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MINIMIZATION BY RANDOM SEARCH TECHNIQUES*t 

FRANCISCO J. SOLIS AND ROGER J-B. WETS 

University of Kentucky 

We give two general convergence proofs for random search algorithms. We review the 
literature and show how our results extend those available for specific variants of the 
conceptual algorithm studied here. We then exploit the convergence results to examine 
convergence rates and to actually design implementable methods. Finally we report on some 
computational experience. 

A large class of optimization problems can be handled by random search tech- 
niques. These methods become competitive in some specific circumstances, for in- 
stance when the function characteristics-except possibly function evaluations-are 
difficult to compute, when there is only limited computer memory available, when the 
function to be minimized is very "bumpy," when it is highly desirable to find the 
global minimum of a function having many local minima,.... Random search 
techniques were first proposed by Anderson [1] and later by Rastrigin [2] and Karnopp 
[3]. Two questions arise naturally: Does the random search converge to the global 
infimum? What is the rate of convergence? 

In this short note we derive convergence results for two versions of a conceptual 
algorithm and exhibit the relationship to the existing literature. In the second algo- 
rithm the arguments used to obtain the convergence also provide a lower bound on the 
convergence rate. We then exploit these convergence results to actually design algorith- 
mic procedures. Finally we report on some computational experience. 

We consider the following problem: 
P Given a function f from Rn to R and S a subset of Rn. We seek a point x in S 

which minimizes f on S or at least which yields an acceptable approximation of the 
infimum of f on S. 
Conceptual algorithm. 

Step 0. Find x? in S and set k = 0. 
Step 1. Generate /k from the sample space (Rn", 6, Ak). 
Step 2. Set xk+l = D(xk, k), choose tk+ l, set k = k + 1 and return to Step 1. 

The map D with domain S x Rn and range S satisfies the following condition: 
(H 1) f(D(x, )) < f(x) and if ~ E S, f(D(x, )) < f?(). 
The tk are probability measures corresponding to distribution functions defined on 

R". By Mk we denote the support of uk, i.e., Mk is the smallest closed subset of R of 
measure 1. Nearly all random search methods are adaptive by which we mean that /1k 

depends on the quantities, in particular x?,xI, . .., xk- I, generated by the preceding 
iterations; the 1k are then viewed as conditional probability measures. 

Clearly, here convergence must mean that with probability 1 we obtain a 
"monotone" sequence { f(x k)} = which converges to the infimum off on S. It will be 
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shown that the conceptual algorithm in fact produces such a sequence under very 
weak assumptions but we can not avoid excluding some pathological situations. 
Typically if the infimum of f on S occurs at a point at which f is singularly 
discontinuous, there is no hope to find this minimum point, barring an exhaustive 
examination of every point in S. Simply consider f(x) = x2 when x -= 1 and f(l) = 
- 10, then unless the algorithm specifically tests x = 1, the true minimum will never be 
discovered. This leads to replacing the search for the infimum by that for a, the 
essential infimum of f on S, defined as follows: 

a = inf{ t: v[x E Slf(x) < t] > 0}, 

i.e., the set of points that yield values close to the essential infimum a has nonzero 
v-measure, where v is a nonnegative measure defined on the (Borel) subsets %g of R" 
with v(S) > 0. Typically v(A) is simply the n-dimensional volume of the set A, more 
generally v is the Lebesgue measure. 

By its nature the algorithm precludes the convergence to the actual minimum, which 
might not even exist. Hence we will seek to establish convergence to a small region 
surrounding (in some sense) the candidates for a minimum. The optimality region for P 
is defined by 

{x E S I f(x) < a + c} if a is finite, 
M- {x ESlf(x) < M} if a =-oo. 

where E > 0 and M < 0. The unbounded case, which we have not excluded, is only 
treated for the sake of completeness; as we shall see no separate convergence argument 
is required. 

In the implementation of the conceptual algorithm, we distinguish between local and 
global search methods depending on the properties of the sequence of probability 
measures { /k} utilized. Local search methods have the 1k with bounded support Mk 
and for all k, but possibly a finite number, v(S n Mk) < v(S). Global search methods 
satisfy the following assumption: 

(H2) For any (Borel) subset A of S with v(A) > 0, we have that 

fi [1 -k(A)] =0. 
k=0 

It means that given any subset A of S with positive "volume," the probability of 
repeatedly missing the set A, when generating the random samples ~k, must be zero. 
This requires that the sampling strategy-determined by the choice of the /k-cannot 
rely exclusively on distribution functions concentrated on proper subsets of S of lower 
dimension (such as discrete distributions) or that consistently ignore a part of S with 
positive "volume" (with respect to v). 

