
Homework Set No. 9 – Probability Theory (235A), Fall 2009

Posted: 11/24/09 — Due: Friday, 12/4/09 (Note extended due date!)

1. Compute the characteristic functions for the following distributions.

(a) Poisson distribution: X ∼ Poisson(λ).

(b) Geometric distribution: X ∼ Geom(p) (assume a geometric that starts at 1).

(c) Uniform distribution: X ∼ U [a, b], and in particular X ∼ [−1, 1] which is espe-

cially symmetric and useful in applications.

(d) Exponential distribution: X ∼ Exp(λ).

(e) Symmetrized exponential: A r.v. Z with density function fZ(x) = 1
2
e−|x|. Note

that this is the distribution of the exponential distribution after being “symmetrized”

in either of two ways: (i) We showed that if X, Y ∼ Exp(1) are independent then

X − Y has density 1
2
e−|x|; (ii) alternatively, it is the distribution of an “exponential

variable with random sign”, namely ε ·X where X ∼ Exp(1) and ε is a random sign

(same as the coin flip distribution mentioned above) that is independent of X.

2. (a) If X is a r.v., show that Re(ϕX) (the real part of ϕX) and |ϕX |2 = ϕXϕX are

also characteristic functions (i.e., construct r.v.’s Y and Z such that ϕY (t) = Re(ϕX(t)),

ϕZ(t) = |ϕX(t)|2).

(b) Show that X is equal in distribution to −X if and only if ϕX is a real-valued function.

3. (a) Let Z1, Z2, . . . be a sequence of independent r.v.’s such that the random series

X =
∑∞

n=1 Zn converges a.s. Prove that

ϕX(t) =
∞∏

n=1

ϕZn(t), (t ∈ R).

(b) Let X be a uniform r.v. in (0, 1), and let Y1, Y2, . . . be the (random) bits in its binary

expansion, i.e. each Yn is either 0 or 1, and the equation

X =
∞∑

n=1

Yn

2n
(1)

1



holds. Show that Y1, Y2, . . . are i.i.d. unbiased coin tosses (i.e., taking values 0, 1 with

probabilities 1/2, 1/2).

(c) Compute the characteristic function ϕZ of Z = 2X − 1 (which is uniform in (−1, 1)).

Use (1) to represent this in terms of the characteristic functions of the Yn’s (note that

the series (1) converges absolutely, so here there is no need to worry about almost sure

convergence). Deduce the infinite product identity

sin(t)

t
=
∞∏

n=1

cos

(
t

2n

)
, (t ∈ R). (2)

(d) Substitute t = π/2 in (2) to get the identity
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4. Let X be a r.v. From the inversion formula, it follows without much difficulty (see

Theorem (3.3), p. 95 in [Durrett], 3rd ed.), that if ϕX is integrable, then X has a density

fX , and the density and characteristic function are related by

ϕX(t) =

∫ ∞
−∞

fX(x)eitx dx,

fX(x) =
1

2π

∫ ∞
−∞

ϕX(t)e−itx dt

(this shows the duality between the Fourier transform and its inverse). Use this and the

answer to question 1(e) above to conclude that if X is a r.v. with the Cauchy distribution

(i.e., X has density fX(x) = 1/π(1 + x2)) then its characteristic function is given by

ϕX(t) = e−|t|.

Deduce from this that if X, Y are independent Cauchy r.v.’s then any weighted average

λX + (1 − λ)Y , where 0 ≤ λ ≤ 1, is also a Cauchy r.v. (As a special case, it follows by

induction that if X1, . . . , Xn are i.i.d. Cauchy r.v.’s, then their average (X1 + . . .+Xn)/n

is also a Cauchy r.v., which was a claim we made without proof earlier in the course.)

Happy Thanksgiving!
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