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Abstract. In [8] we have shown that if a compact Riemann surface admits
a Strebel differential with rational periods, then the Riemann surface is the
complex model of an algebraic curve defined over the field of algebraic numbers.
We will show in this article that even if all geometric data are defined over Q,
the Strebel differential can still have a transcendental period. We construct a
Strebel differential q on an arbitrary complete nonsingular algebraic curve C
defined over Q such that (i) all poles of q are Q-rational points of C; (ii) the
residue of

√
q at each pole is a positive integer; and (iii) q has a transcendental

period.

1. Introduction

The periodic function eiπθ has the following remarkable property: for every
rational number θ, eiπθ gives an algebraic number, while for every non-rational
algebraic number θ, it gives a transcendental number. It follows that if eiπθ is
algebraic and θ is not rational, then θ is transcendental. This somewhat reciprocal
algebraicity-transcendence relation between the periods of a function and its values
is commonly seen among the periodic functions appearing in algebraic geometry
such as modular functions and theta functions [1].

The purpose of this paper is to examine a similar relation between the periods
of Strebel differentials on a complete nonsingular algebraic curve and its field of
definition. In an earlier paper [8], we have established that if a compact Riemann
surface C admits a Strebel differential q such that the length of every critical
horizontal trajectory is rational, then C is the complex model of an algebraic curve
defined over the field Q of algebraic numbers. (We refer to [8] for the definitions
of the notions used in this article.) Let us call the length of a critical horizontal
trajectory a period of q. Thus the rationality of the periods makes the field of
definition of C algebraic. Following the analogy of the relation between the periods
and the values of theta functions, one can ask questions about the transcendence of
the periods of a Strebel differential and the field of definition of an algebraic curve.

Let Γ be a ribbon graph, that is, a graph with a prescribed cyclic order of half-
edges at each vertex. A ribbon graph is a metric ribbon graph if a positive real
number, conventionally referred to as the length, is assigned to each edge. From
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every metric ribbon graph Γ, one can construct a compact Riemann surface C and
a Strebel differential q on it in a unique manner. The number of poles of q is equal
to the number of boundary circuits of Γ, and the residue of

√
q at each pole is the

total length of the boundary circuit corresponding to the pole.
Conversely, starting with a compact Riemann surface C with n > 0 marked

points and an n-tuple of positive real numbers, one constructs a unique metric
ribbon graph as the union of the critical horizontal trajectories of the Strebel dif-
ferential q on C. The integral of

√
q between zeros of q along a critical horizontal

trajectory is called a period of q. The periods of the Strebel differential determine
a metric on the ribbon graph.

Harer [4] used this idea to establish an orbifold isomorphism

∐
Γ

R
e(Γ)
+

Aut∂(Γ)
∼−→ Mg,n × Rn

+,(1)

where Γ runs over all ribbon graphs with valence of each vertex no less than 3 and
with Euler characteristic 2−2g−n, e(Γ) is the number of edges of Γ, Aut∂(Γ) is the
group of ribbon graph automorphisms of Γ that fix its boundary circuits, and Mg,n

is the moduli space of smooth compact complex algebraic curves of genus g with n
ordered marked points. This isomorphism plays a key role in many recent papers
(cf. [3], [5], [6], [7], [9], [12]). For an explicit construction of this isomorphism, we
refer to [8].

The set of rational points

∐
Γ

Q
e(Γ)
+

Aut∂(Γ)
⊂

∐
Γ

R
e(Γ)
+

Aut∂(Γ)

is well defined (although not as an orbifold over Q) because a ribbon graph auto-
morphism acts as a permutation of edges. Let Mg,n(Q) denote the moduli space of
n-pointed complete nonsingular algebraic curves defined over Q. Comparing Belyi’s
theorem [2], Grothendieck’s idea of dessins d’enfants [10], and Strebel theory [11],
we have established in [8] that there is a natural injective map j:∐

Γ

R
e(Γ)
+

Aut∂(Γ)

∼−−−−→ Mg,n × Rn
+⋃ ⋃

∐
Γ

Q
e(Γ)
+

Aut∂(Γ) −−−−→
j

Mg,n(Q) × Qn
+.