We derive a convergence result for both global and local search methods. In the first 
case we need only minimal technical assumptions-measurability of f and S-that are 
always satisfied in practice. 

CONVERGENCE THEOREM (GLOBAL SEARCH). Suppose that f is a measurable function, 
S is a measurable subset of R" and (H1) and (H2) are satisfied. Let {Xk}?=%0 be a 
sequence generated by the algorithm. Then 

limP[x k E R ] = 1 k?oo 

where P[x k E RE,M] is the probability that at step k, the point x k generated by the 
algorithm is in RE M. 
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PROOF. From (HI) it follows that xk or ~k in RE,M implies that x k' E RE,M for all 

k') k + 1. Thus 
k 

P[xk E RE,M] = 1 - P[xk E S\R,] > 1 - (1 
- 

(RE,M )) 

and hence 
k-I 

1 > limP[xk E R E,M> 1- lim (1 
- l(R,M)) = 1 

kToo k'oo 1 /TO=0 

where the last equality follows from (H2). This completes the proof. 
The convergence proofs of a number of algorithms suggested in the literature are 

often involved versions of the preceding, rather trivial, theorem. In [4] Gaviano 
proposes the following version of the conceptual algorithm. Set 

D(xk ,k) = (1 - Xk)xk + k 

where 

Xk = arg min [f((l - A)xk + Xk ): (1 -)xk + k E S] 

and for each k, Mk is the uniform distribution on an n-dimensional sphere centered at 
xk and with radius > 2 diamS = 2 max{dist(x, y), x, y E S }. Convergence is proved 
when f is continuous and S is the closure of its interior and bounded. With similar 
assumptions Baba et al. [5] establish convergence when 

D(xk,k)= ) 
k when f(k ) <f(xk), 

xk otherwise, 

and each ~k is an n-dimensional gaussian distribution with mean xk and covariance I 
(the identity). Previously Archetti, Betro and Steffe [6] considered the same algorithm 
but with weaker assumptions on f, replacing continuity by measurability and with Pk, 

the uniform distribution on S. Matyas [7], [8] was the first to give a convergence proof 
for random search techniques. His method does not quite fit in our framework. He has 
S = R ", f continuous with a unique minimum. The Itk are again n-dimensional 

gaussian distributions with mean xk and covariance I; the map D, proposed by 
Matyas, 

D(xk, k) = 
tk if f( k) < f(x k) , 

x k otherwise, 

for a fixed e' > 0, does not satisfy (H 1). However provided that the e appearing in the 
definition of the optimality region Rf,M is larger than e', the same arguments yield the 
desired convergence. Note that if f is continuous and S = cl(int S), in particular when 
S = R n, then a = ess. inf f = inf f. 

Local search methods (the support Mk of /k is bounded and v(S n Mk) < v(S)) fail 
to satisfy (H2) and thus convergence to the essential infimum is endangered unless we 
subject f, S and the pk to rather drastic restrictions. In general it is not possible to 
obtain convergence for this class of algorithms. In fact, for any one of these algorithms 
it is not difficult to find a function f and a set S that will trap the sequence, generated 
by the algorithm, in a nonoptimal region. The following condition (H3) is sufficient to 
ensure convergence but is often difficult to verify: 

(H3) To any x? E S, there corresponds 0 < y and 0 < -q < I such that 

Lk [ dist(D (x, ), RM ) < dist(x, RM ) - y or D(x, ) E ReM ] > 
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for all k and all x in the compact set Lo = {x E S I f(x) < f(x?)}, 
where dist.(x,A) denotes the distance between a point x and a set A, i.e., 

dist(x,A) = inf dist(x, y). 
yEA 

CONVERGENCE THEOREM (LOCAL SEARCH). Suppose that f is a measurable function, 
S is a measurable subset of R" and (H1) and (H3) are satisfied. Let {xk} k_o be a 
sequence generated by the algorithm. Then 

limP[Exk E R,M] = 
kAoo 

where P [xk E R,M] is the probability that at step k, the point xk generated by the 
algorithm is in RE M. 

