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The purpose of this paper is to classify all the subdynamical
systems of the K-P dynamical system (G, T) defined in [2] in terms of
commutative algebras. We show that every orbit in (, T) is locally
isomorphic to a certain first cohomology group H(A) associated with
a commutative algebra A and the K--P dynamical system is nothing
but a dynamical system of a linear motion on this cohomology group.
In the case of so called quasi-periodic solutions, it is known that the
K-P dynamical system determines a linear motion on the Jacobian
varieties of algebraic curves. Our results are the widest extension
of this classical result. We also characterize all the finite dimensional
orbits in (, T). We show that an orbit is of finite dimension if and
only if our cohomology group H(A) is isomorphic to H(C, ) for a
certain complete algebraic curve C defined over the complex number
field C. This enables us to solve the Schottky problem in the following
manner; an Abelian variety is a Jacobian ,,variety if and only if it
appears as an orbit in (, T) (cf. [4]).

In this paper we use notations defined in [1] and [2] freely.
1. Subdynarnical systems of (, T) and commutative algebras.

Let H=C((-)). This is a maximal commutative subalgebra in the
Lie algebra E of [1]. Let ={AcH]A is a C-subalgebra with
unity and A( C[[3-]].-=0}. Define X={S e G]SAS-D} and )a
={S3S-]SeXa}. The condition AfC[[-]].3-=0 intends to avoid
the trivial case Xa=. Also by this condition A has transcendence
degree 1 over C. Mikio Sate has originally introduced the notion of
A to study several orbits.

Proposition 1.1. X is a time invariant subspace in G. So
(fifA, T) is a subdynamical system of (, T).

Proof. For every S e X we have a unique solution S(t) to the
Sate equation starts at S(O)-S ([1]). So it is sufficient to prove
/t(S(t)AS(t)-)D for every n>l. Define

L=S(t)S(t) -1, Z=, (Ln)+dtn and gc--- (Ln)_d..
n=l n=l

*) Supported by the Harvard Committee on the Educational Project for Japa-
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Then for every a=a(3) e A, we have
d(S(t)aS(t) -) [g, a(L)]-- [Z, a(L)].

Since a(L) eD and Z has coefficients in D, we conclude that
/t(S(t)aS(t)-) e D. Q. E. D.

We call (, T) the subdynamical system associated with A e
Note that if A and A’ e satisfy AA’, then ,c. So
subdynamical system associated with A e } is, a dual lattice
with respect to the inclusion relation. We call an orbit in is an
A-maximal orbit if it is not contained in 2, for some A’A.

In the rest of this section we study the structure of A-maximal
orbits.

Definition 1.2. The cohomology group H(A)
is defined by the first cohomology group of the complex

0 ;AC[[-’]].-’ ;C((0-)) ;0.

Theorem 1.3. Every A-maximal orbit M in f( is locally iso-
morphic to H(A) and the K--P dynamical system restricted o M is

lust a dynamical system of a linear motion with respect to the linear
structure of H’(A).

Proof. Start with a point L e M and let S be the Sato operator
of L. First we note that every Oe C[O] corresponds to a different
time evolution by the Lax equation OL/Ot=[(SOnS-)+, L]. Since every
element a e A corresponds to a stationary time because of the fact
[(SaS-)+, L]=O, we see that the eohomology group

H’(A) C((-’)) / (A@C[[0-’]]. -’) C[]. / (A / C[[-’]])
corresponds to the essential time evolutions of L. We can take finitely
or infinitely many elements b, b., e C[3].3 as a basis of H’(A).
Let b,--,*= b,3 and define 3/3s,= b,(3/t). Then the equations

L/s,-[(Sb,S-)/, L] determine the essential time evolutions, hence
the map H’(A)gb,3L/3s, e T(M) is isomorphie, where T(M)
denotes the tangent space of M at L. Since this isomorphism does
not depend on L e M, we conclude that M is locally isomorphic to
H(A) and we can take s, s.,.., as a local coordinate system of M,
where s’s are linear combinations of t’s satisfying the conditions 3/3s,---- b(/t).. Thus the time evolution restricted to M determines
just a linear motion. Q.E.D.

The corresponding time evolution operator U defined in [1] is
given by U--e’’’/’/’’’.

