Homework Set No. 5 - Probability Theory (235A), Fall 2009
Posted: 10/27/09 - Due: 11/3/09

1. Prove that if X is a random variable that is independent of itself, then there is a constant $c \in \mathbb{R}$ such that $\mathbf{P}(X=c)=1$.
2. (a) If $X \geq 0$ is a nonnegative r.v. with distribution function F, show that

$$
\mathbf{E}(X)=\int_{0}^{\infty} \mathbf{P}(X \geq x) d x
$$

(b) Prove that if X_{1}, X_{2}, \ldots, is a sequence of independent and identically distributed ("i.i.d.") r.v.'s, then

$$
\mathbf{P}\left(\left|X_{n}\right| \geq n \text { i.o. }\right)= \begin{cases}0 & \text { if } \mathbf{E}\left|X_{1}\right|<\infty \\ 1 & \text { if } \mathbf{E}\left|X_{1}\right|=\infty\end{cases}
$$

(c) Deduce the following converse to the Strong Law of Large Numbers in the case of undefined expectations: If X_{1}, X_{2}, \ldots are i.i.d. and $\mathbf{E} X_{1}$ is undefined (meaning that $\left.\mathbf{E} X_{1+}=\mathbf{E} X_{1-}=\infty\right)$ then

$$
\mathbf{P}\left(\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} X_{k} \text { does not exist }\right)=1
$$

3. Let X be a r.v. with finite variance, and define a function $M(t)=\mathbf{E}|X-t|$, the "mean absolute deviation of X from t ". The goal of this question is to show that the function $M(t)$, like its easier to understand and better-behaved cousin, $\mathbf{E}(X-t)^{2}$ (the "moment of inertia" around t, which by the Huygens-Steiner theorem is simply a parabola in t, taking its minimum value of $\mathbf{V}(X)$ at $t=\mathbf{E} X$), also has some unexpectedly nice propreties.
(a) Prove that $M(t) \geq|t-\mathbf{E} X|$.
(b) Prove that $M(t)$ is a convex function.
(c) Prove that

$$
\int_{-\infty}^{\infty}(M(t)-|t-\mathbf{E} X|) d t=\mathbf{V}(X)
$$

(see hints below). Deduce in particular that $M(t)-|t-\mathbf{E} X| \xrightarrow[t \rightarrow \pm \infty]{\longrightarrow} 0$ (again under the assumption that $\mathbf{V}(X)<\infty)$. If it helps, you may assume that X has a density f_{X}.
(d) Prove that if t_{0} is a (not necessarily unique) minimum point of $M(t)$, then t_{0} is a median (that is, a 0.5 -percentile) of X.
(e) Optionally, draw (or, at least, imagine) a diagram showing the graphs of the two functions $M(t)$ and $|t-\mathbf{E} X|$ illustrating schematically the facts (a)-(d) above.

Hints: For (c), assume first (without loss of generality - why?) that $\mathbf{E} X=0$. Divide the integral into two integrals, on the positive real axis and the negative real axis. For each of the two integrals, by decomposing $|X-t|$ into a sum of its positive and negative parts and using the fact that $\mathbf{E} X=0$ in a clever way, show that one may replace the integrand $(\mathbf{E}|X-t|-|t|)$ by a constant multiple of either $\mathbf{E}(X-t)_{+}$or $\mathbf{E}(X-t)_{-}$, and proceed from there.

For (d), first, develop your intuition by plotting the function $M(t)$ in a couple of cases, for example when $X \sim \operatorname{Binom}(1,1 / 2)$ and when $X \sim \operatorname{Binom}(2,1 / 2)$. Second, if $t_{0}<t_{1}$, plot the graph of the function $x \rightarrow \frac{\left|x-t_{1}\right|-\left|x-t_{0}\right|}{t_{1}-t_{0}}$, and deduce from this a formula for $M^{\prime}\left(t_{0}+\right)$ and (by considering $t_{1}<t_{0}$ instead) a similar formula for $M^{\prime}\left(t_{0}-\right)$, the right- and left-sided derivatives of M at t_{0}, respectively. On the other hand, think how the condition that t_{0} is a minimum point of $M(t)$ can be expressed in terms of these one-sided derivatives.
4. (a) Show that the special value $\Gamma(1 / 2)=\sqrt{\pi}$ of the Euler gamma function is equivalent to the integral evaluation $\sqrt{2 \pi}=\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x$ (which is equivalent to the standard normal density being a density function).
(b) Prove that the Euler gamma function satisfies for all $t>0$ the identity

$$
\Gamma(t+1)=t \Gamma(t)
$$

(c) Compute $\mathbf{E} X^{n}$ when $n \geq 0$ is an integer and X has each of the following distributions:

1. $X \sim U(a, b)$
2. $X \sim \operatorname{Exp}(\lambda)$
3. $X \sim \operatorname{Gamma}(\alpha, \lambda)$
4. $X \sim N(0,1)$. In this case, identify $\mathbf{E} X^{n}$ combinatorially as the number of matchings of a set of size n into pairs (for example, if a university dorm has only 2-person housing units, then when n is even this is the number of ways to divide n students into pairs of roommates; no importance is given to the ordering of the pairs).
5. (Optional, and more difficult) $X \sim N(1,1)$. In this case, identify $\mathbf{E} X^{n}$ combinatorially as the number of involutions (permutations which are self-inverse) of a set of n elements. To count the involutions, it is a good idea to divide them into classes according to how many fixed points they have. (Note: the expression for $\mathbf{E}\left(X^{n}\right)$ may not have a very simple form.)
