82. Algebraic Geometry of Soliton Equations*)

By Motohico Mulase
Mathematical Sciences Research Institute, 2223 Fulton Street, Berkeley, CA 94720
(Communicated by Heisuke Hironaka, m. J. a., June 14, 1983)

The purpose of this paper is to classify all the subdynamical systems of the $K-P$ dynamical system (\hat{G}, T) defined in [2] in terms of commutative algebras. We show that every orbit in (\hat{G}, T) is locally isomorphic to a certain first cohomology group $H^{1}(A)$ associated with a commutative algebra A and the $K-P$ dynamical system is nothing but a dynamical system of a linear motion on this cohomology group. In the case of so called quasi-periodic solutions, it is known that the $K-P$ dynamical system determines a linear motion on the Jacobian varieties of algebraic curves. Our results are the widest extension of this classical result. We also characterize all the finite dimensional orbits in (\hat{G}, T). We show that an orbit is of finite dimension if and only if our cohomology group $H^{1}(A)$ is isomorphic to $H^{1}\left(C, \mathcal{O}_{C}\right)$ for a certain complete algebraic curve C defined over the complex number field C. This enables us to solve the Schottky problem in the following manner; an Abelian variety is a Jacobian variety if and only if it appears as an orbit in (\hat{G}, T) (cf. [4]).

In this paper we use notations defined in [1] and [2] freely.

1. Subdynamical systems of (\hat{G}, T) and commutative algebras. Let $H=C\left(\left(\partial^{-1}\right)\right)$. This is a maximal commutative subalgebra in the Lie algebra E of [1]. Let $\mathcal{A}=\{A \subset H \mid A$ is a C-subalgebra with unity and $\left.A \cap C\left[\left[\partial^{-1}\right]\right] \cdot \partial^{-1}=0\right\}$. Define $X_{A}=\left\{S \in G \mid S A S^{-1} \subset D\right\}$ and \hat{X}_{A} $=\left\{S \partial S^{-1} \mid S \in X_{A}\right\}$. The condition $A \cap C\left[\left[\partial^{-1}\right]\right] \cdot \partial^{-1}=0$ intends to avoid the trivial case $X_{A}=\phi$. Also by this condition A has transcendence degree 1 over C. Mikio Sato has originally introduced the notion of A to study several orbits.

Proposition 1.1. X_{A} is a time invariant subspace in G. So $\left(\hat{X}_{A}, T\right)$ is a subdynamical system of (\hat{G}, T).

Proof. For every $S \in X_{A}$ we have a unique solution $S(t)$ to the Sato equation starts at $S(0)=S$ ([1]). So it is sufficient to prove $\partial / \partial t_{n}\left(S(t) A S(t)^{-1}\right) \subset D$ for every $n \geqslant 1$. Define

$$
L=S(t) \partial S(t)^{-1}, \quad Z=\sum_{n=1}^{\infty}\left(L^{n}\right)_{+} d t_{n} \quad \text { and } \quad Z^{c}=-\sum_{n=1}^{\infty}\left(L^{n}\right)_{-} d t_{n} .
$$

[^0]Then for every $a=a(\partial) \in A$, we have

$$
d\left(S(t) a S(t)^{-1}\right)=\left[Z^{c}, a(L)\right]=[Z, a(L)]
$$

Since $a(L) \in D$ and Z has coefficients in D, we conclude that $\partial / \partial t_{n}\left(S(t) a S(t)^{-1}\right) \in D$. Q. E. D.

We call $\left(\hat{X}_{A}, T\right)$ the subdynamical system associated with $A \in \mathcal{A}$. Note that if A and $A^{\prime} \in \mathcal{A}$ satisfy $A \subset A^{\prime}$, then $\hat{X}_{A^{\prime}} \subset \hat{X}_{A} . \quad$ So $\mathscr{X}=\left\{\hat{X}_{A} \mid\right.$ subdynamical system associated with $A \in \mathcal{A}\}$ is a dual lattice of \mathcal{A} with respect to the inclusion relation. We call an orbit in \hat{X}_{A} is an A-maximal orbit if it is not contained in $\hat{X}_{A^{\prime}}$ for some $A^{\prime} \supset A$.

In the rest of this section we study the structure of A-maximal orbits.