PROOF. Let x? be the point generated in Step 0 of the algorithm. Since Lo is 
compact, by assumption (H3), there always exists an integer/p such that 

yp > dist(x, y) for all x, y in L0. 

From (H3) it then follows that 

P[xP E REM]> 1P 

Hence, for k = 1,2, ... 

P[xk E RE M] = I - P[xkP ( RE,M] > 1 -(1 - P)k. 

Now (H1) implies that x, .. ., xP-~ all belong to Lo and by the above it then follows 
that 

P[xkp+ ER ,M] > 1 -(l- _P)k for l=0,1, ...,p-l. 

This completes the proof, since (1 - ~qp)k tends to 0 as k goes to + oo. 
If f and S are "nice" then local search methods have a better convergence behavior 

than global search methods. This seems to justify their use when only a local minimum 
is requested. A number of local search methods have been suggested in the literature 
[2],[9]-[13]. In nearly all of these methods the vector ~k is obtained as a sample of a 
uniform distribution on Mk, a (hyper)sphere with center xk and radius Pk. In the fixed 
step size method Pk is constant, say Pk = 1, and 

D(x,)-= t if f(t)<f(x) and E S, 
x otherwise; 

see Rastrigin [2]. A variant is given by Mutseniyeks and Rastrigin [9], the so-called 
optimized step size method, 

D(x,,) = arg min[f(y) I y = (1 - X)x + X\,X E R, y E S] 

with Pk constant. In [10] Lawrence and Steiglitz describe a fixed step size method but 
with reversals, here 

' 
=x+( -x) if f(t)<f(x) and ~ E S, 

D(x,) = 2x--=x-(~-x) if f(2x- )<f(x)<f(~) and 2x- E S, 
x otherwise. 

Whatever the definition of D, it can always be modified to include reversals. There is 
substantial empirical evidence that confirms the advisability to always include rever- 
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sals, see for example the analysis of Schrack and Choit [11, ?4]. Schumer and Steiglitz 
[12] introduce adaptive step size methods; here Pk is increased or decreased depending 
on the number of successes or failures in finding lower values of f on S in the 
preceding iterations. A variety of policies can be pursued in the updating of Pk, one 
such is the optimized relative step size with 

apk if xk+ # xk, 
Pk+l = 

Pk otherwise, 

where a is a "relative optimal" constant that depends on the dimension of the 
problem, cf. Schrack and Choit [11, ?7 and 8]. 

Not only do the above methods fail to satisfy (H3) but they nearly always fail to 
converge to the essential infimum except when f and S possess specific properties. 
Guimier [13] proposed a modified adaptive step size method; where [k is the uniform 
probability measure on the ball of radius Pk and center xk, the value of Pk is adjusted 
as a function of the quantities generated in the previous iterations. However the Pk 
must remain strictly bounded away from 0. If in addition for all a E R, the sets 
S n { x I f(x) < a) are convex and compact and S has nonempty interior, then (H3) is 
satisfied and this algorithm will converge to the minimum. To see this, let infpk = p > 0 
and let x? be the point generated by the algorithm in Step 0. The set Lo = { x E S I f(x) 
< f(xo)} is compact and convex by the above. Also Rf,M is a compact convex set with 
nonempty interior since S has nonempty interior. Let B' denote a ball of radius e' of 
center c' contained in RE,M and suppose that x' E argmax{dist(c', x) | x E Lo}. Then for 
all x in Lo 

Ik[ dist(D(x, Z ), Rf,M ) < dist(x, R,M )- 1/2p] > , = [ CnB] > 0, 

where , is the uniform measure on the ball with center x' and radius p, B is the ball of 
center c' and radius equal to dist(c', x') - p/2 and C is the convex hull of x' and B'. 

FIGURE E, 

The sets S n {x I f(x) < a} will be convex-compact whenever f is quasi-convex 
(convex level sets) and either S is compact or f is inf-compact (bounded level sets). 
This certainly holds when f is strictly convex and inf-compact, the case for which 
Guimier [13] proves the convergence of the algorithm. 

