Homework Set No. 9 - Probability Theory (235A), Fall 2009
Posted: 11/24/09 - Due: Friday, 12/4/09 (Note extended due date!)

1. Compute the characteristic functions for the following distributions.
(a) Poisson distribution: $X \sim \operatorname{Poisson}(\lambda)$.
(b) Geometric distribution: $X \sim \operatorname{Geom}(p)$ (assume a geometric that starts at 1).
(c) Uniform distribution: $X \sim U[a, b]$, and in particular $X \sim[-1,1]$ which is especially symmetric and useful in applications.
(d) Exponential distribution: $X \sim \operatorname{Exp}(\lambda)$.
(e) Symmetrized exponential: A r.v. Z with density function $f_{Z}(x)=\frac{1}{2} e^{-|x|}$. Note that this is the distribution of the exponential distribution after being "symmetrized" in either of two ways: (i) We showed that if $X, Y \sim \operatorname{Exp}(1)$ are independent then $X-Y$ has density $\frac{1}{2} e^{-|x|}$; (ii) alternatively, it is the distribution of an "exponential variable with random sign", namely $\varepsilon \cdot X$ where $X \sim \operatorname{Exp}(1)$ and ε is a random sign (same as the coin flip distribution mentioned above) that is independent of X.
2. (a) If X is a r.v., show that $\operatorname{Re}\left(\varphi_{X}\right)$ (the real part of φ_{X}) and $\left|\varphi_{X}\right|^{2}=\varphi_{X} \overline{\varphi_{X}}$ are also characteristic functions (i.e., construct r.v.'s Y and Z such that $\varphi_{Y}(t)=\operatorname{Re}\left(\varphi_{X}(t)\right)$, $\left.\varphi_{Z}(t)=\left|\varphi_{X}(t)\right|^{2}\right)$.
(b) Show that X is equal in distribution to $-X$ if and only if φ_{X} is a real-valued function.
3. (a) Let Z_{1}, Z_{2}, \ldots be a sequence of independent r.v.'s such that the random series $X=\sum_{n=1}^{\infty} Z_{n}$ converges a.s. Prove that

$$
\varphi_{X}(t)=\prod_{n=1}^{\infty} \varphi_{Z_{n}}(t), \quad(t \in \mathbb{R})
$$

(b) Let X be a uniform r.v. in $(0,1)$, and let Y_{1}, Y_{2}, \ldots be the (random) bits in its binary expansion, i.e. each Y_{n} is either 0 or 1 , and the equation

$$
\begin{equation*}
X=\sum_{n=1}^{\infty} \frac{Y_{n}}{2^{n}} \tag{1}
\end{equation*}
$$

holds. Show that Y_{1}, Y_{2}, \ldots are i.i.d. unbiased coin tosses (i.e., taking values 0,1 with probabilities $1 / 2,1 / 2$).
(c) Compute the characteristic function φ_{Z} of $Z=2 X-1$ (which is uniform in $(-1,1)$). Use (1) to represent this in terms of the characteristic functions of the Y_{n} 's (note that the series (1) converges absolutely, so here there is no need to worry about almost sure convergence). Deduce the infinite product identity

$$
\begin{equation*}
\frac{\sin (t)}{t}=\prod_{n=1}^{\infty} \cos \left(\frac{t}{2^{n}}\right), \quad(t \in \mathbb{R}) \tag{2}
\end{equation*}
$$

(d) Substitute $t=\pi / 2$ in (2) to get the identity

$$
\frac{2}{\pi}=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdot \ldots
$$

4. Let X be a r.v. From the inversion formula, it follows without much difficulty (see Theorem (3.3), p. 95 in [Durrett], 3rd ed.), that if φ_{X} is integrable, then X has a density f_{X}, and the density and characteristic function are related by

$$
\begin{aligned}
\varphi_{X}(t) & =\int_{-\infty}^{\infty} f_{X}(x) e^{i t x} d x \\
f_{X}(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \varphi_{X}(t) e^{-i t x} d t
\end{aligned}
$$

(this shows the duality between the Fourier transform and its inverse). Use this and the answer to question $1(\mathrm{e})$ above to conclude that if X is a r.v. with the Cauchy distribution (i.e., X has density $f_{X}(x)=1 / \pi\left(1+x^{2}\right)$) then its characteristic function is given by

$$
\varphi_{X}(t)=e^{-|t|}
$$

Deduce from this that if X, Y are independent Cauchy r.v.'s then any weighted average $\lambda X+(1-\lambda) Y$, where $0 \leq \lambda \leq 1$, is also a Cauchy r.v. (As a special case, it follows by induction that if X_{1}, \ldots, X_{n} are i.i.d. Cauchy r.v.'s, then their average $\left(X_{1}+\ldots+X_{n}\right) / n$ is also a Cauchy r.v., which was a claim we made without proof earlier in the course.)

Happy Thanksgiving!