Definition 1.2. The cohomology group $H^{1}(A)$ of an algebra $A \in \mathcal{A}$ is defined by the first cohomology group of the complex

$$
0 \longrightarrow A \oplus C\left[\left[\partial^{-1}\right]\right] \cdot \partial^{-1} \longrightarrow C\left(\left(\partial^{-1}\right)\right) \longrightarrow 0 .
$$

Theorem 1.3. Every A-maximal orbit M_{A} in \hat{X}_{A} is locally isomorphic to $H^{1}(A)$ and the $K-P$ dynamical system restricted to M_{A} is just a dynamical system of a linear motion with respect to the linear structure of $H^{1}(A)$.

Proof. Start with a point $L \in M_{A}$ and let S be the Sato operator of L. First we note that every $\partial^{n} \in C[\partial]$ corresponds to a different time evolution by the Lax equation $\partial L / \partial t_{n}=\left[\left(S \partial^{n} S^{-1}\right)_{+}, L\right]$. Since every element $a \in A$ corresponds to a stationary time because of the fact $\left[\left(S a S^{-1}\right)_{+}, L\right]=0$, we see that the cohomology group

$$
H^{1}(A)=C\left(\left(\partial^{-1}\right)\right) /\left(A \oplus C\left[\left[\partial^{-1}\right]\right] \cdot \partial^{-1}\right) \cong C[\partial] \cdot \partial /\left(A / C\left[\left[\partial^{-1}\right]\right]\right)
$$

corresponds to the essential time evolutions of L. We can take finitely or infinitely many elements $b_{1}, b_{2}, \cdots \in C[\partial] \cdot \partial$ as a basis of $H^{1}(A)$. Let $b_{i}=\sum_{j=1}^{n_{i}} b_{i j} \partial^{j}$ and define $\partial / \partial s_{i}=\sum_{j} b_{i j}\left(\partial / \partial t_{j}\right)$. Then the equations $\partial L / \partial s_{i}=\left[\left(S b_{i} S^{-1}\right)_{+}, L\right]$ determine the essential time evolutions, hence the $\operatorname{map} H^{1}(A) \ni b_{i} \mapsto \partial L / \partial s_{i} \in T_{L}\left(M_{A}\right)$ is isomorphic, where $T_{L}\left(M_{A}\right)$ denotes the tangent space of M_{A} at L. Since this isomorphism does not depend on $L \in M_{A}$, we conclude that M_{A} is locally isomorphic to $H^{1}(A)$ and we can take s_{1}, s_{2}, \cdots as a local coordinate system of M_{A}, where s_{i} 's are linear combinations of t_{j} 's satisfying the conditions $\partial / \partial s_{i}$ $=\sum_{j} b_{i j}\left(\partial / \partial t_{j}\right)$. Thus the time evolution restricted to M_{A} determines just a linear motion.
Q. E. D.

The corresponding time evolution operator U defined in [1] is given by $U=e^{s_{1} b_{1}+s_{2} b_{2}+\cdots}$.

Remark. It is known that the subdynamical system ($\hat{X}_{C[22]}, T$) corresponds to the hierarchy of the Korteweg de Vries equation and $\left(\hat{X}_{c[\partial 9]}, T\right)$ to the hierarchy of the Boussinesq equation. In this way every element $A \in \mathcal{A}$ corresponds to a system of non-linear partial differential equations which defines the subdynamical system ($\left.\hat{X}_{A}, T\right)$.
2. Orbits of the $K-P$ dynamical system. Here we study the opposite direction. We construct $A \in \mathcal{A}$ from an orbit M in (\hat{G}, T). Let L be the solution to the Lax equation corresponding to M and S be the Sato operator of $L . L$ defines a homomorphism $\ell: T_{0}(T) \ni \partial / \partial t_{n}$ $\mapsto \partial L / \partial t_{n} \in T_{L}(M)$ between the tangent spaces.