Stopping criteria. The construction of a sequence { xk k} with a = limfJ(xk) is at 
best of academic interest. In practice, we need a criterion that allows us to stop the 
algorithm after a finite number of iterations. Ideally, given f/ e]0, I[, we like to 
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compute N,B such that 

P[xk R, M] < 1 for all k > N,. 

Suppose that /tk(REM) > m > 0 for all k, then 

P[xk REM] <(l - m)k. 

Choosing an integer N,, > [In f//ln(1 - m)] has the required property, since for k > N#f 
it follows that k > In f//ln(l - m) and hence 8/ < (1 - m)k. Unfortunately we seldom 
know a positive lower bound for Ik(R,M), at least not in the situations when we need 
to resort to random search techniques. 

The most interesting research on stopping criteria involves deriving estimates for the 
infimum value by finding an approximation of the distribution function of the random 
variable f(xk). Chichinadze [14] relies on polynomial fits to approximate this distribu- 
tion function, when f is continuous, S is compact, R,M C intS for E sufficiently small 
and for all k, Ptk is the uniform distribution on S. However, in general this distribution 
function does not have a polynomial behavior, as pointed out by A. Curtis, see [15]. 
Archetti, Betro and Steffe [6] have, under some regularity conditions, found a good 
description of this distribution provided that we sample a sufficient number of points 
in the neighborhood of R,M, E being sufficiently small. Unfortunately this last 
requirement precludes the development of a truly practical criterion. In fact, the search 
for a good stopping criterion seems doomed to fail In [15], Dixon notes that even with S 
compact convex and f twice continuously differentiable, at each step of the algorithm 
there will remain an unsampled square region of nonzero measure v (volume) on 
which f can be redefined (by means of spline fits) so that the unsampled region now 
contains the global minimum. 

Rates of convergence. The description of acceptable norms to evaluate the effi- 
ciency of a random search technique by comparison to other random search tech- 
niques or deterministic algorithms remains the major research question in this area. 
The most promising and tractable approach is the study of the distribution of the 
number of steps required to reach the essential infimum, more specifically by compari- 
son of the expected number of steps and/or higher moments of this distribution. To 
do this we must rely on idealized situations, clearly not all possible (measurable) 
functions can serve as test functions. 

Some piecemeal results about the "convergence rate" of local search methods have 
appeared in the literature. In [2] Rastrigin shows that with f linear, S = Rn, n > 2, the 
fixed step random search algorithm "moves" faster (in the direction of steepest 
descent) than a sequential coordinatewise minimization algorithm. On the other hand 
Lawrence and Steiglitz [10] have epxerimental results that indicate that near a local 
minimum coordinatewise search converges faster than random search but is more 
likely to get trapped on the boundary of S. In [11], Schrack and Choit develop 
heuristic rules for choosing ("optimize") the step size Pk (see above) and report 
encouraging experimental results [16]. They also prove that the "convergence" rate will 
be improved if the function D includes reversals [11, ?5]. Finally, Schumer and Steiglitz 
[12] derive an asymptotic formula which shows that the adaptive step size method 
converges at a "linear" rate depending on the dimension. We will return to this 
question in connection with our experimental results. 

Experimental results. Although we tested a wide variety of variants of the concep- 
tual algorithm, we came to rely almost exclusively on the versions described below, 
which seem to exhibit the best convergence properties. Although we did solve a 
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number of contrained minimization problems, even some hard problems, all the data 
recorded here is for unconstrained problems, i.e., S = R". It is the only class of 
problems for which comparison data is available. 

BASIC ALGORITHM. 

Step O. Pick x?0 R', set k = 0, #s = #f = 0 and b? = 0 e R". Fix p_ I,pb,ex,ct, 
Sex and fc 

Step 1. Set 

Pk- 'ex if # s > Sex, 

Pk= Pk- *' Ct if # f > fc, 
Pk- I otherwise. 

If Pk < Plb, stop; the point xk is "optimal". Otherwise obtain ~ as a sample of the 
multivariate distribution tlk. 

