
Solutions to review problems from HW #5 Math 119B (UC Davis, Spring 2012)

7. Use matrix exponentials, or any other method, to find the solution (x(t), y(t)) of the ODE
system

ẋ = 2x+ y,

ẏ = x+ 2y

satisfying the initial conditions x(0) = 0, y(0) = 1.

Solution. The system has the form (ẋ, ẏ)> = A(x, y)>, where A is the 2×2 matrix
(

2 1
1 2

)
,

so the solution for the given initial conditions will be(
x(t)
y(y)

)
= etA

(
0
1

)
.

To compute the matrix exponential etA, we diagonalize A. Its eigenvalues are found to be
λ1 = 1, λ2 = 3, with associated eigenvectors v1 = (1,−1)>, v2 = (1, 1)>. This means that we
can write A = PDP−1 where

D =
(

1 0
0 3

)
, P =

(
1 1
−1 1

)
, P−1 = 1

2

(
1 −1
1 1

)
.

It follows that

etA = PetDP−1 = 1
2

(
1 1
−1 1

)(
et 0
0 e3t

)(
1 −1
1 1

)
= 1

2

(
et + e3t −et + e3t

−et + e3t et + e3t

)
.

The solution (x(t), y(t))> is therefore(
x(t)
y(y)

)
= 1

2

(
et + e3t −et + e3t

−et + e3t et + e3t

)(
0
1

)
=
(

1
2(−et + e3t)
1
2(et + e3t)

)
.
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Solutions to review problems from HW #5 Math 119B (UC Davis, Spring 2012)

8. Compute etA (don’t ignore the t factor!) for the following matrices:

(a) A =
(

0 0
0 0

)
Solution. etA = I.

(b) A =
(

1 1
1 1

)

Solution. etA =

(
e2t+1

2
e2t−1

2

e2t−1
2

e2t+1
2

)
.

(c) A =
(

1 1
0 1

)

Solution. A = I +M where M =
(

0 1
0 0

)
satisfies M2 = 0.

etA =
∞∑
n=0

tn

n!
An =

∞∑
n=0

tn

n!
(I +M)n

=
∞∑
n=0

tn

n!
(I + nM + [higher powers of M ])

=
∞∑
n=0

tn

n!
(I + nM) =

( ∑∞
n=0

tn

n!

∑∞
n=1

tn

(n−1)!

0
∑∞

n=0
tn

n!

)

=
(
et tet

0 et

)

(d) A =

 1 0 0
0 2 1
0 1 2


Solution. The matrix is in block diagonal form, and the matrix exponential acts on
each diagonal block separately, so we have

etA =

 et

exp
(
t

(
2 1
1 2

))  =

 et 0 0
0 et+e3t

2
−et+e3t

2

0 −et+e3t

2
et+e3t

2

 .

(The computation for the 2× 2 block appears in the solution to problem 7 above.)
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9. The planar system

ẋ = y,

ẏ = − sinx− αy + I,

where α, I > 0 are parameters, describes the dynamics for a simple pendulum with a damping
factor α and a constant driving torque I. (The exact same equation models the Josephson
junction, an important quantum-mechanical system comprised of two weakly coupled semi-
conductors.)

(a) Is the above system Hamiltonian?

Solution. Denote F (x, y) = y,G(x, y) = − sinx−αy+ I, so the system has the general
form ẋ = F (x, y), ẏ = G(x, y). We know such a system is Hamiltonian if and only if
div(F,G) = ∂F

∂x + ∂G
∂y = 0. In this case ∂F

∂x + ∂G
∂y = 0 − α 6= 0, so the system is not

Hamiltonian.

(b) Let ϕt : R2 → R2 denote the phase flow map of the system. Note that ϕt is a vector
made up of two component functions, i.e., we can denote ϕt(x, y) = (ut(x, y), vt(x, y)).
Compute the Jacobian

Jt(x, y) = det

(
∂ut
∂x

∂vt
∂x

∂ut
∂y

∂vt
∂y

)
.

From this computation, try to think what you can conclude about what the phase flow
does to the phase space (e.g., is area conserved? Will a small area become large as it
carried along by the flow, or vice versa?)

Solution. In the proof of Liouville’s theorem we saw that Jt was given by the formula

Jt = exp
(∫ t

0
div(F,G) ds

)
which in this case evaluates to

Jt = e−αt.

Geometrically, the interpretation is that phase space area is not conserved (which we
already knew, since area conservation is equivalent to the system being Hamiltonian),
and furthermore we see that phase space area shrinks exponentially over time. The
reason is that the damping term −αy causes energy to dissipate, and all trajectories
spiral into either an asymptotically stable rest point or a limit cycle. See section 8.5
(pages 265–273) in Strogatz’s book Nonlinear Dynamics and Chaos for a detailed study
of the behavior of this system as a function of the parameters α, I.
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