Lemma 2.1. If $\operatorname{Ker}(\ell) \neq 0$, then $\operatorname{dim} \operatorname{Ker}(\ell)=\infty$.
Proof. Take an element $\partial / \partial s \in \operatorname{Ker}(\ell)$. Since T is the inductive limit space, $\partial / \partial s=\sum_{j=1}^{k} c_{j}\left(\partial / \partial t_{j}\right)$ for some constants $c_{1}, c_{2}, \cdots, c_{k}$. Let $B_{s}=\sum_{f} c_{j}\left(L^{j}\right)_{+} . \quad$ Since $\left[B_{s}, L\right]=\partial L / \partial s=0$, we have $\left[B_{s}^{n}, L\right]=0$ for every $n \geqslant 1$. Then, as we have studied in § 1 of [1], $\left(B_{s}^{n}, L\right)$ is a Lax pair, hence B_{s}^{n} can be written as a linear combination of $\left(L^{j}\right)_{+}$'s like B_{s}^{n} $=\sum_{j} e_{j}\left(L^{j}\right)_{+}$. Let $\partial / \partial s_{n}=\sum_{j} e_{j}\left(\partial / \partial t_{j}\right)$. Then the Lax equation says that $\partial / \partial s_{n} \in \operatorname{Ker}(\ell)$ because $\partial L / \partial s_{n}=\left[B_{s}^{n}, L\right]=0$. Since $\left(\partial / \partial s_{n}\right)$'s are linearly independent, we conclude $\operatorname{dim} \operatorname{Ker}(\ell)=\infty$. Q. E. D.

Let $\partial / \partial s_{1}, \partial / \partial s_{2}, \cdots$ be a basis of $\operatorname{Ker}(\ell)$. Let $\partial / \partial s_{j}=\sum_{j=1}^{n_{i}} c_{i j}\left(\partial / \partial t_{j}\right)$ and $B_{s_{i}}=\sum_{j} c_{i j}\left(L^{j}\right)_{+} . \quad$ Because of the compatibility of ($\partial / \partial t_{j}$)'s, we can take $c_{i j}$ to be constant. Since $\partial L / \partial s_{i}=0, \partial B_{s j} / \partial s_{i}=0$ for every i and j. Then the Zakharov-Shabat equation says that $\left[B_{s_{i}}, B_{s_{j}}\right]=\partial B_{s_{j}} / \partial s_{i}$ $-\partial B_{s_{i}} / \partial s_{j}=0$. Define $A=S^{-1} C\left[B_{s_{1}}, B_{s_{2}}, \cdots\right] S \subset \mathcal{E}_{0}$. This is a commutative subalgebra in \mathcal{E}_{0}.

Proposition 2.2. The algebra A is an element of \mathcal{A}.
Proof. It is obvious that $A \cap C\left[\left[\partial^{-1}\right]\right] \cdot \partial^{-1}=0$ because $S A S^{-1} \subset \mathscr{D}_{0}$. Let us prove $S^{-1} B_{s i} S \in H$ for every i. By the Sato equation $\partial S / \partial t_{j}$ $=-\left(L^{j}\right)_{-} S$ we see that $S^{-1} B_{s_{i}} S=S^{-1} \sum_{j} c_{i j}\left[L^{j}-\left(L^{j}\right)_{-}\right] S=\sum_{j} c_{i j} \partial^{j}$ $+S^{-1}\left(\partial S / \partial s_{i}\right)$. First we know that $S^{-1}\left(\partial S / \partial s_{i}\right)$ does not depend on x because $\left[S^{-1}\left(\partial S / \partial s_{i}\right), \partial\right]=S^{-1}\left(\partial L / \partial s_{i}\right) S=0$. We also see that

$$
\begin{aligned}
\frac{\partial}{\partial t_{n}}\left(S^{-1} \frac{\partial S}{\partial s_{i}}\right) & =-S^{-1} \frac{\partial S}{\partial t_{n}} S^{-1} \frac{\partial S}{\partial s_{i}}+S^{-1} \frac{\partial}{\partial t_{n}}\left(\frac{\partial S}{\partial s_{i}}\right) \\
& =S^{-1}\left(L^{n}\right)_{-} \frac{\partial S}{\partial s_{i}}-S^{-1} \frac{\partial}{\partial s_{i}}\left[\left(L^{n}\right)_{-} S\right]=0
\end{aligned}
$$

thus we have $S^{-1} B_{s_{i}} S \in H$.
Q. E. D.