Step 2. Set 

if f(N)<f(xk),set #s = #s + l,#f=0 

and bk+ = 0.4( - xk) + 0.2bk, 

x k+ 2xk-- if f(2x--)<f(xk) < f(), set #s = #s+ 1, #f=0 
and bk+ = bk - 0.4(- xk), 

xk otherwise, set #s = 0, #f = #f + 1, bk+ = (0.5)b k; 

and return to Step 1 with k = k + 1. 
The parameters that appear in the basic algorithm have the following interpretation: 
k is the iteration counter; 
pk determines the "diameter" of the region from which ~ is most likely to be 

extracted; 
Plb is a lower bound on the value of the Pk. If Pk reaches the value Plb, the "region" 

being sampled is so small that it appears useless to continue the search for better 
values of f. The only way Pk can reach this value is by a long string of failures in 
finding smaller values of f; 

b k is a bias factor, slanting the sampling in favor of the directions where success has 
been recorded (the introduction of this bias factor is due to Matyas); 

#s and #f are respectively the number of successive successes and failures in 
decreasing the value of f in the preceding interations; if #s or #f reach respectively 
Sex or fct we expand (by a factor ex) or contract (by a factor ct) the "diameter" Pk- I of 
the probability mass. 

In theory Plb could be chosen to be 0. In this case, the algorithm would produce a 
sequence of points which converge to the minimum for a suitable f. But since we want 
to stop when we are "sufficiently close", in practice we choose Plb to be a small positive 
quantity. In the running of the algorithm, we used Sex = 5, fc = 3, ex = 2, ct = 0.5, 
p_ - = 1 and Plb to be picked as a function of the desired accuracy and the dimension 
of the space. 

ALGORITHM 1. Use the Basic Algorithm with 1ik the multivariate normal with 
center (xk + bk) and covariance matrix PkI. 

It would not be too hard to make Algorithm 1 satisfy (H2) and thus become a 
global search method. For example if for all k, with 1k the multivariate normal with 
covariance pkI, and meanyk, where yk is the projection of xk on a compact subset C 
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of Rn, for example C = [-1, 1]". We replace the stopping criterion: 

if Pk < Plb then stop 

by 

if Pk < Plb, set Pk = PUb > Plb > O? 

The quantity Pub is fixed at the outset. Unfortunately this is not very practical and the 
convergence will generally be very slow. 

ALGORITHM 2. Use the Basic Algorithm with uk the uniform distribution on the 
hypercube of center (xk + b k) and side-length Pk. 

If f is quasi-convex and inf-compact, and P/b > 0 then this algorithm will find a 
point in the neighborhood of a minimum point since (H1) and (H3) are satisfied. In 
general, this is a local search method with reversals. Note again, that in general there is 
no guarantee for convergence to the global minimum. The method will lead us to a 
local minimum. In running the algorithm we used Sex = 5, fct = 3, ex = 2, ct = 0.5, 
p_, = I and Plb as in Algorithm 1. 

ALGORITHM 3. Same as the conceptual algorithm with /k the uniform measure on 
S (a bounded Borel set) and 

D(x,) = A(t) if f(A ()) <f(x) 
x otherwise, 

with A (~) the local minimum of f generated by Algorithm A when starting at the point 
~. In the implementation of Algorithm 3, we used the following two methods to 
generate A (i): 

(a) conjugate direction methods (with no derivatives) as available in the Harwell 
subroutines. 

(b) Algorithm 2 as described above. 
This is a global search method, conditions (H 1) and (H2) are satisfied. The 

convergence rate will tend to be of the same order as that of the algorithm used to find 
A((). This algorithm invariably provided the best results; it would find the global 
(essential) minimum with, on the average, the minimum amount of work. 

To test the local convergence properties we minimized the function f(x) = x . x. 
For the test runs associated with Tables 1, 2 and 3 the iterations were stopped when 
llxkll < 10-3. 

Among other things, the preceding tables indicate that there is a linear correlation 
between the mean number of function evaluations and the dimension, i.e., N = Kn. 
The constant K is a function of the algorithm used, in Table 1 this constant appears to 
be near 40, whereas in Table 2 K seems to be near 33 (with Algorithm 2 but with the 
optimal choice for the step size parameters, one should be able to reach 29.5 [12]). 

TABLE 1. 

Minimize x T * , x? = (1,0, . . ., 0), Algorithm 1,20 Runs for each n. 

Mean numb. Stand. deviat. Stand. 
Dimension Funct. eval. from mean numb. Error 

n N N '7N/vI20 aN/nV20 N/n 

2 73.3 15.4 3.4 1.7 36.7 
3 114.0 23.0 5.1 1.7 38.0 
5 201.0 33.0 7.4 1.5 40.3 

10 408.0 59.0 12.2 1.3 40.8 
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TABLE 2. 

