Homework Assignment #6 Math 119B UC Davis, Spring 2012

Homework due: Friday 5/25 in class

Problems

1. For each of the following maps acting on the interval [0, 1], sketch their graphs, find their fixed points and determine for each fixed point whether it is asymptotically stable (a.k.a. attracting), asymptotically unstable (a.k.a. repelling), or neither:
 i. \(T(x) = 1 - x \)
 ii. \(T(x) = \frac{1}{2} \sin x \)
 iii. \(T(x) = \frac{e^x - 0.5}{e} \)
 iv. \(T(x) = (2x - 1)^2 \)

2. (a) For each of the following maps acting on \(\mathbb{R} \), investigate numerically (by iterating the map using a computer or calculator) their stability behavior in the neighborhood of the fixed point \(x^* = 0 \). Try both negative and positive initial values and determine if the fixed point is attracting or repelling from the left and from the right (note that a mixed stability type is possible, with different behavior from different sides of approach).
 i. \(T(x) = x + x^2 \)
 ii. \(T(x) = x - x^2 \)
 iii. \(T(x) = -x + x^2 \)
 iv. \(T(x) = -x - x^2 \)

(b) Let \(x^* \) be a fixed point of an interval map \(T \). Denote \(\lambda = T'(x^*), \mu = T''(x^*) \), so that the second-order Taylor expansion of \(T \) around \(x^* \) has the form
 \[T(x) = x^* + \lambda (x - x^*) + \frac{1}{2}\mu (x - x^*)^2 + O((x - x^*)^3). \]

From the answer to part (a) above, formulate a guess as to how the stability type of a fixed point \(x^* \) can be determined in the boundary case \(\lambda = \pm 1 \), under the assumption that \(\mu \neq 0 \).

Hint. The answer depends on the sign of both \(\lambda \) and \(\mu \).

3. In 19th-century Europe, family names were passed on only to male descendants. The Galton family\(^1\), a family of noblemen, had a tradition that each male family member should have precisely 3 children. That means that if in the \(n \)th generation there were \(g_n \) male Galton family descendants, the \((n+1) \)th generation will have a random number \(g_{n+1} \) of male descendants, since each \(nth \) generation male will have anywhere between 0 and 3 male offspring with different probabilities (thus, \((g_n)_{n=0}^\infty \) is an example of a random dynamical system or random process, a type of mathematical object we will not study in this course).

Denote by \(P_{n,k} \) the probability that in the \(n \)th generation there were exactly \(k \) male Galton family descendants, assuming the initial condition \(x_0 = 1 \) (i.e., the entire family was descended from a single “patriarch” at generation 0). It can be shown using elementary probability theory that

\[P_{n,0} + P_{n,1} x + P_{n,2} x^2 + P_{n,3} x^3 + \ldots = \sum_{k=0}^{3^n} P_{n,k} x^k = (f \circ f \circ \ldots \circ f)(x) = f^n(x), \quad (1) \]

\(^1\)Historical note: the mathematical process described in this question is an important and much-studied model called the Galton-Watson process, named after Francis Galton and Henry Watson.
where \(f(x) \) is the polynomial
\[
f(x) = \frac{1 + 3x + 3x^2 + x^3}{8}.
\]

In words: the polynomial whose coefficients are the probabilities \(P_{n,k} \) for \(0 \leq k \leq 3^n \) describing the distribution of the number of male descendants in the \(n \)th generation is exactly the \(n \)th functional iterate of \(f \). In particular, for \(n = 1 \) this is equivalent to the statement that \(P_{1,0} = \frac{1}{8}, P_{1,1} = \frac{3}{8}, P_{1,2} = \frac{3}{8}, P_{1,3} = \frac{1}{8} \). These values are the easily-computed probabilities for the different numbers of boys in a family with 3 children (assuming 50% of babies are born male—in reality, for human babies the actual percentage is around 51%).

(a) The number \(P_{n,0} \) represents the probability that the family name has died out by the \(n \)th generation. Compute it for \(n = 0, 1, 2 \). For general \(n \), write a formula expressing it in terms of the map \(f \).

(b) Compute the limit \(\lim_{n \to \infty} P_{n,0} \) (the probability that the family name will eventually die out).

Hint. This is related to the fixed points of \(f \) and their stability.

4. **Newton’s method** is a technique in numerical analysis to numerically solve equations of the form \(g(x) = 0 \) where \(g \) is a (sufficiently well-behaved) function defined on some interval. Given \(g \), we define an evolution map \(x_{n+1} = T(x_n) \) by

\[
x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}.
\]

(a) Write the evolution map associated with the equation \(g(x) = x^2 - 2 = 0 \).

(b) In this specific example, show that the fixed points of the map \(T \) correspond exactly to the solutions of the equation \(g(x) = 0 \). Generalize this to arbitrary functions \(g \).

(c) In this example, show that the fixed points of \(T \) are superstable (a fixed point \(x^* \) is called superstable if \(T'(x^*) = 0 \), which means that the convergence to the fixed point is even faster than exponential). Generalize this to arbitrary \(g \).

(d) For the example, compute the first 6 iterations of \(T \) starting from \(x_0 = 1 \). Note the rapid convergence to the root \(\sqrt{2} \).

5. For a given number \(x_0 \in [0,1) \), the sequence \(x_n = (2^n x_0 \mod 1) \) satisfies the doubling map recurrence \(x_{n+1} = D(x_n) \). Show that the sequence \(y_n \) defined from \(x_n \) by

\[
y_n = \sin^2(\pi x_n)
\]

satisfies the recurrence \(y_{n+1} = L_4(y_n) \), where \(L_4(x) = 4x(1-x) \) is the case \(r = 4 \) of the logistic map. In other words, in the special case \(r = 4 \), the logistic map recurrence can be solved explicitly in terms of the solution to the doubling map.