Homework due: Friday 4/27 in class

Problems

- 1. Find the stationary points of the following functionals:

 - (a) $\int_0^1 (q'(x)^2 + 12xq(x)) dx, \quad q(0) = 0, \quad q(1) = 2$ (b) $\int_0^{\pi/2} (q(x)^2 + q'(x)^2 2q(x)\sin x) dx \text{ (unknown boundary conditions—find general form of the solution)}$
 - (c) $\int_0^{\pi/2} (y'^2 y^2 + 2xy) dx$, y(0) = 0, $y(\pi/2) = 0$

(d)
$$\int_{2}^{3} \frac{y'^{2}}{x^{3}} dx$$
, $y(2) = 1$, $y(3) = 16$

- 2. Show that the functional $\Phi(y) = \int_0^1 (xy + y^2 2y^2y') dx$ does not have stationary points subject to the constraints y(0) = 1, y(1) = 2.
- 3. The air resistance experienced by a bullet, whose shape is the solid of revolution of a curve y = q(x) moving through the air in the negative x-direction, is

$$\Phi = 4\pi\rho v^2 \int_0^\ell q(x)q'(x)^3 \, dx,$$

where ρ is the density of the material, v is the velocity of motion and ℓ is the length of the body of the bullet. Find the optimal shape q(x) that results in the smallest resistance, subject to the conditions $q(0) = 0, q(\ell) = R$.

Hint. Use the identity $\frac{d}{dx}(q(x)q'(x)^3) = q'(x)^4 + 3q(x)q'(x)^2q''(x)$.

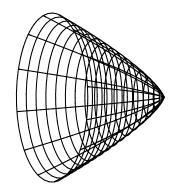


Figure 1: A surface of revolution with minimal air resistance

4. The Foucault pendulum is a system with two degrees of freedom (x(t), y(t)) satisfying (in the approximation of small oscillations) the equations

$$\begin{split} \ddot{x} &= -\omega^2 x + 2\Omega \dot{y}, \\ \ddot{y} &= -\omega^2 y - 2\Omega \dot{x}, \end{split}$$

where ω, Ω are parameters: $\omega = \sqrt{g/\ell}$ is the usual resonant angular frequency associated with a pendulum, and $\Omega = \Omega_0 \sin(\theta)$ where $\Omega_0 = \frac{2\pi}{86400} \frac{\text{rad}}{\text{sec}}$ is the angular frequency of rotation of the earth, and θ is the latitude coordinate in the geographical location where the experiment is performed (e.g., $\theta = 0$ on the equator, $\theta = 90^\circ$ at the north pole, $\theta \approx 38.5^\circ$ in Davis). Typically, $\Omega << \omega$.

(a) Define a new complex-valued coordinate $z = e^{i\Omega t}(x+iy)$ (where $i = \sqrt{-1}$). Show that z satisfies a linear second-order ODE with constant coefficients, and find its general solution. (Note that z(t) keeps track of the pendulum's oscillation in a system of coordinates that rotates at angular velocity Ω relative to the x - y axes.)

Alternative approach: If you are feeling uncomfortable working with ODEs in the complex plane, instead define the new coordinate system (u, v) where u and v are defined by

$$u = \cos(\Omega t)x - \sin(\Omega t)y,$$

$$v = \sin(\Omega t)x + \cos(\Omega t)y.$$

Show that the vector (u, v) satisfies a linear second-order system of ODEs with constant coefficients, and find its general solution.

- (b) (Optional) Explain from the solution to part (a) above how the resonant frequency changes at the north pole. For example, if $\omega = 2\pi$ (corresponding to one oscillation per second—note that the units of ω are radians per second), what is the effective resonant frequency of the oscillations?
- (c) (Optional) A Foucault pendulum is set in motion in Davis in the direction of the x-axis (i.e., with initial conditions $x(0) = y(0) = 0, \dot{x}(0) > 0, \dot{y}(0) = 0$.) After 24 hours, what will be the direction of its oscillations relative to the positive x-axis?