Minimize x * , X= (1,0, . . ., ), Algorithm 2, 20 Runs for each n. 

Mean numb. Stand. deviation Standard 
Dimension funct. eval. from mean numb. Error 

n N (oN (TN/20 O/nV20 N/n 

2 62.8 12.61 2.8 1.4 31.4 
3 100.3 18.74 4.2 1.4 33.4 
5 160.9 25.8 5.8 1.5 32.2 

10 348.0 38.0 8.5 0.8 34.8 

These last results are similar to those obtained by Schrack and Borowski [16]. This 
"linearity" was first observed by Schumer and Steiglitz [12], the algorithm that they 
propose has K ' 80. To explain the linear relation we note, that for large n and with 
optimal choice for the step size, the probability p of success (i.e., to obtain a decrease 
in the value of f) is given by 

(1 - p2/4)(n- 
1)/2 

(n - 1) 2p(7r/2n)'/2 

where p is the optimal step size, see [12]. Now the adaptive step size methods, 
Algorithm 1 and 2, do not tend to produce the optimal step size p but they tend to 
maintain the probability of success constant. Since the above relation is valid when the 
step size p is small, for a given p we can use it to find p as a function of the dimension 
n. We start from the assumption that p is of the form c/fn (as is the case for the 
optimal choice of p with c = 1.225), we get 

p/2 - (n - 2)p3/48 + (n - 2)(n - 3)p5/640 

~p-^~ ~2p( r/2n)I /2 

c/2Vn - 2 - (n - 2)c3/48(n - 2)Vn - 2 + (n - 2)(n - 3)c5/640(n - 2)2/n - 2 
1/2 

2(7r/n - 2 ) 

= c [1 - c2/24 + c4(n - 3)/320(n - 2)] 
4 v 

which tends to a constant as n goes to + oo. So we see that these adaptive algorithms 
tend to fix the step size near Kn-/2. Since the expected decrease in the function value 
is p2p [12] we see that the expected step in the direction of the solution is cp/n. Now cp 
is constant and this would then explain the linear correlation. (This is only a heuristic 
justification of this linearity result, the argument is weak since the Algorithms 1 and 2 
do not necessarily maintain the probability of success equal to the same constant for 
different dimensions.) 

Nonetheless, this correlation coefficient K allows us to compare various random 
search techniques at least as far as their effectiveness in obtaining local minima. To 
illustrate this point let us compare the performances of Gaviano's algorithm [4] and 
Algorithm 2 when minimizing x T. x. Gaviano's algorithm proceeds as follows: 

STEP 0. Pick x?, set k = 0; 
STEP 1. Generate a sample / from a uniform distribution on the unit hypersphere; 
STEP 2. Set xk + I= argmin{f(y) Iy =xk + AX, X E R } and return to Step I with 

k= k+ 1. 
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It is not difficult to see that then 

E {IIk+II} = rn Ilxkll 

where 

= ( /2sin 'ada) ( sin-2a da 

-[(n 
- 

2)/(n -1) ] 

for n sufficiently large. We are interested in a number N, such that after N steps we 
may expect the distance to the minimum, here the origin, to decrease by a factor e < 1. 
Now N = logE/logr,. Since r,, tends to 1, for large n we can approximate logrn by 
(rn - 1). For large n 

n(rn- l) n(/ (n-2)/(n- 1) -1) 

= -n/[(n + 1) + (n- 3n + 2) ] -n/(2n - 1). 

The last term tends to - 1/2 as n goes to + oo. Thus 

N - -2n loge. 

For e = 10-3, N , (13.81)n. The experimental results reported in Table 2 show that the 
same reduction is achieved in about 35n steps. Thus Gaviano's method becomes 
competitive if the 1-dimensional minimization in Step 2 of this algorithm involves, on 
the average, less than 35/13.81 2.6 function evaluations. 

