Homework Set No. 6 - Probability Theory (235A), Fall 2009
Posted: 11/3/09 - Due: 11/10/09

1. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Prove that

$$
\int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} f\left(\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}\right) d x_{1} d x_{2} \ldots d x_{n} \underset{n \rightarrow \infty}{\longrightarrow} f(1 / 2)
$$

2. A bowl contains n spaghetti noodles arranged in a chaotic fashion. Bob performs the following experiment: he picks two random ends of noodles from the bowl (chosen uniformly from the $2 n$ possible ends), ties them together, and places them back in the bowl. Then he picks at random two more ends (from the remaining $2 n-2$), ties them together and puts them back, and so on until no more loose ends are left.

Let L_{n} denote the number of spaghetti loops at the end of this process (a loop is a chain of one or more spaghettis whose ends are tied to each other to form a cycle). Compute $\mathbf{E}\left(L_{n}\right)$ and $\mathbf{V}\left(L_{n}\right)$. Find a sequence of numbers $\left(b_{n}\right)_{n=1}^{\infty}$ such that

$$
\frac{L_{n}}{b_{n}} \xrightarrow[n \rightarrow \infty]{\mathbf{P}} 1
$$

if such a sequence exists.
3. Martians communicate in a binary language with two symbols, 0 and 1. A text of length n symbols written in the Martian language looks like a sequence $X_{1}, X_{2}, \ldots, X_{n}$ of i.i.d. random symbols, each of which is 1 with probability p and 0 with probability $1-p$. Here, $p \in(0,1)$ is a parameter (the "Martian bias").

Define the entropy function $H(p)$ by

$$
H(p)=-p \log _{2} p-(1-p) \log _{2}(1-p)
$$

Prove the following result that effectively says that if n is large, then with high probability a Martian text of length n can be encoded into an ordinary (man-made) computer file of length approximately $n \cdot H(p)$ computer bits (note that if $p \neq 1 / 2$ then this is smaller than n, meaning that the text can be compressed by a linear factor):

Theorem. Let $X_{1}, X_{2}, X_{3}, \ldots$ be a sequence of i.i.d. Martian symbols (i.e., Bernoulli variables with bias p). Denote by $\boldsymbol{T}_{n}=\left(X_{1}, \ldots, X_{n}\right)$ the Martian text comprised of the
first n symbols. For any $\epsilon>0$, if n is sufficiently large, the set $\{0,1\}^{n}$ of possible texts of length n can be partitioned into two disjoint sets,

$$
\{0,1\}^{n}=A_{n} \cup B_{n},
$$

such that the following statements hold:

1. $\mathbf{P}\left(\boldsymbol{T}_{n} \in B_{n}\right)<\epsilon$
2. $2^{n(H(p)-\epsilon)} \leq\left|A_{n}\right| \leq 2^{n(H(p)+\epsilon)}$.

Notes: The texts in B_{n} can be thought of as the "exceptional sequences" - they are the Martian texts of length n that are rarely observed. The texts in A_{n} are called "typical sequences". Because of the two-sided bounds the theorem gives on the number of typical sequences, it follows that we can encode them in a computer file of size approximately $n H(p)$ bits, provided we prepare in advance a "code" that translates the typical sequences to computer files of the appropriate size (this can be done algorithmically, for example by making a list of typical sequences sorted in lexicographic order, and matching them to successive binary strings of length $(H(p)+\epsilon) n)$.

Hint: To prove the theorem, let P_{n} be the random variable given by

$$
P_{n}=\prod_{k=1}^{n}\left(p^{X_{k}}(1-p)^{1-X_{k}}\right)
$$

Note that P_{n} measures the probability of the sequence that was observed up to time n. (Somewhat unusually, in this problem the probability itself is thought of as a random variable). Try to represent P_{n} in terms of cumulative sums of a sequence of i.i.d. random variables. Apply the Weak Law of Large Numbers to that sequence, and see where that gets you.
4. Prove the following one-sided version of Chebyshev's inequality: For any r.v. X and $t \geq 0$,

$$
\mathbf{P}(X-\mathbf{E} X \geq t) \leq \frac{\sigma^{2}(X)}{t^{2}+\sigma^{2}(X)}
$$

Hint: Assume without loss of generality that $\mathbf{E} X=0$. For any $a>0$, we have that $\mathbf{P}(X \geq t) \leq \mathbf{P}\left((X+a)^{2} \geq(a+t)^{2}\right)$. Bound this using known methods and then look for the value of a that gives the best bound.
5. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. r.v.'s with distribution $\operatorname{Exp}(1)$. Prove that

$$
\mathbf{P}\left(\limsup _{n \rightarrow \infty} \frac{X_{n}}{\log n}=1\right)=1
$$

6. (Optional). Let $A=\left(X_{i, j}\right)_{i, j=1}^{n}$ be a random $n \times n$ matrix of i.i.d. random signs (i.e., random variables such that $\left.\mathbf{P}\left(X_{i, j}=-1\right)=\mathbf{P}\left(X_{i, j}=1\right)=1 / 2\right)$. Compute $\operatorname{Var}(\operatorname{det}(A))$.