(2)

Belyi’s theorem shows that every complete nonsingular algebraic curve over Q is
constructed as the image of the map j if we do not specify the number n of marked
points. However, in the light of the geometric Gal(Q/Q) actions [10], j cannot be
surjective. Indeed, we shall prove the following:

Theorem 1. Let C be an arbitrary complete nonsingular algebraic curve defined
over Q. Then there is a Strebel differential q on the complex model of C such that

1. every pole of q is a Q-rational point of C;
2. the residue of

√
q at each pole is a positive integer; and

3. q has a transcendental period.
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2. Construction of the Strebel Differential

Let us start by constructing a simple example on P1. We wish to exhibit a
Strebel differential qc on P1 that has poles at 0, 1, ∞, c and c2, such that

√
qc has

residues 2, 2, 2, 4, and 2, resp., at these poles, with c ∈ Q \ {0, 1} a constant to
be determined later. We define two rational maps f and g in order to construct
certain Strebel differentials on P1. First we choose

f : P1 � x �−→ y =
1

(1 − c)2
(x− c)2

x
∈ P1.(3)

Since

f ′(x) =
1

(1 − c)2
x2 − c2

x2
,

f is ramified at x = ±c. We note that

f(0) = f(∞) = ∞, f(1) = f(c2) = 1, f(c) = 0, f(−c) = − 4c
(1 − c)2

.

The other rational map is

g : P1 � y �−→ ζ =
4(y2 − y + 1)3

27y2(1 − y)2
∈ P1.(4)

Consider the meromorphic quadratic differential

q0 =
1

4π2

dζ2

ζ(1 − ζ)

on P1, and put

q1 = g∗(q0) = − 1
π2

y2 − y + 1
y2(1 − y)2

dy2.(5)

It has quadratic poles at 0, 1, and ∞, and simple zeros at 1
2 ± i

√
3

2 . The residue of√
q1 at each pole is 2, and the three periods of q1 are all 1. Let Γy = g−1([0, 1]). It

has been shown in [8] that Γy is the ribbon graph consisting of the set of critical
trajectories of the Strebel differential q1.
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Figure 1. Graph Γy, the inverse image of [0, 1] via ζ = 4(y2−y+1)3

27y2(1−y)2 .

Next, let s be a real algebraic number such that 0 < s <
√

3
2 , choose the constant

c so that

f(−c) = − 4c
(1 − c)2

=
1
2

+ is,(6)
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and define qc = f∗(q1). Since the two critical values of the double-sheeted holomor-
phic covering map f are f(c) = 0 and f(−c), one sees that the Strebel differential
qc on P1 has quadratic poles at 0, 1, ∞, c and c2 with residues of

√
qc at these poles

2, 2, 2, 4, and 2, resp., and a new double zero at −c. Let Γc = f−1(Γy). Because of
the choice of c in Eq. 6, Γc is the ribbon graph consisting of the critical trajectories
for the Strebel differential qc. It has four tri-valent vertices at f−1( 1

2 ± i
√

3
2 ) and a

unique 4-valent vertex at −c = f−1( 1
2 + is).
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Figure 2. Graph Γc for s = 5
√

3
11 .

Let L denote the edge of Γc that connects the vertex −c and one of the tri-valent
vertices. From Eq. 5 one sees that the period of qc corresponding to the edge L is
equal to 1

2 ± �(s) depending on the choice of the tri-valent vertex, where

�(s) =
∫ 1/2+is

1/2

√
− 1
π2

y2 − y + 1
y2(1 − y)2

dy

=
1
π

∫ s

0

√
3/4 − t2

1/4 + t2
dt

=
1
π

arcsin
(

2s(9 + 4s2)
3
√

3(1 + 4s2)

)
.

(7)

In Section 3, we shall show that �(s) is transcendent at s = r
√

3 for every rational
number r such that 0 < r < 1

2 .
The above construction immediately gives the construction of the Strebel dif-

ferential q for the general case of Theorem 1. Let C be an arbitrary complete
nonsingular algebraic curve defined over Q. Belyi [2] has shown that there is a
holomorphic map

β : C −→ P1(8)

that is ramified only over 0, 1 and ∞. The map β is called a Belyi map. Without
loss of generality, we can assume that the ramification degrees over the point 0 ∈ P1

are no less than 3 and the ramification degrees over 1 ∈ P1 are always 2. Define
q = β∗(qc) and Γ = β−1(Γc). Then q is the Strebel differential on C with poles at
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β−1(0), β−1(1), β−1(∞), β−1(c), and β−1(c2). The residue of
√
q at each of these

poles is 2 times the ramification degree of β at each ramification point, 4 at each
inverse image of c, and 2 at each inverse image of c2. Certainly the period of q
corresponding to any edge of Γ that is an inverse image of L is a transcendental
number if we chose s = r

√
3.

