Solutions to homework assignment #5 Math 119B UC Davis, Spring 2012

1. Find the solution x,, to the recurrence

Tnt2 = Tptl + 22,

satisfying the initial conditions z1 = 5, zo = 1.

Solution. As in the example of the Fibonacci numbers discussed in class, we can express
the problem in terms of a planar dynamical system transforming a column vector v via the

matrix multiplication equation
1 2
vn+1:<1 O)vn:Mvn.

If we denote v,, = < x;“ >, then we see that
n

Tnt2 \ _ = 1 2 Tl \ _ [ Tny1+ 22,
Tn+1 n+ Lo T, Tny1 ’

so the first-order planar dynamics reproduces the second-order recurrence we started with.
With this matrix representation we immediately see that

Up = Muvp_1 = M?vy_g=...= M" Loy,

where v; = (w9,21)" = (5,1)7. If M can be diagonalized, that is, we have M = PDP~!
where P is an invertible matrix and D is diagonal, then we get that

vy = M" Ly, = PD" Py,

Since D"~ is also a diagonal matrix with the numbers X! and A\3~! in the diagonal (where
A1, A2 are the two eigenvalues of M), we can immediately see without any further computation
that each of the entries of v, will be a linear combination of the two exponential terms A}
and A\y. In other words, we have

Ty, = aA] + DAY

for some constants a,b. It remains to compute Aj, Ao and find the coefficients a,b. The
eigenvalues of M are easily found to be 2 and —1, giving

Tp=a-2" +b(—1)".
Letting n = 1 and n = 2 gives two equations for a, b from the initial conditions:

5=z =2a—-0,
12332:4(1-1-[).

The solution of this pair of equations is a = 1,b = —3, so the final answer is

Ty = 2" — 3(=1)".
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2. Find all fixed points and all 2-cycles of the tent map A, (x) in the case r = 2.

Solution. Using the graphical method for intuition, to find the fixed points we plot the
function y = Ag(x) together with y = x:
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We see that there are two fixed points, one at x = 0 and another at the point which solves
the equation x = 2 — 2z, namely x = 2/3.

Next, for the 2-cycles, we do the same with the iterated map AsoAs. The formula for AsoAs is
divided into 4 expressions, according to which of the 4 intervals [0,1/4], [1/4,1/2],[1/2,3/4],[3/4, 1]
the point z falls in. A short computation gives:

4z if 0<xz<1/4,

2—dzx if 1/4<x<1/2,

dr —2 if 1/2 <x < 3/4,

A—dx if 3/4<z <1

A2 e} AQ(.’IZ’) =

Plotting this function together with y = x gives the following picture:
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There are 4 intersection points: two are the fixed points © = 0 and x = 2/3 which we already
found, which are not parts of a 2-cycle, and the other two are at x; = 2/5 (the solution of
the equation = = 2 — 4z) and x9 = 4/5 (solution of x = 4 — 4x). These two points form a
2-cycle, since Ag(z1) = z2, Ao(x2) = 1. There are no other 2-cycles.
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3. For which values of 0 < a < 1 does the circle rotation map R, have a 2-cycle? For which
values does it have a 3-cycle?

Solution. Let 0 < o < 1. If x is a member of a 2-cycle of R, then
r = Ro(Ro(2)) = v+ 2a mod 1.

Because of the geometric interpretation of R, as a circle rotation map, where x represents a
point on the unit circle (corresponding to the angular coordinate §# = 27z, and « represents
a rotation by an angle 2w, the only way we could come back to 2wx after two rotations
by an angle 27« is if @« = 1/2. Note that for this choice of «, every x € [0,1) satisfies
Ru(Ry(x)) = x, i.e., every x is a member of a 2-cycle (z, Ry (x)).

Similarly, it is easy to see that the only ways to get a 3-cycle are to take ae = 1/3 (rotation
by an angle 27/3) or « = 2/3 (rotation by an angle 47/3). In these cases, every x € [0, 1)
belongs to a 3-cycle (z, Ro(z), Ro(Ra(x))).
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4.

