
Solutions to homework assignment #8 Math 119B UC Davis, Spring 2012

1. A child standing on a swing bends her knees up and down in a periodic motion. This causes a
slight change in the resonant frequency of the swing. In the approximation of small amplitude
oscillations, the equation of motion for this system is

ẍ = −(ω2 ± ε2)x = −ω2
±x

where ε is a small number and we use the notation

± =

{
+1 if sin(ωt) > 0,

−1 if sin(ωt) < 0,

ω+ =
√
ω2 + ε2,

ω− =
√
ω2 − ε2.

Note that the frequency of the knee-bending is chosen to coincide with the resonant frequency
of the pendulum. The goal of this problem is to show that this causes the rest point at
x = ẋ = 0 to become unstable—a phenomenon known as parametric resonance (that
children everywhere are grateful for, since it enables them to swing on a swing without the
assistance of a parent)1.

(a) Write an equivalent form of the system as a planar first-order system.

Solution. ẋ = y, ẏ = −ω2
±x.

(b) Use reasoning similar to our analysis of the inverted pendulum with an oscillating base
to find 2 × 2 matrices S+, S− such that the criterion for stability of the system at the
rest point x = ẋ = 0 can be written as | tr(P )| < 2, where P = S−S+.

Solution. Denote T = π/ω. The square wave function ± changes sign every T units of
time. During each interval of length T where the sign remains constant, the evolution of
the equation is that of a linear vector equation with constant coefficients, which as we
know can be solved using matrix exponentials. Thus, the matrix of evolution for a full
period 2T can be written as a product S−S+ where S− and S+ are computed as matrix
exponentials, as follows:

S− = exp

(
T

(
0 1
−ω2

− 0

))
=

(
cos(ω−T ) 1

ω−
sin(ω−T )

−ω− sin(ω−T ) cos(ω−T )

)
=

(
cos(πω−

ω ) 1
ω−

sin(πω−
ω )

−ω− sin(πω−
ω ) cos(πω−

ω )

)
,

S+ = exp

(
T

(
0 1
−ω2

+ 0

))
=

(
cos(ω+T ) 1

ω+
sin(ω+T )

−ω+ sin(ω+T ) cos(ω+T )

)
=

(
cos(πω+

ω ) 1
ω+

sin(πω+

ω )

−ω+ sin(πω+

ω ) cos(πω+

ω )

)
.

1See the Wikipedia article http://en.wikipedia.org/wiki/Parametric oscillator.
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As we proved in class, the criterion for stability of the motion near x = 0 is that the
matrix P should satisfy | tr(P )| < 2.

(c) Deduce from part (b) that the condition for stability is∣∣∣∣2 cos
(πω+

ω

)
cos
(πω−

ω

)
−
(
ω+

ω−
+
ω−
ω+

)
sin
(πω+

ω

)
sin
(πω−

ω

)∣∣∣∣ < 2

Solution. The expression on the left-hand side is | tr(P )|.

(d) Define a new variable s = ε2/ω2, and show that the condition above translates to checking
that |F (s)| < 2, where

F (s) = 2 cos
(
π
√

1 + s
)

cos
(
π
√

1− s
)

−
(√

1 + s√
1− s

+

√
1− s√
1 + s

)
sin
(
π
√

1 + s
)

sin
(
π
√

1− s
)
.

Solution. With the substitution s = ε2/ω2 we have F (s) = tr(P ).

(e) Use a computer or graphing calculator to plot the graph of F (s), and verify that the
inequality |F (s)| > 2 holds for all 0 < s < 1. Conclude that “parametrically resonated
swings” are unstable (and therefore fun!).

Solution. Here is the graph of f(s):
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Note that the graph is very flat near s = 0. Magnifying the plot in the neighborhood of
s = 0 still suggests that f(s) > 2 for all s > 0. It is not hard to check that the Taylor

expansion of f(s) at s = 0 is f(s) = 2 + 3π2

16 s
4 +O(s6).
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2. In the two-dimensional phase portrait of the switching control scheme

ẋ = y,

ẏ = − sgn(x+ by)

that arises in connection with the electromagnetic levitation problem (where b is a positive
numerical parameter), the system will go into a sliding motion (a.k.a. chattering) phase
after reaching the line segment AB of the switching line x+by = 0 shown in Figure 1(a) below.
The sliding motion is characterized by the property that the vector field of the equation on
both sides of the switching line pushes the particle back towards the line.

(a) Find the coordinates of the endpoints A and B of the sliding motion segment.

Hint. See Figure 1(b) and its caption below.

Solution. From the hint, we want to find the point B = (x, y) where one of the curves
x = a + 1

2y
2 (for some value of a) becomes tangent to the line x + by = 0. For a given

value of a, substituting the value x = −by in the equation x = a+ 1
2y

2 gives the quadratic
equation

1
2y

2 + by + a = 0,

whose solutions are

y1,2 = −b±
√
b2 − 2a.

The value of a for which the tangency condition is satisfied is precisely the one for which
the two roots coincide: y1 = y2, and in this case the solution is y = y1 = y2 = −b and
therefore x = b2.

