
Solutions to homework assignment #5 Math 119B UC Davis, Spring 2012

1. Find the solution xn to the recurrence

xn+2 = xn+1 + 2xn

satisfying the initial conditions x1 = 5, x2 = 1.

Solution. As in the example of the Fibonacci numbers discussed in class, we can express
the problem in terms of a planar dynamical system transforming a column vector v via the
matrix multiplication equation

vn+1 =
(

1 2
1 0

)
vn = Mvn.

If we denote vn =
(
xn+1

xn

)
, then we see that

(
xn+2

xn+1

)
= vn+1 =

(
1 2
1 0

)(
xn+1

xn

)
=
(
xn+1 + 2xn

xn+1

)
,

so the first-order planar dynamics reproduces the second-order recurrence we started with.
With this matrix representation we immediately see that

vn = Mvn−1 = M2vn−2 = . . . = Mn−1v1,

where v1 = (x2, x1)> = (5, 1)>. If M can be diagonalized, that is, we have M = PDP−1

where P is an invertible matrix and D is diagonal, then we get that

vn = Mn−1v1 = PDn−1P−1v1.

Since Dn−1 is also a diagonal matrix with the numbers λn−1
1 and λn−1

2 in the diagonal (where
λ1, λ2 are the two eigenvalues of M), we can immediately see without any further computation
that each of the entries of vn will be a linear combination of the two exponential terms λn1
and λn2 . In other words, we have

xn = aλn1 + bλn2

for some constants a, b. It remains to compute λ1, λ2 and find the coefficients a, b. The
eigenvalues of M are easily found to be 2 and −1, giving

xn = a · 2n + b(−1)n.

Letting n = 1 and n = 2 gives two equations for a, b from the initial conditions:

5 = x1 = 2a− b,
1 = x2 = 4a+ b.

The solution of this pair of equations is a = 1, b = −3, so the final answer is

xn = 2n − 3(−1)n.
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2. Find all fixed points and all 2-cycles of the tent map Λr(x) in the case r = 2.

Solution. Using the graphical method for intuition, to find the fixed points we plot the
function y = Λ2(x) together with y = x:
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We see that there are two fixed points, one at x = 0 and another at the point which solves
the equation x = 2− 2x, namely x = 2/3.

Next, for the 2-cycles, we do the same with the iterated map Λ2◦Λ2. The formula for Λ2◦Λ2 is
divided into 4 expressions, according to which of the 4 intervals [0, 1/4], [1/4, 1/2], [1/2, 3/4], [3/4, 1]
the point x falls in. A short computation gives:

Λ2 ◦ Λ2(x) =


4x if 0 ≤ x ≤ 1/4,
2− 4x if 1/4 ≤ x ≤ 1/2,
4x− 2 if 1/2 ≤ x ≤ 3/4,
4− 4x if 3/4 ≤ x ≤ 1.

Plotting this function together with y = x gives the following picture:
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There are 4 intersection points: two are the fixed points x = 0 and x = 2/3 which we already
found, which are not parts of a 2-cycle, and the other two are at x1 = 2/5 (the solution of
the equation x = 2 − 4x) and x2 = 4/5 (solution of x = 4 − 4x). These two points form a
2-cycle, since Λ2(x1) = x2,Λ2(x2) = x1. There are no other 2-cycles.
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3. For which values of 0 < α < 1 does the circle rotation map Rα have a 2-cycle? For which
values does it have a 3-cycle?

Solution. Let 0 < α < 1. If x is a member of a 2-cycle of Rα, then

x = Rα(Rα(x)) = x+ 2α mod 1.

Because of the geometric interpretation of Rα as a circle rotation map, where x represents a
point on the unit circle (corresponding to the angular coordinate θ = 2πx, and α represents
a rotation by an angle 2πα, the only way we could come back to 2πx after two rotations
by an angle 2πα is if α = 1/2. Note that for this choice of α, every x ∈ [0, 1) satisfies
Rα(Rα(x)) = x, i.e., every x is a member of a 2-cycle (x,Rα(x)).

Similarly, it is easy to see that the only ways to get a 3-cycle are to take α = 1/3 (rotation
by an angle 2π/3) or α = 2/3 (rotation by an angle 4π/3). In these cases, every x ∈ [0, 1)
belongs to a 3-cycle (x,Rα(x), Rα(Rα(x))).
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4. (a) Sketch the graph of the third iteration D3 = D ◦ D ◦ D of the doubling map D(x) =
2x mod 1 on the interval (0, 1). Use this to find all its 3-cycles. Solution. The third

iteration of D is

D3(x) = 8x mod 1 =



8x if 0 ≤ x ≤ 1/8,
8x− 1 if 1/8 ≤ x ≤ 1/4,
8x− 2 if 1/4 ≤ x ≤ 3/8,

...
8x− 7 if 7/8 ≤ x ≤ 1.

