
Solutions to homework assignment #3 Math 119B UC Davis, Spring 2012

1. Find the stationary points of the following functionals:

(a)
∫ 1

0 (q′(x)2 + 12xq(x)) dx, q(0) = 0, q(1) = 2

Solution. The functional is
∫ 1

0 L(q′, q, x) where L(q′, q, x) = q′2 + 12xq. We have
∂L
∂q′ = 2q′, ∂L

∂q = 12x. The Euler-Lagrange equation is

2q′′(x) = 12x.

The general solution is of the form q(x) = x3 + C1x + C2. Imposing the boundary
conditions q(0) = 0, q(1) = 2 gives that C1 = 1, C2 = 0, so the stationary point is

q(x) = x3 + x.

(b)
∫ π/2

0 (q(x)2 + q′(x)2 − 2q(x) sinx) dx (unknown boundary conditions—find general form
of the solution)

Solution. Here we have L(q′, q, x) = q2 + q′2 − 2q sinx), ∂L
∂q′ = 2q′, ∂L

∂q = 2q − 2 sinx.
The Euler-Lagrange equation is

2q′′(x) = 2q(x)− 2 sinx

The general solution has the form

q(x) = Aex +Be−x + 1
2 sinx.

(c)
∫ π/2

0 (y′2 − y2 + 2xy) dx, y(0) = 0, y(π/2) = 0

Solution. The Euler-Lagrange equation is y′′ = x − y. Its general solution is y(x) =
A sinx+B cosx+x, and with the boundary conditions y(0) = 0, y(π/2) = 0 we get that
B = 0, A = −π/2, so the solution is

y = x− π

2
sinx.

(d)
∫ 3

2
y′2

x3 dx, y(2) = 1, y(3) = 16

Solution. The general solution to the Euler-Lagrange equation is y = cx4 +d. Imposing
the boundary conditions gives c = 3/13, d = −35/13, so the solution is

y =
3
13
x4 − 35

13
.

2. Show that the functional Φ(y) =
∫ 1

0 (xy + y2 − 2y2y′) dx does not have stationary points
subject to the constraints y(0) = 1, y(1) = 2.
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Solution. Here L = xy + y2 − 2y2y′. We have

∂L

∂y
= x+ 2y − 4yy′,

∂L

∂y′
= −2y2,

0 =
d

dx

(
∂L

∂y′

)
− ∂L

∂y
= −4yy′ − (x+ 2y − 4yy′) = x+ 2y (Euler-Lagrange).

The Euler-Lagrange equation in this case is not an ODE but simply the relation y = −x/2.
This function does not satisfy the boundary conditions y(0) = 1, y(1) = 2, so there is no
stationary point in this case.

3. The air resistance experienced by a bullet, whose shape is the solid of revolution of a curve
y = q(x) moving through the air in the negative x-direction, is

Φ = 4πρv2

∫ `

0
q(x)q′(x)3 dx,

where ρ is the density of the material, v is the velocity of motion and ` is the length of the
body of the bullet. Find the optimal shape q(x) that results in the smallest resistance, subject
to the conditions q(0) = 0, q(`) = R.

Hint. Use the identity d
dx(q(x)q′(x)3) = q′(x)4 + 3q(x)q′(x)2q′′(x).

Solution. The Euler-Lagrange equation for this functional (ignoring the leading constant
4πρv2) is

0 =
d

dx

(
∂L

∂q′

)
− ∂L

∂q
=

d

dx
(3qq′2)− q′3.

Multiplying this equation by q′ and rearranging, we get using the identity in the hint,

0 = q′
d

dx
(3qq′2)− q′4 = q′(3q′3 + 6qq′q′′)− q′4 = 2q′4 + 6qq′2q′′

= 2(q′4 + 3qq′2q′′) = 2
d

dx

(
qq′3

)
=⇒ qq′3 = const,

or, using separation of variables q1/3dq = C dx, which produces the relation

q4/3 = Cx+D =⇒ q(x) = (Cx+D)3/4.