To summarize, we have found that the coordinates of the point B are given by

B = (b2,−b),

and clearly the point A is the symmetric point

A = (−b2, b).

(b) If we start the system at a point (x0, y0) = (−by0, y0) that lies on the switching line
x + by = 0 (but outside the sliding motion region), let (x1, y1), (x2, y2), . . . , (xn, yn)
denote the states of the system at successive times during which the switching line
is crossed, where (xn, yn) is the first crossing to fall in the sliding motion region (see
Figure 1(c)). Derive a recurrence formula of the form

yk+1 = T (yk)

showing how each new switching point is obtained from the previous one.
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Solution. The points (xk, yk) and (xk+1, yk+1) both lie at the intersection of the line
x + by = 0 and the parabola x = a + 1

2y
2 (if xk > 0) or the parabola x = a − 1

2y
2 (if

xk < 0) for the appropriate value of a. In the case xk > 0 (therefore yk < 0, from the
computation in the solution to part (a) above this shows that

yk = −b−
√
b2 − 2a,

yk+1 = −b+
√
b2 − 2a,

and in particular yk + yk+1 = −2b, or in other words

yk+1 = −2b− yk.

In the other case yk > 0 one can check analogously that yk+1 = 2b− yk. To summarize,
this shows that in general we have the recurrence relation

yk+1 = T (yk)

where

T (y) =

{
−yk + 2b if yk > 0,

−yk − 2b if yk < 0.

(c) Use the answer to part (b) above to find a formula for the number n of times the system
undergoes switching (i.e., the number of times the switching line is crossed) before it
enters the sliding motion phase, as a function of the initial point (x0, y0). Illustrate this
formula by applying it in the specific case b = 0.5, (x0, y0) = (−2.2, 4.4).

Solution. Let’s try the example first. Applying the map T starting from y0 = 4.4 gives
a sequence of numbers

4.4 7→ −3.4 7→ 2.4 7→ −1.4 7→ 0.4

The last value 0.4 falls in the sliding motion region |y| ≤ b so the iteration stops there.
In this case the number of switchings is n = 4. It is easy to see how to generalize this.
In the general case, the yk’s alternate in sign, but if we look only at their absolute values
zk = |yk| then they satisfy the much simpler recurrence

zk+1 = zk − 2b,

and the number n is the number of iterations required to bring z0 to a number in the
range [−b, b]. This translates to the condition

−b < z0 − n · 2b < b,

which can also be written as

n · 2b < z0 + b < (n+ 1) · 2b.

As a consequence, we can express n in terms of z0 with a formula involving the floor
function:

n =

⌊
z0 + b

2b

⌋
.
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A

B

A

B

(a) (b)

(x1, y1)s

(x2, y2)
s

(x3, y3)s
(x4, y4)s

s(x0, y0)
(c)

Figure 1: (a) The phase portrait of the switching control and the sliding motion region. (b) At the
point B, the curve x = a+ 1

2y
2 becomes tangent to the switching line x+ by = 0.
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3. The optimal switching control rule in the electromagnetic levitation problem leads to the
system

ẋ = y,

ẏ = − sgn
(
x+ 1

2y|y|
)
.

Find a formula for the time τ(x0, y0) it takes the system to get to the rest point at the origin
from an arbitrary initial state (x0, y0) (see the figure below).

(x0, y0)
s

Figure 2: Phase portrait for the optimal switching control.

Solution. We need to divide into two cases according to which side of the curve x = −1
2y|y|

the initial point (x0, y0) lies on. First, assume that x0 > −1
2y0|y0| (as in the example in the

figure above). In this case, the point first flows along the parabola x = a − 1
2y

2 (where a is
determined by the condition x0 = a− 1

2y
2
0, giving a = x0+ 1

2y
2
0), until it meets the point (x1, y1)

at the intersection of this parabola with the second parabola x = 1
2y

2 (more precisely, the
half-parabola where y < 0—see the figure). So, (x1, y1) satisfies the simultaneous equations

x1 = a− 1
2y

2
1 = 1

2y
2
1,

from which it is easy to find that

(x1, y1) =

(
1
2(x0 + 1

2y
2
0),−

√
x0 + 1

2y
2
0

)
.

From there, the point flows directly to (x2, y2) = (0, 0). The total time to get to (0, 0) is
given by the sum of the absolute values of the differences of the y-coordinates (since, from
the equations of motion, |ẏ| = 1 always):

τ(x0, y0) = |y0 − y1|+ |y1 − y2| = y0 − 2y1 = y0 + 2
√
x0 + 1

2y
2
0.
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A similar computation for the second case in which x0 ≤ −1
2y0|y0|

2 gives

τ(x0, y0) = −y0 + 2
√
−x0 + 1

2y
2
0.

To summarize, the final formula for τ(x, y) is:

τ(x, y) =

y + 2
√
x+ 1

2y
2 if x > −1

2y|y|,

−y + 2
√
−x+ 1

2y
2 if x ≤ −1

2y|y|.
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