
Solutions to homework assignment #4 Math 119B UC Davis, Spring 2012

1. A rope of length ` and uniform linear density ρ hangs between two points (−A/2, 0), (A/2, 0),
where we assume that ` ≥ A. Its shape y = q(x) is determined by the requirement that the
potential energy

E = −ρg
∫ A/2

−A/2
q(x) ds = −ρg

∫ A/2

−A/2
q(x)

√
1 + q′(x)2 dx

is minimized (here, ds =
√
dx2 + dy2 is the arc length element), subject to the constraints

` =

∫ A/2

−A/2

√
1 + q′(x)2 dx, q(−A/2) = q(A/2) = 0.

Show that the equation for the shape (known as a catenary) is

q(x) = c+ r cosh(x/r)

for suitable constants c and r which can be expressed as functions of ` and A.

Figure 1: The shape of a hanging rope

Solution. Following the instructions in the hint, the modified Lagrangian is

Lλ(q′, q) = q
√

1 + q′2 + λ
√

1 + q′2 = (q + λ)
√

1 + q′2.

The minimizing curve q satisfies the Euler-Lagrange equation, and in this case (since the
Lagrangian is autonomous), it also satisfies the energy conservation equation

dH

dt
=

d

dt

(
pq′ − Lλ

)
= 0,

where p = ∂Lλ
∂q′ = (q+λ)q′√

1+q′2
. So we get the first-order ODE

0 =
d

dx

(
(q + λ)q′2√

1 + q′2
− (q + λ)

√
1 + q′2

)

=
d

dx

(
(q + λ)

(
q′2 − (1 + q′2)√

1 + q′2

))
= − d

dx

(
q + λ√
1 + q′2

)
,
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or

q + λ√
1 + q′2

= k =⇒ q + λ = k
√

1 + q′2,

where λ is the Lagrange multiplier (an arbitrary number that can be chosen to fit the boundary
conditions) and k is an arbitrary integration constant. It is now easy to check that the formula
for the catenary, q(x) = r cosh(x/r) + c, satisfies this equation, since we have√

1 + q′2 =
√

1 + sinh(x/r)2 = cosh(x/r) =
q − c
r

.

Finally, having found the general form of the solution (the family of catenary curves), by
imposing the boundary conditions q(−A/2) = q(A/2) = 0 and the arc length constraint
` =

∫
ds we can find the values for the parameters r and c in terms of A and `. The value of

r is the solution to the equation

` =

∫ A/2

−A/2

√
1 + sinh2(x/r) dx =

∫ A/2

−A/2
cosh(x/r) dx = 2r sinh(A/2r),

and the value of c is

c = q(A/2)− r cosh(A/2r) = −r cosh(A/2r) = −r
√

1 + sinh2(A/2r)

= −r
√

1 +
`2

4r2
= −

√
r2 + (`/2)2.

2. The exponential eA = exp(A) of a square matrix A = (ai,j)
d
i,j=1 is defined by

exp(A) =
∞∑
n=0

1

n!
An.

(a) Show that if P and A are square matrices and P is invertible then

exp(PAP−1) = PeAP−1.

Solution. Note that for any n ≥ 1,

(PAP−1)n = PAP−1 · PAP−1 · . . . · PAP−1 = P (AA . . . A)P−1 = PAnP−1.

It follows that

exp(PAP−1) = I + (PAP−1) +
1

2!
(PAP−1)2 +

1

3!
(PAP−1)3 + . . .

= PP−1 + PAP−1 +
1

2!
PA2P−1 +

1

3!
PA3P−1 + . . .

= P

(
I +A+

1

2!
A2 +

1

3!
A3 + . . .

)
P−1 = PeAP−1.
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(b) Compute etA for the following matrices A:

i. A =

(
3 0
0 −1

)
Solution. etA =

(
e3t 0
0 e−t

)
ii. A =

(
0 1
−6 5

)
Solution. Diagonalizing A, we find that it has eigenvalues λ1 = 2, λ2 = 3, with

corresponding eigenvectors v1 =

(
1
2

)
, v3 =

(
1
3

)
. Equivalently, this means that

A can be expressed as A = PDP−1, where

D =

(
2 0
0 3

)
, P =

(
1 1
2 3

)
, P−1 =

(
3 −1
−2 1

)
.