Plugging in the boundary conditions q(0) = 0, q(`) = R leads to the final answer (illustrated
in the figure)

q(x) = R
(x
`

)4/3
.
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Figure 1: A surface of revolution with minimal air resistance

4. The Foucault pendulum is a system with two degrees of freedom (x(t), y(t)) satisfying (in the
approximation of small oscillations) the equations

ẍ = −ω2x+ 2Ωẏ,

ÿ = −ω2y − 2Ωẋ,

where ω,Ω are parameters: ω =
√
g/` is the usual resonant angular frequency associated with

a pendulum, and Ω = Ω0 sin(θ) where Ω0 = 2π
86400

rad
sec is the angular frequency of rotation of

the earth, and θ is the latitude coordinate in the geographical location where the experiment
is performed (e.g., θ = 0 on the equator, θ = 90◦ at the north pole, θ ≈ 38.5◦ in Davis).
Typically, Ω << ω.

(a) Define a new complex-valued coordinate z = eiΩt(x+ iy) (where i =
√
−1). Show that z

satisfies a linear second-order ODE with constant coefficients, and find its general solu-
tion. (Note that z(t) keeps track of the pendulum’s oscillation in a system of coordinates
that rotates at angular velocity Ω relative to the x− y axes.)

Alternative approach: If you are feeling uncomfortable working with ODEs in the
complex plane, instead define the new coordinate system (u, v) where u and v are defined
by

u = cos(Ωt)x− sin(Ωt)y,
v = sin(Ωt)x+ cos(Ωt)y.

Show that the vector (u, v) satisfies a linear second-order ODE with constant coefficients,
and find its general solution.
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Solution.

z = eiΩt(x+ iy),

ż = iΩeiΩt(x+ iy) + eiΩt(ẋ+ iẏ) = iΩz + eiΩt(ẋ+ iẏ),

z̈ = iΩ(iΩz + eiΩt(ẋ+ iẏ)) + iΩeiΩt(ẋ+ iẏ) + eiΩt(ẍ+ iÿ)

= −Ω2z + eiΩt
[
iΩ(ẋ+ iẏ + iΩ(ẋ+ iẏ − ω2(x+ iy) + 2Ω(y − ix)

]
= −(ω2 + Ω2)z.

Thus, the equation for z (which, remember, is a complex variable, i.e., a two-dimensional
vector) is the equation for a two-dimensional harmonic oscillator. If we denote z = u+iv
then the real and imaginary parts of z satisfy the equations

ü = −ω2
effu,

v̈ = −ω2
effv,

which are uncoupled equations for two one-dimensional harmonic oscillators. These os-
cillators have a resonant angular frequency ωeff =

√
ω2 + Ω2, i.e., the Foucault pendulum

oscillates slightly faster at high latitudes than at the equator (or on a planet that is not
rotating)—see below. The general solutions are

u = A cos(ωefft) +B sin(ωefft),
v = C cos(ωefft) +D sin(ωefft),

where A,B,C,D are arbitrary real numbers, or in complex notation

z = z0e
iωefft + z1e

−iωefft,

where z0, z1 are arbitrary complex numbers.

(b) Explain from the solution to part (a) above how the resonant frequency changes at the
north pole. For example, if ω = 2π (corresponding to one oscillation per second—note
that the units of ω are radians per second), what is the effective resonant frequency of
the oscillations?

Solution. If ω = 2π then the effective angular frequency of oscillations is

ωeff =
√
ω2 + Ω2 = 2π

√
1 +

(
1

86400

)2

≈ 2π · (1 + 6.69× 10−11).

That is, the relative change to the period of oscillation at the north pole (where the
effect is strongest) is less than one part in ten billion, and therefore quite negligible.

(c) A Foucault pendulum is set in motion in Davis in the direction of the x-axis (i.e., with
initial conditions x(0) = y(0) = 0, ẋ(0) > 0, ẏ(0) = 0.) After 24 hours, what will be the
direction of its oscillations relative to the positive x-axis?
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Solution. The solution to part (a) shows that the direction of oscillation of the pendu-
lum changes with angular frequency Ω = Ω0 sin θ. At the north pole the line of oscillation
goes through a full rotation every 24 hours. At the latitude of Davis, sin(θ) ≈ 0.6225,
so the angle of oscillation relative to the x-axis after 24 hours is

sin(θ) · 360◦ ≈ 224◦.
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