
Solutions to homework assignment #2 Math 119B UC Davis, Spring 2012

1. In the computer game “Angry Birds Space,” let x(t) = (x(t), y(t)) denote the position of
an angry bird at time t flying near a planet centered at (0, 0), and denote r(t) = |x(t)| =√
x(t)2 + y(t)2. Experimental evidence suggests1 that x satisfies the equation

ẍ = −F (r)
x

r

for some unknown function F (r) (since x/r is a unit vector, F (r) represents the force of
attraction towards the planet). The force function F (·) is a function of a single variable, so
we can associate with it a potential function U(r) such that F (r) = −U ′(r).

(a) Show that the quantity M = xẏ−yẋ (the “angry bird angular momentum”) is conserved
along trajectories, i.e., dM

dt = 0.

Solution.

dM

dt
=

d

dt
(xẏ − yẋ) = ẋẏ + xÿ − ẏẋ− yẍ = −U ′(r)

(
x
y

r
− yx

r

)
= 0.

(b) Show that the radial distance r(t) of the angry bird from the center of the planet satisfies
the equation

r̈ = −U ′(r) +
M2

r3
,

where M is the constant of motion from part (a) above (note that M is a function of the
initial conditions x(0), ẋ(0)). An equivalent way of saying this is that r is derived from
a conservative system with one degree of freedom r̈ = −V ′(r), with effective potential

V (r) = U(r) + M2

2r2
.

Solution. Write the system in components:

ẍ = −U ′(r)x
r
, ÿ = −U ′(r)y

r
,

then differentiate r twice, to get:

ṙ =
d

dt

√
x2 + y2 =

x√
x2 + y2

ẋ+
y√

x2 + y2
ẏ =

xẋ+ yẏ

r
,

r̈ =

(
xẍ+ yÿ + ẋ2 + ẏ2

)
r − (xẋ+ yẏ) ṙ

r2

= −U ′(r)
x · xr + y · yr

r
+

(
ẋ2 + ẏ2

)
r − (xẋ+ yẏ)2 /r

r2

= −U ′(r) +
(ẋ2 + ẏ2)(x2 + y2)− (xẋ+ yẏ)2

r3

= −U ′(r) +
(xẏ − yẋ)2

r3
= −U ′(r) +

M2

r3
= − d

dt

(
U(r) +

M2

2r2

)
.

1see: http://www.wired.com/wiredscience/2012/03/the-gravitational-force-in-angry-birds-space
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(c) Let U(r) = −k
r , where k > 0 (corresponding to the case of ordinary Newtonian grav-

itation). Find the minimal and maximal radial distances rmin and rmax as a function
of k and of the initial conditions x(0), ẋ(0). This should include a condition for when
rmax =∞, i.e., a characterization of when the motion is unbounded.

Hint. Use parts (a) and (b) above as well as the fact that E = 1
2 ṙ

2+V (r) is a conserved
quantity. Try to express rmin, rmax in terms of E and M where possible. You will need
to divide into several cases.

Solution. The energy associated with the radial motion,

E = 1
2 ṙ

2 + V (r),

is a conserved quantity. When r is at an extremum (minimum or maximum) point,
we have ṙ = 0, that is, V (r) = E (equivalently, this happens when the kinetic energy
component, 1

2 ṙ
2 is zero, which means all the energy is in potential form). So we get the

equation

V (r) = −k
r

+
M2

2r2
= E,

or

2Er2 + 2kr −M2 = 0.

Solving for r gives

r1,2 =
−k ±

√
k2 + 2M2E

2E
.

We now need to divide into cases according to whether the two solutions correspond to
physical states r > 0. It is helpful to look at a picture of the potential V (r), which looks
something like this:
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We see that when E ≥ 0, the equation V (r) = E has only one physical solution r > 0.
In this case, the motion is unbounded and rmax = ∞. The value of rmin will depend
on whether the initial conditions lead to the radius initially decreasing (in which case

it will decrease all the way to the positive solution r1 = −k+
√
k2+2M2E
2E before changing

direction) or initially increasing (in which case it will continue increasing forever, so
rmin = r(0)).

For the case E < 0, the two solutions r1,2 are both either positive (for E ≥ −k2/2M2) or
are not real numbers (for E < −k2/2M2). The latter case is impossible, since it means
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the initial radial kinetic energy term 1
2 ṙ

2 would be negative. When the two solutions are
real, that means the motion is bounded, with the extremal radial values

rmin =
−k +

√
k2 + 2M2E

2E
, rmax =

−k −
√
k2 + 2M2E

2E
.

To summarize, the answer is expressed in three cases:

(rmin, rmax) =


(
−k+

√
k2+2M2E
2E ,∞

)
if E ≥ 0, ṙ(0) < 0,

(r(0),∞) if E ≥ 0, ṙ ≥ 0,(
−k+

√
k2+2M2E
2E , −k−

√
k2+2M2E
2E

)
if − k2

2M2 ≤ E < 0.

Note that in the case E = −k2/2M2 we have rmin = rmax. In this case r is a constant
and the orbit is a circle.

(d) Repeat part (c) for a potential of the form U(r) = 1
2kr

2 (k > 0), corresponding to a
two-dimensional harmonic oscillator.

Solution. In this case the motion is always bounded, since the effective potential
V (r) = 1

2kr
2 + M2

2r2
is unbounded as r →∞. The values of rmin,max are the solutions of

the equation V (r) = E, i.e., 1
2kr

2 + M2

2r2
= E, or equivalently

kr4 − 2Er2 +M2 = 0

(a quadratic equation in r2). The solutions are

rmin =

√
E −

√
E2 −M2k

k
, rmax =

√
E +

√
E2 −M2k

k
.