Table 3 exhibits the linear convergence rate of Algorithm 2. To take into account the 
random nature of the algorithm we considered the ratios 

11 -.20(k + 1)1 / 1 .20k 1 = Sk 

rather than to measure the step by step reduction. Also xk is generated by averaging 
20 samples obtained for xk. We let k range from 1 to 10 to compute [t. For each n, the 
regression line 

s = ank + bn 

is obtained from the pairs {(k,sk), k = 1, . . . , 10}. Note that all the coefficients an are 
negative which seems to indicate that tlre convergence rate is slightly better than 
"linear". The "linear" convergence rate is the expected value of IIx k+ll/llxkll I, here 
approximated by r. 

TABLE 3. 

Minimize xT .* , xo arbitrarily chosen, Algorithm 2. 

Mean Reduction Stand. Dev. of Regression Regression Mean Conver. 
Dimension in 20 Steps Mean Reduc. Coefficient Constant Rate 

n ,u a a b r 

2 0.14 0.017 - 0.0012 0.145 0.906 
3 0.25 0.042 - 0.0034 0.262 0.932 
4 0.34 0.067 - 0.0119 0.394 0.948 
5 0.43 0.040 - 0.0071 0.459 0.958 
6 0.50 0.059 - 0.0102 0.548 0.966 

10 0.68 0.042 - 0.0014 0.688 0.981 
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The remaining table gives the average number of function evaluations IL, the 
standard deviation a and the maximum number of function evaluations recorded in 20 
runs, when solving a number of classical problems in global optimization. Algorithm 3 
is used with variants a or b as indicated. Computations were halted when the known 
minimum was attained (with a tolerance of .001 in the norm of x). These results 
compare favorably to any other reported in the literature, cf. [15]. Note however that 
in [15] the number of function evaluations recorded include those required to "verify" 
that the optimal solution has been reached. 

TABLE 4. 

Algorithm 3, xo randomly generated, 20 runs. 

Problem SQRN 5 SQRN 7 SQRN 10 Hartm. 3 Hartm. 6 6 Hump C 

Variant 3a 3a 3a 3a 3a 3b 

Mean numb. 
fct. eval. u 187 273 246 149 158 135 

Stand. dev. o 86 157 198 78 14 32 

Max, numb. 
fct. eval. 405 644 936 345 185 Not avail. 

m = 5,7, 10 
SQRNm = - 7= [(x - a )T. (x - a') + ci]- -, S = [0, 10]4 C R. 

I 1 2 3 4 5 6 7 8 9 10 

0.4 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0 
0.4 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6 

al 0.4 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0 
0.4 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6 

c1 0.1 0.2 0.2 0.4 0.4 0.6 0.3 0.7 0.5 0.5 

d= 3,6. 
Hartm d= - ciexp(- lai(x -pij)2), S = [0, ]d C R d. 
d=3 

3.0 0.1 
[aij]= 10.0 10.0 

30.0 35.0 

c = [1, 1.2, 3, 3.2] 
d=6 

10.0 0.05 
3.0 10.0 

[a ]= 17.0 17.0 
3.5 0.1 
1.7 8.0 
8.0 14.0 

c = [1, 1.2,3,3.2] 
6 Hump C. function 

3.0 0.1 
- 

0.3689 0.4699 0.1091 
10.0 10.0 [Pij] = 0.117 0.4387 0.8732 
30.0 35.0 0.2673 0.747 0.5547 

3.0 
3.5 
1.7 

10.0 
17.0 
8.0 

17.0 
8.0 
0.05 

10.0 
0.1 

14.0 

[Pj] = 

0.1312 
0.1696 
0.5569 
0.0124 
0.8283 
0.5886 

0.2329 
0.4135 
0.8307 
0.3736 
0.1004 
0.9991 

= [ - 3,3] x [- 11.51.5] c R2 

f(x) = 4x2- 2.1x + x? + X2 4x2 + 4x4. I 1 3 1 XJX2 ~2 2- 

Addendum. In "On Accelerations of the Convergence in Random Search Meth- 
ods," to appear in Operation Research Verfahren, K. Marti obtains related convergence 
results for the conceptual algorithm as well as for more structured algorithmic 
procedures. 

0.03815 
0.5743 
0.8828 

0.4047 
0.8828 
0.8732 
0.5743 
0.1091 
0.0381 

0.2348 
0.1451 
0.3522 
0.2883 
0.3047 
0.6650 



30 FRANCISCO J. SOLIS AND ROGER J-B. WETS 

References 

[1] Anderson, R. L. (1953). Recent Advances in Finding Best Operating Conditions. J. Amer. Statist. 
Assoc. 48 789-798. 

