Homework due: Friday 5/18 in class

Problems

1. Find the solution x_n to the recurrence

$$x_{n+2} = x_{n+1} + 2x_n$$

satisfying the initial conditions $x_1 = 5, x_2 = 1$.

Hint. The solution takes the form $x_n = a\lambda_1^n + b\lambda_2^n$ where λ_1, λ_2 are eigenvalues of a certain 2×2 matrix.

- 2. Find all fixed points and all 2-cycles of the tent map $\Lambda_r(x)$ in the case r=2.
- 3. For which values of $0 < \alpha < 1$ does the circle rotation map R_{α} have a 2-cycle? For which values does it have a 3-cycle?
- 4. (a) Sketch the graph of the third iteration $D^3 = D \circ D \circ D$ of the doubling map $D(x) = 2x \mod 1$ on the interval (0, 1). Use this to find all its 3-cycles.
 - (b) (Optional) Generalize this to find all the k-cycles of D for arbitrary values of k.
- 5. (a) A discrete-time dynamical system on $\mathbb{R}_+ = [0, \infty)$ is defined using the evolution equation

$$x_{n+1} = \sqrt{2 + x_n}.$$

Find the unique fixed point x_* of the map, and show that for any initial condition x_0 , we have the limit $x_n \to x_*$ as $n \to \infty$.

Hint. Divide into two cases: $x_0 < x_*$ and $x_0 > x_*$ (the remaining case $x_0 = x_*$ is trivial). For the case $x_0 < x_*$, show by induction that for all $n \ge 0$, $x_{n+1} > x_n$, i.e., x_n is an increasing sequence, and that $x_n < x_*$, i.e., the sequence is bounded from above. A result in analysis says that a sequence of real numbers that is increasing and bounded from above must converge to a limit L. Show that L must be equal to x_* . For the second case $x_0 > x_*$ argue analogously.

(b) Fill in the blank:

$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}} = ?$$

and, if you can, explain why the question makes sense (i.e., does any weird expression that mathematicians can dream up with "..." have a well-defined value? If not, why does this one?)

6. (Optional) Let T be the 3x + 1 map on the natural numbers, defined by

$$T(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even,} \\ 3x+1 & \text{if } x \text{ is odd.} \end{cases}$$

Let f(x) denote the number of iterations of the map needed to get to 1 starting from x:

$$f(x) = \min\{k \ge 0 : T^k(x) = 1\}.$$

(Note that the Collatz conjecture is equivalent to the statement that $f(x) < \infty$ for all x.) Write a computer program to compute f(x). Plot the values of f(x) for $1 \le x \le 1000$ and estimate how fast we may expect f(x) to grow as a function of x.

Additional review problems to help you study for the quiz

(not part of the homework — solutions will be published on Tuesday)

7. Use matrix exponentials, or any other method, to find the solution (x(t), y(t)) of the ODE system

$$\dot{x} = 2x + y,$$

$$\dot{y} = x + 2y$$

satisfying the initial conditions x(0) = 0, y(0) = 1.

8. Compute e^{tA} (don't ignore the t factor!) for the following matrices:

(a)
$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

(b) $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
(c) $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

Hint. This A is not diagonalizable. Instead, write A as A = I + M where M is a matrix which can be seen to satisfy $M^2 = 0$, then work directly with the power series definition $e^{tA} = \sum_{n=0}^{\infty} \frac{t^n}{n!} A^n = \sum_{n=0}^{\infty} \frac{t^n}{n!} (I + M)^n$.

(d)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

Hint. Before you compute, think how e^A acts on a matrix in block-diagonal form, i.e., a matrix of the form $\begin{pmatrix} M_1 \\ M_2 \end{pmatrix}$, where M_1 , M_2 are both square matrices.

9. The planar system

$$\dot{x} = y,$$

 $\dot{y} = -\sin x - \alpha y + I,$

where $\alpha, I > 0$ are parameters, describes the dynamics for a simple pendulum with a damping factor α and a constant driving torque *I*. (The exact same equation models the *Josephson junction*, an important quantum-mechanical system comprised of two weakly coupled semiconductors.)

- (a) Is the above system Hamiltonian?
- (b) Let $\varphi_t : \mathbb{R}^2 \to \mathbb{R}^2$ denote the phase flow map of the system. Note that φ_t is a vector made up of two component functions, i.e., we can denote $\varphi_t(x, y) = (u_t(x, y), v_t(x, y))$. Compute the Jacobian

$$J_t(x,y) = \det \begin{pmatrix} \frac{\partial u_t}{\partial x} & \frac{\partial v_t}{\partial x} \\ \frac{\partial u_t}{\partial y} & \frac{\partial v_t}{\partial y} \end{pmatrix}.$$

From this computation, try to think what you can conclude about what the phase flow does to the phase space (e.g., is area conserved? Will a small area become large as it carried along by the flow, or vice versa?)