2. The Lotke-Volterra predator-prey equations are given by

ẋ = x(a− cy),
ẏ = y(−b+ dx),

(x, y > 0),

where a, b, c, d are positive parameters. This planar system of ODEs is used to model the
interaction over time of the population sizes (represented by the dynamic variables x, y) of
two biological species with one population preying on the other.

(a) Show that the change of variables p = log x, q = log y transforms the system into a
Hamiltonian system ṗ = −∂H

∂q , q̇ = ∂H
∂p , and find the associated Hamiltonian.

Solution. Differentiating p and q gives

ṗ =
ẋ

x
= a− cy = a− ceq,

q̇ =
ẏ

y
= −b+ dx = −b+ dep.

The vector field (a−ceq,−b+dep) has zero divergence, so the system is Hamiltonian. The
Hamiltonian is found by computing a line integral of the vector field with one endpoint
fixed. The result is

H(p, q) = −aq + ceq − bp+ dep.
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(b) Use the fact that the Hamiltonian you found is autonomous to write down a conserved
quantity G(x, y) (of the original system). Note that this gives a family of implicit
equations G(x, y) = C which for various values of the constant C describe the shape of
the solution curves in the x-y plane.

Solution. The Hamiltonian H(p, q) is a conserved quantity, so it suffices to express it
as a function of x and y:

G(x, y) = H(p, q) = H(log x, log y) = −a log y + cy − b log x+ dx.

Verification that G is conserved:

Ġ =
∂G

∂x
ẋ+

∂G

∂y
ẏ =

(
d− b

x

)
x(a− cy) +

(
c− a

y

)
y(−b+ dx)

= (dx− b)(a− cy) + (cy − a)(−b+ dx) = 0.

3. (a) A particle is constrained to slide without friction along the curve y = αx2 in the plane
(where y represents the vertical direction), under the influence of gravity. Write the
Lagrangian L(ẋ, x) of the system (using the x coordinate to parametrize the position of
the particle) and derive the equation of motion. Remember that the potential energy in
a uniform gravitational force field is U = gy, where g is the gravitational constant.

Solution. The different quantities associated with the system are easily computed:

K = 1
2(ẋ2 + ẏ2) = 1

2(ẋ2 + 2αxẋ) = 1
2 ẋ

2(1 + 4α2x2),

U = gy = αgx2,

L = K − U = 1
2 ẋ

2(1 + 4α2x2)− αgx2,

p =
∂L

∂ẋ
= (1 + 4α2x2)ẋ,

∂L

∂x
= 2x(2α2ẋ2 − αg).

The Euler-Lagrange equation becomes

ṗ = (1 + 4α2x2)ẍ+ 8α2xẋ2 = 2x(2α2ẋ2 − αg),

or, after some tidying up,

(1 + 4α2x2)ẍ+ 4α2xẋ2 + 2αgx = 0.

(b) A particle is constrained as in part (a) above to slide along the inverted cycloid, which
is the curve given in parametric form (in the same coordinate system as above) by the
equations

x(θ) = a(θ − sin θ)
y(θ) = a(1 + cos θ)

(0 ≤ θ ≤ 2π),

A particle sliding along an inverted cycloid
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where a is a positive parameter. Let s =
∫ θ
π

√
x′(φ)2 + y′(φ)2 dφ represent the arc length

of the cycloid, as measured from the bottom point θ = π of the curve. Write the La-
grangian L(ṡ, s), where in this case the generalized coordinate used to track the particle’s
position is the arc length s. Show that the Euler-Lagrange equation becomes the equa-
tion for an harmonic oscillator. Can you think of an interesting physical implication of
this result?

Solution. To express the Lagrangian in terms of the coordinate s, we need to find the
relationship between the arc length s and the angle parameter θ. We have

s(θ) =

∫ θ

π

√
x′(φ)2 + y′(φ)2 dφ =

∫ θ

π
a

√
(1− cosφ)2 + sin2 φdφ

= a

∫ θ

π

√
2− 2 cosφdφ = a

∫ θ

π
2 sin(φ/2) dφ = −4a cos(θ/2).

The Lagrangian is the difference between the kinetic and potential energies. The kinetic
energy is

K = 1
2(ẋ2 + ẏ2) = 1

2

((
dx

ds

)2

+

(
dy

ds

)2
)
ṡ2 = 1

2

(
dx2 + dy2

ds2

)
ṡ2 = 1

2 ṡ
2

(a useful point to remember: when a curve is parametrized in terms of arc length, the
kinetic energy will always be 1

2 ṡ
2). The potential energy is given by

U = gy = ga(1 + cos θ) = ga(1 + cos(2(θ/2)))

= ga(1 + 2 cos2(θ/2)− 1) = 2ga

(
−s
4a

)2

=
g

8a
s2

Combining these results, we get that the Lagrangian is

L(q̇, q) = 1
2 ṡ

2 − g

8a
s2.

We recognize that this is the Lagrangian for the harmonic oscillator problem. The
generalized momentum p associated with s is p = ∂L

∂ṡ = ṡ, and the Euler-Lagrange
equation is the harmonic oscillator equation

s̈ = − g

4a
s.

One implication of this result is that the period of oscillation of the particle around
the midpoint of the curve will not depend on its starting point (since we know that
the period of oscillation of an harmonic oscillator is independent of its amplitude).
See the Wikipedia article on “tautochrone curve” (http://en.wikipedia.org/wiki/
Tautochrone_curve) for historical details (and some more mathematical details) about
the problem of finding a curve with this property.
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