
Homework Set No. 5 – Probability Theory (235A), Fall 2009

Posted: 10/27/09 — Due: 11/3/09

1. Prove that if X is a random variable that is independent of itself, then there is a

constant c ∈ R such that P(X = c) = 1.

2. (a) If X ≥ 0 is a nonnegative r.v. with distribution function F , show that

E(X) =

∫ ∞
0

P(X ≥ x) dx.

(b) Prove that if X1, X2, . . . , is a sequence of independent and identically distributed

(“i.i.d.”) r.v.’s, then

P(|Xn| ≥ n i.o.) =

0 if E|X1| <∞,
1 if E|X1| =∞.

(c) Deduce the following converse to the Strong Law of Large Numbers in the case of

undefined expectations: If X1, X2, . . . are i.i.d. and EX1 is undefined (meaning that

EX1+ = EX1− =∞) then

P

(
lim

n→∞

1

n

n∑
k=1

Xk does not exist

)
= 1.

3. Let X be a r.v. with finite variance, and define a function M(t) = E|X− t|, the “mean

absolute deviation of X from t”. The goal of this question is to show that the function

M(t), like its easier to understand and better-behaved cousin, E(X − t)2 (the “moment of

inertia” around t, which by the Huygens-Steiner theorem is simply a parabola in t, taking

its minimum value of V(X) at t = EX), also has some unexpectedly nice propreties.

(a) Prove that M(t) ≥ |t− EX|.

(b) Prove that M(t) is a convex function.

(c) Prove that ∫ ∞
−∞

(
M(t)− |t− EX|

)
dt = V(X)
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(see hints below). Deduce in particular that M(t) − |t − EX| −−−−→
t→±∞

0 (again under the

assumption that V(X) <∞). If it helps, you may assume that X has a density fX .

(d) Prove that if t0 is a (not necessarily unique) minimum point of M(t), then t0 is a median

(that is, a 0.5-percentile) of X.

(e) Optionally, draw (or, at least, imagine) a diagram showing the graphs of the two

functions M(t) and |t− EX| illustrating schematically the facts (a)–(d) above.

Hints: For (c), assume first (without loss of generality - why?) that EX = 0. Divide the

integral into two integrals, on the positive real axis and the negative real axis. For each

of the two integrals, by decomposing |X − t| into a sum of its positive and negative parts

and using the fact that EX = 0 in a clever way, show that one may replace the integrand

(E|X− t|− |t|) by a constant multiple of either E(X− t)+ or E(X− t)−, and proceed from

there.

For (d), first, develop your intuition by plotting the function M(t) in a couple of cases,

for example when X ∼ Binom(1, 1/2) and when X ∼ Binom(2, 1/2). Second, if t0 < t1,

plot the graph of the function x→ |x−t1|−|x−t0|
t1−t0

, and deduce from this a formula for M ′(t0+)

and (by considering t1 < t0 instead) a similar formula for M ′(t0−), the right- and left-sided

derivatives of M at t0, respectively. On the other hand, think how the condition that t0 is

a minimum point of M(t) can be expressed in terms of these one-sided derivatives.

4. (a) Show that the special value Γ(1/2) =
√
π of the Euler gamma function is equivalent

to the integral evaluation
√

2π =
∫∞
−∞ e

−x2/2 dx (which is equivalent to the standard normal

density being a density function).

(b) Prove that the Euler gamma function satisfies for all t > 0 the identity

Γ(t+ 1) = tΓ(t).

(c) Compute EXn when n ≥ 0 is an integer and X has each of the following distributions:

1. X ∼ U(a, b)

2. X ∼ Exp(λ)

3. X ∼ Gamma(α, λ)
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4. X ∼ N(0, 1). In this case, identify EXn combinatorially as the number of matchings

of a set of size n into pairs (for example, if a university dorm has only 2-person housing

units, then when n is even this is the number of ways to divide n students into pairs

of roommates; no importance is given to the ordering of the pairs).

5. (Optional, and more difficult) X ∼ N(1, 1). In this case, identify EXn combinatori-

ally as the number of involutions (permutations which are self-inverse) of a set of

n elements. To count the involutions, it is a good idea to divide them into classes

according to how many fixed points they have. (Note: the expression for E(Xn) may

not have a very simple form.)
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