Therefore by part (a) above, we have

exp(tA) = PetDP−1 =

(
1 1
2 3

)(
e2t 0
0 e3t

)(
3 −1
−2 1

)
=

(
e2t e3t

2e2t 3e3t

)(
3 −1
−2 1

)
=

(
3e2t − 2e3t −e2t + e3t

6e2t − 6e3t −2e3t + 3e3t

)
.

iii. A =

(
0 1
−1 0

)
Solution. Observe thatA2 = −I. We can therefore write the power series expansion
as

etA = I + tA+
t2

2!
A2 +

t3

3!
A3 +

t4

4!
A4 + . . .

= I + tA+
t2

2!
(−I) +

t3

3!
(−A) +

t4

4!
I +

t5

5!
A+ . . .

= I

(
1− t2

2!
+
t4

4!
− t6

6!
+ . . .

)
+A

(
1− t3

3!
+
t5

5!
− . . .

)
= cos t · I + sin t ·A =

(
cos t 0

0 cos t

)
+

(
0 sin t

− sin t 0

)
=

(
cos t sin t
− sin t cos t

)
(c) Prove that if A,B are commuting square matrices (i.e., matrices which satisfy AB = BA)

then exp(A+B) = exp(A) exp(B).
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Solution.

exp(A+B) =
∞∑
n=0

1

n!
(A+B)n

=
∞∑
n=0

1

n!

n∑
k=0

n!

k!(n− k)!
AkBn−k = [now denoting j = n− k]

=
∞∑
n=0

∑
j,k≥0

j+k=n

1

k! j!
AkBj =

∞∑
k=0

1

k!
Ak ·

∞∑
j=0

1

j!
Bj = eAeB.

3. Prove the formula

det (exp(A)) = etr(A),

where A is a square matrix and tr(A) denotes the trace of A. You may assume that the
matrix is of order 2× 2 and that exp(A) has the following equivalent definition:

exp(A) = lim
n→∞

(
I +

A

n

)n
(for bonus points, show that this definition is equivalent to the definition using power series
and/or prove the claim for a general k × k matrix).

Solution. If A =

(
a b
c d

)
then

det exp(A) = lim
n→∞

det

[(
I +

A

n

)n]
= lim

n→∞

(
det

(
I +

A

n

))n
= lim

n→∞
((1 + a/n)(1 + d/n)− bc/n2)n

= lim
n→∞

(
1 +

a+ d

n
+
ad− bc
n2

)n
= ea+d = etr(A).

Here, we use the well-known limit from calculus: if (an)∞n=1 is a sequence of real numbers
such that an → x, then

lim
n→∞

(
1 +

an
n

)n
→ ex.

To extend this to matrices of arbitrary order k×k, one needs to explain why the determinant
of I +A/n can be written as

det

(
I +

A

n

)
= 1 +

trA

n
+
[
lower order terms ∝ 1

n2

]
,

after which the same calculation can be repeated as above. To explain this, expand the
determinant in the usual way as a sum over k! permutations of 1, 2, . . . , k, and notice that
the only terms which are of order 1/n come from choosing k − 1 of the diagonal “1” terms
from the identity matrix I and the remaining term from the remaining diagonal term of A/n.
The sum of these terms is exactly tr(A)/n, and all other terms involve a multiple of at least
two terms of A/n and are therefore of order at most 1/n2.
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4. Which of the phase portraits (a)–(c) shown below can represent the behavior of a Hamiltonian
system near a rest point? Explain.

(a) (b) (c)

Solution. The phase portraits (a) and (b) show a center and a saddle point, respectively,
which can occur in a Hamiltonian system. The phase portrait (c) shows an asymptotically
stable rest point, which we have seen cannot occur (this can be shown either from Liouville’s
theorem or by analyzing the eigenvalues of the Hessian matrix at a rest point).
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