(a) Sketch the graph of the third iteration D> = D o D o D of the doubling map D(z) =

2z mod 1 on the interval (0,1). Use this to find all its 3-cycles. Solution. The third
iteration of D is

8x if 0 <z <1/8,

8z —1 if1/8<x<1/4,
D3(z) =8z mod 1={8z—2 ifl1/4<xz<3/8,

8z —7 if7/8<w<1.
\

Plotting it together with y = x gives the following picture
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which shows that we get expect 8 intersection points. They are the solutions of the
equations x = 8z, x =8x — 1, x =8z — 2, ..., x = 8¢ — 7, i.e. they take the form
xp =k/7, k=0,1,...,7. For k =0 and k = 1 these are just the points = 0,1 which
are fixed points of D (and hence not considered as members of 3-cycles). The remaining
points split into two 3-cycles: (1/7,2/7,4/7) and (3/7,6/7,5/7).

Generalize this to find all the k-cycles of D for arbitrary values of k.

Solution. Since D*(z) = 2¥2 mod 1, we are led to a similar set of equations
r=2%z—j  j=01,2...,2F
whose solutions are

J

A i =0,1,2,... 2"
2k_17 ] b b b b

T4 =
In order for a point x; belongs to a genuine k-cycle, it can’t be part of a d-cycle for a
divisor d of k (for example, z = 1/7 = 1/(23 — 1) = 9/(2° — 1) belongs to a 3-cycle,
therefore it is not a member of a 6-cycle even though it comes up in the computation
for k = 6). It is possible to show that x; = j /(2% — 1) is a member of a k-cycle precisely
if j is not a multiple of (2% —1)/(2¢ — 1) for any divisor d > 1 of k.
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D.

(a) A discrete-time dynamical system on R = [0, c0) is defined using the evolution equation

Tn+l = V2 + Zp.

Find the unique fixed point x, of the map, and show that for any initial condition xg,
we have the limit x,, — z, as n — oo.

Solution. The fixed point satisfies z, = /2 + z, or 22 —x, — 2 = 0. This equation has
two solutions, —1 and 2, but the dynamical system only acts on nonnegative numbers,
SO X, = 2 is the unique fixed point in that range.

Assume xg < z4. Let us prove by induction that z, < z,11 for all n, i.e., the sequence
is increasing. For n = 0 this is true, since z1 = /2 + x¢ > ¢ for z¢ in the range [0, 2).
Next, if we showed that x,, > x,,—1, then applying the function f(x) = /2 + x (which is
an increasing function) to both sides of this inequality gives

Tn+l1l = f(fn) > f(xnfl) = Tn,
which completes the inductive step.
Next, we claim that if o < 2 then z,, < 2 for all n. The proof is again by induction.

The induction base n = 0 is just the original assumption, and for the inductive step, if
we showed that x,—1 < 2 then again applying f(z) to both sides gives

Tp = f(xn—l) < f(2) = 27
as claimed.

The sequence (z,)52 is increasing and bounded from above. We conclude from a
standard theorem in real analysis that it is convergent. Denote its limit by zo,. We have

f(zoo) = f(lim z,) = lim f(x,) = lim z,4; = lim z, = T
n—00 n—00 n—0o0 n—0o0
That is, 2 is a fixed point of f(z), and since xo, > 0, the only possibility is z., = 2.
The second case in which xy > 2 is done analogously—in this case the sequence x,

will decrease monotonically and will be bounded from below by z, = 2, and hence will
converge to a limit, which must be again be a fixed point of f(x).

(b) Fill in the blank:

\/2+\/2+\/2+\/ﬁ= ?

and, if you can, explain why the question makes sense (i.e., does any weird expression
that mathematicians can dream up with “...” have a well-defined value? If not, why
does this one?)

Solution. The natural interpretation for expressions involving “...” is in terms of a limiting

process involving iteration, exactly as discussed above in terms of iterations of the map
f(x) = /2 + x. The above proof of convergence shows that the only sensible value that can
be attributed to the expression on the left is the fixed point z, = 2. Thus we have:

\/2+\/2+\/2+\/ﬁ:2.

There are many processes which don’t converge to a limit, so one can make up “formulas”
involving “...” that can’t be assigned a well-defined value, e.g., 1 —2+3—-4+5—-6+...




