)

= S′0 − eu
(
S′0
)2−χ(B)

eS
′
0 +O(~),

where ′ = d
du = x d

dx , and by O(~) we mean an operator whose application to the partition

function ZB(x, ~) produces a function of order 1 or higher in ~. Now define a new variable

(7.4) y = S′0.

Then the semi-classical limit ~→ 0 of (7.3) yields an equation

(7.5) y − xy2−χ(B)ey = y
(

1− xy1−χ(B)ey
)

= 0,

since ZB(x, 0) = 1. Note that this is exactly the total symbol of the operator P , where
~x d

dx is represented by a commutative variable y. The second factor of (7.5) also recovers
the Lambert curve (1.5).

Although the formal manipulation seems to work, however, we have to remember that
we have derived the operator P assuming the shape of the solution ZB(x, ~) as in (1.8).
Since we are imposing

PZ
B

(x, ~) = 0,

it forces that y = 0, which makes (7.5) trivially correct.
On the other hand, since the kernel of Q assums only the expansion (4.5), where the

summation index m can be negative, the semi-classical analysis of Q does go through.

(7.6)

e−S1e−
1
~S0Qe

1
~S0eS1

= e−S1e−
1
~S0

[
∂

∂~
− 1

2

∂2

∂u2
+

(
1

2
− 1− χ(B)

~

)
∂

∂u

]
e

1
~S0eS1

= − 1

~2

(
S0 +

1

2

(
S′0
)2

+
(
1− χ(B)

)
S′0

)
− 1

~

(
1

2
S′′0 −

1

2
S′0 + S′0S

′
1 +

(
1− χ(B)

)
S′1

)
+O(1).

For the ~→ 0 limit to exist, we need

S0 +
1

2

(
S′0
)2

+
(
1− χ(B)

)
S′0 = 0,(7.7)

1

2
S′′0 −

1

2
S′0 + S′0S

′
1 +

(
1− χ(B)

)
S′1 = 0.(7.8)

From (7.7) we obtain

(7.9) S0 = −1

2
y2 −

(
1− χ(B)

)
y,

or equivalently,

(7.10) y = −
(
y + 1− χ(B)

)dy
du
.

Its solution is
y + log y1−χ(B) = −u+ const.

If we take the constant of integration to be 0, then we obtain

eu = x = y
χ(B)−1e−y,
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recovering (1.5). From (7.8) we have

1

2
y′ − 1

2
y +

(
y + 1− χ(B)

)
S′1 = 0,

or equivalently
dS1

du
= −1

2

1

y + 1− χ(B)

dy

du
+

1

2

y

y + 1− χ(B)

dy

dy
.

Since we know du/dy from (7.10), we can integrate the above equation to obtain

(7.11) S1 = −1

2
y +

1

2
log
(
y + 1− χ(B)

)
+ const.

The above derivation of the semi-classical limit of the operator Q is valid if ZB(x, ~)
contains negative powers of ~. If we assume the expansion (1.8), then such a situation
occurs when the base curve B satisfies χ(B) > 1. Indeed, our formulas (7.9) and (7.11)
agree with those of [26, Section 5] for B = P1 with y = z, and [3, Section 6] for B = P1[a]
with y = za.
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