[2] Rastrigin, L. A. (1963). The Convergence of the Random Search Method in the Extremal Control of a 
Many-Parameter System. Automat. Remote Control. 24. 1337-1342. 

[3] Karnopp, D. C. (1963). Random Search Techniques for Optimization Problems. Automatica. 1 
111-121. 

[4] Gaviano, M. (1975). Some General Results on the Convergence of Random Search Algorithms in 
Minimization Problems. In Towards Global Optimization, L. Dixon and G. Szego, eds. North Holland, 
Amsterdam. 

[5] Baba, N., Shoman, T. and Sawaragi, Y. (1977). A Modified Convergence Theorem for a Random 
Optimization Algorithm. Information Sci. 13. 

[6] Archetti, F., Betr6, B. and Steffe, S. (1975). A Theoretical Framework for Global Optimization via 
Random Sampling. Cuaderni del Dipartimento di Ricerca Operative e Scienze Statische, Universita 
di Pisa, A-25. 

[7] Matyas, J. (1965). Random Optimization. Automat. Remote Control. 26. 246-253. 
[8] . (1968). Das Zufallige Optimierungs Verfahren und Seine Konvergenz. In 5th International 

Analogue Computation Meetings. 540-544. 
[9] Mutseniyeks, V. A. and Rastrigin, L. (1964). Extremal Control of Continuous Multi-Parameter 

Systems by the Method of Random Search. Eng. Cybernetics. 1. 82-90. 
[10] Lawrence, J. P., III and Steiglitz, K. (1972). Randomized Pattern Search. IEEE Trans. Computers. 

C-21 382-385. 
[11] Schrack G., and Choit, M. (1976). Optimized Relative Step Size Random Searches. Math Program- 

ming. 10 230-244. 
[12] Schumer, M. A. and Steiglitz, K. (1968). Adaptive Step Size Random Search. IEEE Trans. Automatic 

Control. AC-13 270-276. 
[13] Guimier, A. (1975). Algorithmes d'Optimisation a Strategie Aleatoire. These, Universite de Provence. 

[14] Chichinadze, V. K. (1967). Random Search to Determine the Extremum of the Function of Several 
Variables. Eng. Cybernetics. 1 115-123. 

[15] Dixon, L. C. (1977). Global Optima without Convexity. Tech. Report, Num. Optim. Center, Hatfield 

Polytechnic. 
[16] Schrack, G. and Borowski, N. (1972). An Experimental Comparison of Three Random Searches. In 

Numerical Methods for Nonlinear Optimization, F. Lootsma, ed. Academic Press, London, 137-147. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KEN- 
TUCKY 40506 


	Article Contents
	p. 19
	p. 20
	p. 21
	p. 22
	p. 23
	p. 24
	p. 25
	p. 26
	p. 27
	p. 28
	p. 29
	p. 30

	Issue Table of Contents
	Mathematics of Operations Research, Vol. 6, No. 1 (Feb., 1981), pp. i-ii+1-158
	Front Matter
	Editorial Statement [p.  i]
	Cooperative Fuzzy Games [pp.  1 - 13]
	An Exact Penalty Method for Mixed-Integer Programs [pp.  14 - 18]
	Minimization by Random Search Techniques [pp.  19 - 30]
	The System Point Method in Exponential Queues: A Level Crossing Approach [pp.  31 - 49]
	Location on Tree Networks: P-Centre and n-Dispersion Problems [pp.  50 - 57]
	Optimal Auction Design [pp.  58 - 73]
	Analysis of Greedy Solutions for a Replacement Part Sequencing Problem [pp.  74 - 87]
	The Lexicographic Kernel of a Cooperative Game [pp.  88 - 100]
	On the Generality of the Subadditive Characterization of Facets [pp.  101 - 112]
	Relationships between Some Notions Which Are Common to Reliability Theory and Economics [pp.  113 - 121]
	Value Theory without Efficiency [pp.  122 - 128]
	A Modified Integer Labeling for Complementarity Algorithms [pp.  129 - 139]
	Discontinuous Optimization by Smoothing [pp.  140 - 152]
	Minimizing Maximum Lateness in a Two-Machine Open Shop [pp.  153 - 158]
	Back Matter



