
Homework Set No. 7 – Probability Theory (235A), Fall 2009

Posted: 11/10/09 — Due: 11/17/09

1. (a) Read, in Durrett’s book (p. 63 in the 3rd edition) or on Wikipedia, the statement

and proof of Kronecker’s lemma.

(b) Deduce from this lemma, using results we learned in class, the following rate of con-

vergence result for the Strong Law of Large Numbers in the case of a finite variance: If

X1, X2, . . . is an i.i.d. sequence such that EX1 = 0, V(X1) <∞, and Sn =
∑n

k=1Xk, then

for any ε > 0,
Sn

n1/2+ε

a.s.−−−→
n→∞

0.

Notes. When X1 is a “random sign”, i.e., a random variable that takes the values −1,+1

with respective probabilities 1/2, 1/2, the sequence of cumulative sums (Sn)∞n=1 is often

called a (symmetric) random walk on Z, since it represents the trajectory of a walker

starting from 0 and taking a sequence of independent jumps in a random (positive or

negative) direction. An interesting question concerns the rate at which the random walk

can drift away from its starting point. By the SLLN, it follows that almost surely, Sn = o(n),

so the distance of the random walk from the origin almost surely has sub-linear growth.

By the exercise above, the stronger result Sn = o(n1/2+ε) also holds for all ε. This is close

to optimal, since by the Central Limit Theorem which we will discuss soon, one cannot

hope to show that Sn = o(n1/2). In fact, the “true” rate of growth is given by the following

famous theorem, whose proof is a (somewhat complicated) elaboration on the techniques

we have discussed.

Theorem (The Law of the Iterated Logarithm (A. Y. Khinchin, 1924)).

P

(
lim sup
n→∞

Sn√
2n log log n

= 1

)
= 1.

Therefore, by symmetry, also

P

(
lim inf
n→∞

Sn√
2n log log n

= −1

)
= 1.

It follows in particular that, almost surely, the random walk will cross the origin in-

finitely many times.
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2. Prove that if F and (Fn)∞n=1 are distribution functions, F is continuous, and Fn(t) →
F (t) as n→∞ for any t ∈ R, then the convergence is uniform in t.

3. Let ϕ(x) = (2π)−1/2e−x
2/2 be the standard normal density function.

(a) If X1, X2, . . . are i.i.d. Poisson(1) random variables and Sn =
∑n

k=1Xk (so Sn ∼
Poisson(n)), show that if n is large and k is an integer such that k ≈ n+ x

√
n then

P(Sn = k) ≈ 1√
n
ϕ(x).

Hint: Use the fact that log(1 + u) = u− u2/2 +O(u3) as u→ 0.

(b) Find limn→∞ e
−n∑n

k=0
nk

k!
.

(c) If X1, X2, . . . are i.i.d. Exp(1) random variables and denote Sn =
∑n

k=1Xk (so Sn ∼
Gamma(n, 1)), Ŝn = (Sn − n)/

√
n. Show that if n is large and x ∈ R is fixed then the

density of Ŝn satisfies

fŜn
(x) ≈ ϕ(x).

4. Prove that if X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) are independent r.v.’s, then X + Y ∼

N(µ1 + µ2, σ
2
1 + σ2

2).

Hint: First, show why it is enough to prove the following statement: If U, V ∼ N(0, 1) are

independent and a2 + b2 = 1, then W = aU + bV ∼ N(0, 1). Then, to prove this, introduce

another auxiliary variable Z = −bU+aV , and consider the two-dimensional transformation

(U, V )→ (W,Z). Apply the formula

fφ(U,V )(w, z) =
1

|Jφ(φ−1(w, z))|
fU,V (φ−1(w, z))

for the density of a transformed random 2-d vector to get the joint density of W,Z.

2


