Problems

- 1. For each of the following maps acting on the interval [0, 1], sketch their graphs, find their fixed points and determine for each fixed point whether it is asymptotically stable (a.k.a. **attracting**), asymptotically unstable (a.k.a. **repelling**), or neither:
 - i. T(x) = 1 x ii. $T(x) = \frac{1}{2}\sin x$ iii. $T(x) = \frac{e^x 0.5}{e}$ iv. $T(x) = (2x 1)^2$

Solution. The graphs are shown below, plotted together with y = x.

- i. x = 1/2 is a fixed point. It is neutrally stable—neither attracting nor repelling.
- ii. x = 0 is a stable fixed point.
- iii. There is a unique fixed point, the solution of the equation $e^x = \frac{1}{2} + ex$, which cannot be solved analytically. Its numerical value is approximately 0.3254, and by evaluating the derivative of the map we see that it is asymptotically stable.
- iv. There are two fixed points, x = 1/4 and x = 1, both repelling.

- 2. (a) For each of the following maps acting on ℝ, investigate numerically (by iterating the map using a computer or calculator) their stability behavior in the neighborhood of the fixed point x_{*} = 0. Try both negative and positive initial values and determine if the fixed point is attracting or repelling from the left and from the right (note that a mixed stability type is possible, with different behavior from different sides of approach).
 - i. $T(x) = x + x^2$

Answer. Attracting on the left, repelling on the right, since T(x) > x for all $x \neq 0$.

ii. $T(x) = x - x^2$

Answer. Repelling on the left, attracting to the right, since T(x) < x for all $x \neq 0$.

iii. $T(x) = -x + x^2$

Answer. Attracting from both sides (the convergence to the fixed point is oscillatory; draw a cobweb diagram or apply similar reasoning as in i.–ii. above to $T \circ T(x) = x - 2x^3 + x^4$).

iv. $T(x) = -x - x^2$

Answer. Attracting from both sides (same explanation as iii.).

(b) Let x_* be a fixed point of an interval map T. Denote $\lambda = T'(x_*), \mu = T''(x_*)$, so that the second-order Taylor expansion of T around x_* has the form

 $T(x) = x_* + \lambda(x - x_*) + \frac{1}{2}\mu(x - x_*)^2 + O((x - x_*)^3).$

From the answer to part (a) above, formulate a guess as to how the stability type of a fixed point x_* can be determined in the boundary case $\lambda = \pm 1$, under the assumption that $\mu \neq 0$.

Solution. The behavior of the examples described in part (a) is prototypical for functions with a second-order Taylor expansion of the given form. In general we have three cases:

- i. $\lambda = 1, \mu > 0$: the fixed point is attracting on the left, repelling on the right.
- ii. $\lambda = 1, \mu < 0$: the fixed point is repelling on the left, attracting on the right.
- iii. $\lambda = -1, \mu \neq 0$: the fixed point is attracting on both sides (i.e., it is asymptotically stable).

3. In 19th-century Europe, family names were passed on only to male descendants. The Galton family¹, a family of noblemen, had a tradition that each male family member should have precisely 3 children. That means that if in the *n*th generation there were g_n male Galton family descendants, the (n + 1)th generation will have a *random* number g_{n+1} of male descendants, since each *n*th generation male will have anywhere between 0 and 3 male offspring with different probabilities (thus, $(g_n)_{n=0}^{\infty}$ is an example of a *random dynamical system* or *random process*, a type of mathematical object we will not study in this course).

Denote by $P_{n,k}$ the probability that in the *n*th generation there were exactly k male Galton family descendants, assuming the initial condition $x_0 = 1$ (i.e., the entire family was descended from a single "patriarch" at generation 0). It can be shown using elementary probability theory that

$$P_{n,0} + P_{n,1}x + P_{n,2}x^2 + P_{n,3}x^3 + \ldots = \sum_{k=0}^{3^n} P_{n,k}x^k = (\overbrace{f \circ f \circ \ldots \circ f}^{n \text{ times}})(x) = f^n(x), \quad (1)$$

where f(x) is the polynomial

$$f(x) = \frac{1 + 3x + 3x^2 + x^3}{8}$$

In words: the polynomial whose coefficients are the probabilities $P_{n,k}$ for $0 \le k \le 3^n$ describing the distribution of the number of male descendants in the *n*th generation is exactly the *n*th functional iterate of f. In particular, for n = 1 this is equivalent to the statement that $P_{1,0} = \frac{1}{8}, P_{1,1} = \frac{3}{8}, P_{1,2} = \frac{3}{8}, P_{1,3} = \frac{1}{8}$. These values are the easily-computed probabilities for the different numbers of boys in a family with 3 children (assuming 50% of babies are born male—in reality, for human babies the actual percentage is around 51%).

(a) The number $P_{n,0}$ represents the probability that the family name has died out by the *n*th generation. Compute it for n = 0, 1, 2. For general *n*, write a formula expressing it in terms of the map *f*.

