Homework Set No. 8 - Probability Theory (235A), Fall 2009
Posted: 11/17/09 - Due: 11/24/09

1. (a) Prove that if $X,\left(X_{n}\right)_{n=1}^{\infty}$ are random variables such that $X_{n} \rightarrow X$ in probability then $X_{n} \Longrightarrow X$.
(b) Prove that if $X_{n} \Longrightarrow c$ where $c \in \mathbb{R}$ is a constant, then $X_{n} \rightarrow c$ in probability.
(c) Prove that if $Z,\left(X_{n}\right)_{n=1}^{\infty},\left(Y_{n}\right)_{n=1}^{\infty}$ are random variables such that $X_{n} \Longrightarrow Z$ and $X_{n}-Y_{n} \rightarrow 0$ in probability, then $Y_{n} \Longrightarrow Z$.
2. (a) Let $X,\left(X_{n}\right)_{n=1}^{\infty}$ be integer-valued r.v.'s. Show that $X_{n} \Longrightarrow X$ if and only if $\mathbf{P}\left(X_{n}=k\right) \rightarrow \mathbf{P}(X=k)$ for any $k \in \mathbb{Z}$.
(b) If $\lambda>0$ is a fixed number, and for each n, Z_{n} is a r.v. with distribution $\operatorname{Binomial}(n, \lambda / n)$, show that

$$
Z_{n} \Longrightarrow \operatorname{Poisson}(\lambda) .
$$

3. Let $f(x)=(2 \pi)^{-1 / 2} e^{-x^{2} / 2}$ be the density function of the standard normal distribution, and let $\Phi(x)=\int_{-\infty}^{x} f(u) d u$ be its c.d.f. Prove the inequalities

$$
\begin{equation*}
\frac{1}{x+x^{-1}} f(x) \leq 1-\Phi(x) \leq \frac{1}{x} f(x), \quad(x>0) \tag{1}
\end{equation*}
$$

Note that for large x this gives a very accurate two-sided bound for the tail of the normal distribution. In fact, it can be shown that

$$
1-\Phi(x)=f(x) \cdot \frac{1}{x+\frac{1}{x+\frac{2}{x+\frac{3}{x+\frac{4}{x+\ldots}}}}}
$$

which gives a relatively efficient method of estimating $\Phi(x)$.
Hint: To prove the upper bound in (1), use the fact that for $t>x$ we have $e^{-t^{2} / 2} \leq$ $(t / x) e^{-t^{2} / 2}$. For the lower bound, use the identity

$$
\frac{d}{d x}\left(\frac{e^{-x^{2} / 2}}{x}\right)=-\left(1+\frac{1}{x^{2}}\right) e^{-x^{2} / 2}
$$

to compute $\int_{x}^{\infty}\left(1+u^{-2}\right) e^{-u^{2} / 2} d u$. On the other hand, show that this integral is bounded from above by $\left(1+x^{-2}\right) \int_{x}^{\infty} e^{-u^{2} / 2} d u$.
4. (a) Let X_{1}, X_{2}, \ldots be a sequence of independent r.v.'s that are uniformly distributed on $\{1, \ldots, n\}$. Define

$$
T_{n}=\min \left\{k: X_{k}=X_{m} \text { for some } m<k\right\} .
$$

If the X_{j} 's represent the birthdays of some sequence of people on a planet in which the calendar year has n days, then T_{n} represents the number of people in the list who have to declare their birthdays before two people are found to have the same birthday. Show that

$$
\mathbf{P}\left(T_{n}>k\right)=\prod_{m=1}^{k-1}\left(1-\frac{m}{n}\right), \quad(k \geq 2)
$$

and use this to prove that

$$
\frac{T_{n}}{\sqrt{n}} \Longrightarrow F_{\text {birthday }}
$$

where $F_{\text {birthday }}$ is the distribution function defined by

$$
F_{\text {birthday }}(x)= \begin{cases}0 & x<0 \\ 1-e^{-x^{2} / 2} & x \geq 0\end{cases}
$$

(note: this is not the same as the normal distribution!)
(b) Take $n=365$. Assuming that the approximation $F_{T_{n} / \sqrt{n}} \approx F_{\text {birthday }}$ is good for such a value of n, estimate what is the minimal number of students that have to be put into a classroom so that the probability that two of them have the same birthday exceeds 50%. (Ignore leap years, and assume for simplicity that birthdays are distributed uniformly throughout the year; in practice this is not entirely true.)
5. Consider the following two-step experiment: First, we choose a uniform random variable $U \sim U(0,1)$. Then, conditioned on the event $U=u$, we perform a sequence of n coin tosses with bias u, i.e., we have a sequence $X_{1}, X_{2}, \ldots, X_{n}$ such that conditioned on the event $U=u$, the X_{k} 's are independent and have distribution $\operatorname{Binom}(1, u)$. (Note: without this conditioning, the X_{k} 's are not independent!)

Let $S_{n}=\sum_{k=1}^{n} X_{k}$. Assume that we know that $S_{n}=k$, but don't know the value of U. What is our subjective estimate of the probability distribution of U given this
information? Show that the conditional distribution of U given that $S_{n}=k$ is the beta distribution $\operatorname{Beta}(k+1, n-k+1)$. In other words, show that

$$
\mathbf{P}\left(U \leq x \mid S_{n}=k\right)=\frac{1}{B(k, n-k)} \int_{0}^{x} u^{k}(1-u)^{n-k} d u, \quad(0 \leq x \leq 1)
$$

Note: This problem has been whimsically suggested by Laplace in the 18th century as a way to estimate the probability that the sun will rise tomorrow, given the knowledge that it has risen in the last n days. (Of course, this assumes the unlikely theological scenario whereby at the dawn of history, a $U(0,1)$ random number U was drawn, and that subsequently, every day an independent experiment was performed with probability U of success, such that if the experiment is successful then the sun rises.)

Hint: Use the following density version of the total probability formula: If A is an event and X is a random variable with density f_{X}, then

$$
\mathbf{P}(A)=\int_{\mathbb{R}} f_{X}(u) \mathbf{P}(A \mid X=u) d u
$$

Note that we have not defined what it means to condition on a 0 -probability event (this is a somewhat delicate subject that we will not discuss in this quarter) - but don't worry about it, it is possible to use the formula in computations anyway and get results.