3. Transcendence of the Period

Let us now show that �(s) of Eq. 7 is transcendental for every s = r
√

3, where r
is a rational number in between 0 and 1/2. Since

sin(π�(s)) =
2s(9 + 4s2)

3
√

3(1 + 4s2)
=

2r(3 + 4r2)
(1 + 12r2)

∈ Q \ {1/2},

the claim follows from

Proposition 2. Let 0 < � < 1/2 be such that a = sin(π�) is rational but not equal
to 1

2 . Then � is transcendental.

Proof. Let
b = −a + i

√
1 − a2 = eiπ(�+1/2).

This is a solution of the quadratic equation x2 + 2ax + 1 = 0. Let a = m/n be an
irreducible fraction. Then nx2 + 2mx + n is primitive and irreducible if n is odd,
and if n = 2k, then kx2 + mx + k is primitive and irreducible.

Suppose that � ∈ Q. Then b is a solution of the primitive equation xN − 1 = 0
for some integer N . We note that the primitive minimal polynomial of b divides
xN − 1. Therefore, if n is odd, then n = 1, and hence a = m ≥ 1, which is a
contradiction. If n is even, then k = 1 and the only possibility is a = 1

2 . Thus �
is not rational. It cannot be algebraic because b is algebraic. This completes the
proof.

It would be desirable to establish that if a compact Riemann surface C admits a
Strebel differential q whose periods are algebraic but not rational, then the geomet-
ric data (C, (p1, · · · , pn)), where (p1, · · · , pn) are the poles of q, cannot be defined
over Q. In our simple example of Section 2, if the period corresponding to the
edge L is taken to be algebraic but not rational, then the ramification points c and
c2 become transcendental. However, we do not have any general theorem in this
direction.

References

[1] Alan Baker, Transcendental number theory, Cambridge University Press, 1990.
[2] G. V. Belyi, On galois extensions of a maximal cyclotomic fields, Math. U.S.S.R. Izvestija

14 (1980), 247–256.
[3] D. Bessis, C. Itzykson and J. B. Zuber, Quantum field theory techniques in graphical enu-

meration, Advanced in Applied Mathematics 1 (1980), 109–157.
[4] John L. Harer, The virtual cohomological dimension of the mapping class group of an ori-

entable surface, Inventiones Mathematicae 84 (1986), 157–176.
[5] John L. Harer and Don Zagier, The Euler characteristic of the moduli space of curves,

Inventiones Mathematicae 85 (1986), 457–485.
[6] Maxim Kontsevich, Intersection Theory on the Moduli Space of Curves and the Matrix Airy

Function, Communications in Mathematical Physics 147 (1992), 1–23.
[7] Motohico Mulase, Asymptotic analysis of a hermitian matrix integral, International Journal

of Mathematics 6 (1995), 881–892.



6 M. MULASE AND M. PENKAVA

[8] Motohico Mulase and Michael Penkava, Ribbon graphs, quadratic differentials on Riemann

surfaces, and algebraic curves defined over Q, Asian Journal of Mathematics 2 (1998), 875–
920.

[9] Robert C. Penner, Perturbation series and the moduli space of Riemann surfaces, Journal of
Differential Geometry 27 (1988), 35–53.

[10] Leila Schneps and Pierre Lochak, editors, Geometric Galois actions: Around Grothendieck’s
esquisse d’un programme, London Mathematical Society Lecture Notes Series, vol. 242, 1997.

[11] Kurt Strebel, Quadratic differentials, Springer-Verlag, 1984.
[12] Edward Witten, Two dimensional gravity and intersection theory on moduli space, Surveys

in Differential Geometry 1 (1991), 243–310.

Department of Mathematics, University of California, Davis, CA 95616–8633
E-mail address: mulase@math.ucdavis.edu

Department of Mathematics, University of Wisconsin, Eau Claire, WI 54702–4004
E-mail address: penkavmr@uwec.edu