Solution.

$$P_{n,0} = \sum_{k=0}^{3^n} P_{n,k} x^k \Big|_{x=0} = f^n(0).$$

For n = 0, 1, 2 this gives

$$\begin{split} P_{0,0} &= 0, \\ P_{1,0} &= f(0) = 1/8 = 0.125, \\ P_{2,0} &= f(f(0)) = f(1/8) = 729/4096 \approx 0.178. \end{split}$$

¹Historical note: the mathematical process described in this question is an important and much-studied model called the **Galton-Watson process**, named after Francis Galton and Henry Watson.

(b) Compute the limit $\lim_{n\to\infty} P_{n,0}$ (the probability that the family name will eventually die out).

Solution. By solving the equation f(x) = x we find that the map f has two fixed points in [0, 1], $x_1 = 1$ and $x_2 = \sqrt{5} - 2 \approx 0.236$. We also find that

$$f'(x_1) = f'(1) = 3/2, \quad f'(x_2) = \frac{9 - 3\sqrt{5}}{4} \approx 0.573.$$

Since $|f'(x_1)| > 1$ and $|f'(x_2)| < 1$, this implies that x_1 is a repelling fixed point and x_2 is an attracting fixed point. It follows that $f^n(x_0) \to x_2$ for any initial condition $x_0 \in [0, 1]$. In particular, the probability for the noblemen's family name to eventually die out is

Prob(die out) =
$$\lim_{n \to \infty} P_{n,0} = \lim_{n \to \infty} f^n(0) = x_2 = \sqrt{5} - 2 \approx 23.6\%.$$

4. Newton's method is a technique in numerical analysis to numerically solve equations of the form g(x) = 0 where g is a (sufficiently well-behaved) function defined on some interval. Given g, we define an evolution map $x_{n+1} = T(x_n)$ by

$$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}$$

(a) Write the evolution map associated with the equation $g(x) = x^2 - 2 = 0$.

Solution. $T(x) = x - \frac{x^2 - 2}{2x} = \frac{x^2 + 2}{2x}$.

(b) In this specific example, show that the fixed points of the map T correspond exactly to the solutions of the equation g(x) = 0. Generalize this to arbitrary functions g.

Solution. The equation $\frac{x^2+2}{2x} = x$ reduces to $-x^2+2 = 0$, which is the same as g(x) = 0. In general, by the definition of T we have $T(x) - x = -\frac{g(x)}{g'(x)}$, so the equation T(x) = x is equivalent to g(x) = 0 for any g.

(c) In this example, show that the fixed points of T are **superstable** (a fixed point x_* is called superstable if $T'(x_*) = 0$, which means that the convergence to the fixed point is even faster than exponential). Generalize this to arbitrary g.

Solution. The derivative of the map T is

$$T'(x) = \frac{d}{dx}\left(x - \frac{g(x)}{g'(x)}\right) = 1 - \frac{g'(x)^2 - g(x)g''(x)}{g'(x)^2} = \frac{g(x)g''(x)}{g'(x)^2}$$

If x_* is a fixed point of T, then $T(x_*) = x_*$, which we already saw is equivalent to g(x) = 0. In this case $T'(x_*) = \frac{g(x_*)g''(x_*)}{g'(x_*)^2} = 0$, which means that the fixed point is superstable.

(d) For the example, compute the first 6 iterations of T starting from $x_0 = 1$. Note the rapid convergence to the root $\sqrt{2}$.

Solution. Here are the answers, computed to a precision of 20 digits:

 5. For a given number $x_0 \in [0, 1)$, the sequence $x_n = (2^n x_0 \mod 1)$ satisfies the doubling map recurrence $x_{n+1} = D(x_n)$. Show that the sequence y_n defined from x_n by

$$y_n = \sin^2(\pi x_n)$$

satisfies the recurrence $y_{n+1} = L_4(y_n)$, where $L_4(x) = 4x(1-x)$ is the case r = 4 of the logistic map. In other words, in the special case r = 4, the logistic map recurrence can be solved explicitly in terms of the solution to the doubling map.

Solution.

$$y_{n+1} = \sin^2(\pi x_{n+1}) = \sin^2(\pi D(x_n)) = \sin^2(\pi (2x_n \mod 1))$$

=
$$\begin{cases} \sin^2(\pi \cdot 2x_n) & \text{if } x_n < 1/2, \\ \sin^2(\pi \cdot (2x_n - 1)) & \text{if } x_n \ge 1/2, \end{cases}$$

=
$$\begin{cases} \sin^2(2\pi x_n) & \text{if } x_n < 1/2, \\ (-\sin(2\pi x_n))^2 & \text{if } x_n \ge 1/2, \end{cases}$$

=
$$\sin^2(2\pi x_n).$$

On the other hand, we have

$$L_4(y_n) = 4\sin^2(\pi x_n)(1 - \sin^2(\pi x_n)) = 4\sin^2(\pi x_n)\cos^2(\pi x_n)$$
$$= (2\sin(\pi x_n)\cos(\pi x_n))^2 = \sin^2(2\pi x_n).$$

Since the two expressions are equal, this shows that $y_{n+1} = L_4(y_n)$.