Remark. It is known that the subdynamical system (c0, T)
corresponds to the hierarchy o,f the Korteweg de Vries equation and
()co, T) to the hierarchy of the BousSinesq equation. In this way
every element A e corresponds to. a system of non-linear partial
differential equations which defines the subdynamical system (, T).
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2. Orbits of the K--P dynamical system. Here we study the
opposite direction. We construct A e from an orbit M in (, T).
Let L be the solution to the Lax equation corresponding to M and S
be the Sato operator of L. L defines a homomorphism " To(T)
3L/O e Tz(M) between the tangent spaces.

Lemma 2.1. If Ker (g):/:0, then dim Ker (D=.
Proof. Take an element /s e Ker (g). Since T is the inductive

limit space, /3s==x e(3/3t) for some constants e, e, ..., e. Let
B,= c(L)+. Since [B,, L]=L/s=O, we have IBm, L]=0 for every
n 1. Then, as we have studied in 1 o.f [1], (B, L) is a Lax pair,
hence B can be written as a linear combination of (L)+’s like B
=e(L)+. Let 3/Sn= e(3/t). Then the Lax equation says
that O/Os eKer (g) because OL/Os=[B, L]=0. Since (O/Os)’s are
linearly independent, we conclude dim Ker (g)=. Q.E.D.

Let 3/3s, 3/3s, be a basis o.f Ker (g). Let 3/Os==e(O/O$)
and B,,= e(L)+. Because of the compatibility of (3/Ot)’s, we can
take e to be constant. Since L/3s=O, 3B/3s=O for every i and
]. Then the Zakharov-Shabat equation says that [B,,, B,]=B,/3s
--B,,/sj=O. Define A=S-C[B,,B, ...]Sc0. This is a com-
mutative subalgebra in 0.

Proposition 2.2. The algebra A is an element of .
Proof. It is obvious that A C[[3-q].-=0 because SAS-co.

Let us prove S-B,S e H for every i. By the Sato equation S/t
=-(L)_S we see that S-B,,S=S- c[L- (L)_]S=
+S-(3S/3s). First we know that S-(3S/3s) does not depend on x
because [S-(S/3s), 3]=S-(3L/3s)S=O. We also see hat

a .(S_ as) _s_ as s_ as +s_ a (as

=S-’(Ln)_ a-S-’ [(L")_S]=0,
thus we have S-’B,,S e H. Q. E. D.

Our M is an A-maximal orbit in the subdynamical system (Xa, T)
associated with A. Thus we have obtained the following"

Theorem 2.3. For every orbit M in (, T) there exists a unique
element A e and a subdynamical system (a, T) associated with A
such that a contains M as an A-maximal orbit.

3. Why do curves and their Jacobians arise as solutions to the
soliton equations? Because we have following theorem.

Theorem 3.1. An orbit M in (, T) is of finite dimension if and
only if it comes from a complate algebraic curve C (might be singular)
and M is locally isomorphic to the connected component Pic(C) of the
Picard group of C.
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Proof. Take Ae corresponds to M as given in 2. Since
AcE, we can define the order of elements in A. Let A--{a e A
ord(a) <n}. Note that A_-0. Now defi’ne the graded algebra gr(A)-- A. Since M is locally isomorphic to H(A),

dim C[3] .3/(A/C[[3-’]]) <c
We can conclude that gr(A) has transcendence degree 2 over C by
using Mumford’s observation [3]. Let C-- Proj (gr(A)). Mumford
has studied in [3] that C is a one point compactification of an affine
algebraic curve C-p-Spec(A), where p is. regular point in C. Let
cU be a Stein neighborhood of p in C and -’ be a local coordinate of
cU such that 2--0 at p. Since H(C-p, (c)=0 and H(cU, (c)--0, we
can calculate

H(C, O)=F(U-, o)/[r(C-, O)+F(U, )]
C((2-1))/(AC[[2-1]]. 2-1) Hi(A),

where we have identified 3 with 2. Thus we conclude that M is. locally
isomorphic to Pic(C)=H(C, Oc)/H*(C, Z) and the soliton equations
define (at least locally) a linear motion on Pic(C).

Conversely suppose we have a complete algebraic curve C defined
over C. Take a non-singular point p e C and a local parameter 2- at
p such that 2-=0 defines p. By expanding in we have an injection
F(C-p, 0)- C((2-)). Let A be the image. Then by identifying
2 with 3, we obtain M of finite dimension corresponding to A as
studied in 1. Q.E.D.
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