Plotting it together with y = x gives the following picture
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which shows that we get expect 8 intersection points. They are the solutions of the
equations x = 8x, x = 8x − 1, x = 8x − 2, . . . , x = 8x − 7, i.e. they take the form
xk = k/7, k = 0, 1, . . . , 7. For k = 0 and k = 1 these are just the points x = 0, 1 which
are fixed points of D (and hence not considered as members of 3-cycles). The remaining
points split into two 3-cycles: (1/7, 2/7, 4/7) and (3/7, 6/7, 5/7).

(b) Generalize this to find all the k-cycles of D for arbitrary values of k.

Solution. Since Dk(x) = 2kx mod 1, we are led to a similar set of equations

x = 2kx− j, j = 0, 1, 2, . . . , 2k,

whose solutions are

xj =
j

2k − 1
, j = 0, 1, 2, . . . , 2k.

In order for a point xj belongs to a genuine k-cycle, it can’t be part of a d-cycle for a
divisor d of k (for example, x = 1/7 = 1/(23 − 1) = 9/(26 − 1) belongs to a 3-cycle,
therefore it is not a member of a 6-cycle even though it comes up in the computation
for k = 6). It is possible to show that xj = j/(2k − 1) is a member of a k-cycle precisely
if j is not a multiple of (2k − 1)/(2d − 1) for any divisor d > 1 of k.
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5. (a) A discrete-time dynamical system on R+ = [0,∞) is defined using the evolution equation

xn+1 =
√

2 + xn.

Find the unique fixed point x∗ of the map, and show that for any initial condition x0,
we have the limit xn → x∗ as n→∞.

Solution. The fixed point satisfies x∗ =
√

2 + x∗, or x2
∗−x∗− 2 = 0. This equation has

two solutions, −1 and 2, but the dynamical system only acts on nonnegative numbers,
so x∗ = 2 is the unique fixed point in that range.
Assume x0 < x∗. Let us prove by induction that xn < xn+1 for all n, i.e., the sequence
is increasing. For n = 0 this is true, since x1 =

√
2 + x0 > x0 for x0 in the range [0, 2).

Next, if we showed that xn > xn−1, then applying the function f(x) =
√

2 + x (which is
an increasing function) to both sides of this inequality gives

xn+1 = f(xn) > f(xn−1) = xn,

which completes the inductive step.
Next, we claim that if x0 < 2 then xn < 2 for all n. The proof is again by induction.
The induction base n = 0 is just the original assumption, and for the inductive step, if
we showed that xn−1 < 2 then again applying f(x) to both sides gives

xn = f(xn−1) < f(2) = 2,

as claimed.
The sequence (xn)∞n=0 is increasing and bounded from above. We conclude from a
standard theorem in real analysis that it is convergent. Denote its limit by x∞. We have

f(x∞) = f( lim
n→∞

xn) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = lim
n→∞

xn = x∞.

That is, x∞ is a fixed point of f(x), and since x∞ ≥ 0, the only possibility is x∞ = 2.
The second case in which x0 > 2 is done analogously—in this case the sequence xn
will decrease monotonically and will be bounded from below by x∗ = 2, and hence will
converge to a limit, which must be again be a fixed point of f(x).

(b) Fill in the blank: √
2 +

√
2 +

√
2 +
√

2 + . . . = ?

and, if you can, explain why the question makes sense (i.e., does any weird expression
that mathematicians can dream up with “. . .” have a well-defined value? If not, why
does this one?)

Solution. The natural interpretation for expressions involving “. . .” is in terms of a limiting
process involving iteration, exactly as discussed above in terms of iterations of the map
f(x) =

√
2 + x. The above proof of convergence shows that the only sensible value that can

be attributed to the expression on the left is the fixed point x∗ = 2. Thus we have:√
2 +

√
2 +

√
2 +
√

2 + . . . = 2.

There are many processes which don’t converge to a limit, so one can make up “formulas”
involving “. . .” that can’t be assigned a well-defined value, e.g., 1− 2 + 3− 4 + 5− 6 + . . .
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