Our M is an A-maximal orbit in the subdynamical system (\hat{X}_{A}, T) associated with A. Thus we have obtained the following:

Theorem 2.3. For every orbit M in (\hat{G}, T) there exists a unique element $A \in \mathcal{A}$ and a subdynamical system $\left(\hat{X}_{A}, T\right)$ associated with A such that \hat{X}_{A} contains M as an A-maximal orbit.
3. Why do curves and their Jacobians arise as solutions to the soliton equations? Because we have following theorem.

Theorem 3.1. An orbit M in (\hat{G}, T) is of finite dimension if and only if it comes from a complate algebraic curve C (might be singular) and M is locally isomorphic to the connected component $\operatorname{Pic}^{0}(C)$ of the Picard group of C.

Proof. Take $A \in \mathcal{A}$ corresponds to M as given in §2. Since $A \subset E$, we can define the order of elements in A. Let $A_{n}=\{a \in A \mid$ $\operatorname{ord}(a) \leqslant n\}$. Note that $A_{-1}=0$. Now define the graded algebra $\operatorname{gr}(A)$ $=\sum_{n=0}^{\infty} A_{n}$. Since M is locally isomorphic to $H^{1}(A)$,

$$
\operatorname{dim} C[\partial] \cdot \partial /\left(A / C\left[\left[\partial^{-1}\right]\right]\right)<\infty .
$$

We can conclude that $g r(A)$ has transcendence degree 2 over C by using Mumford's observation [3]. Let $C=\operatorname{Proj}(g r(A))$. Mumford has studied in [3] that C is a one point compactification of an affine algebraic curve $C-p=\operatorname{Spec}(A)$, where p is a regular point in C. Let U be a Stein neighborhood of p in C and λ^{-1} be a local coordinate of Q such that $\lambda^{-1}=0$ at p. Since $H^{1}\left(C-p, \mathcal{O}_{c}\right)=0$ and $H^{1}\left(\vartheta, \mathcal{O}_{c}\right)=0$, we can calculate

$$
\begin{aligned}
H^{1}\left(C, \mathcal{O}_{c}\right) & =\Gamma\left(\mathcal{U}-p, \mathcal{O}_{c}\right) /\left[\Gamma\left(C-p, \mathcal{O}_{c}\right)+\Gamma\left(\mathcal{U}, \mathcal{O}_{c}\right)\right] \\
& \cong C\left(\left(\lambda^{-1}\right)\right) /\left(A \oplus C\left[\left[\lambda^{-1}\right]\right] \cdot \lambda^{-1}\right)=H^{1}(A),
\end{aligned}
$$

where we have identified ∂ with λ. Thus we conclude that M is locally isomorphic to $\operatorname{Pic}^{0}(C)=H^{1}\left(C, \mathcal{O}_{C}\right) / H^{1}(C, Z)$ and the soliton equations define (at least locally) a linear motion on $\operatorname{Pic}^{\circ}(C)$.

Conversely suppose we have a complete algebraic curve C defined over C. Take a non-singular point $p \in C$ and a local parameter λ^{-1} at p such that $\lambda^{-1}=0$ defines p. By expanding in λ we have an injection $\Gamma\left(C-p, \mathcal{O}_{c}\right) \hookrightarrow C\left(\left(\lambda^{-1}\right)\right)$. Let A be the image. Then by identifying λ with ∂, we obtain M_{A} of finite dimension corresponding to A as studied in § 1.
Q. E. D.

Acknowledgement. The author would like to thank Yujiro Kawamata for valuable suggestions and Takahiro Shiota for stimulating discussions.

References

[1] M. Mulase: Geometry of soliton equations. MSRI preprint (1983).
[2] -: Structure of the solution space of soliton equations. MSRI preprint (1983).
[3] D. Mumford: An algebro-geometric construction of commuting operators and of solutions to the Toda Lattice equation, Korteweg de Vries equation and related non-linear equations. Intl. Symp. on Algebraic Geometry, Kyoto, pp. 115-153 (1977).
[4] B. A. Dubrovin: The Kadomtsev-Petviashvili equation and the relations between the periods of holomorphic differentials on Riemann surfaces. Math. USSR Izvestija, 19, 285-296 (1982).

[^0]: *) Supported by the Harvard Committee on the Educational Project for Japanese Mathematical Scientists.

