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Part 1. Hamiltonian and Lagrangian mechanics

1.1. Introduction. Newton made the famous discovery that the mo-
tion of physical bodies can be described by a second-order differential
equation

F = ma,

where a is the acceleration (the second derivative of the position of the
body), m is the mass, and F is the force, which has to be specified in
order for the motion to be determined (for example, Newton’s law of
gravity gives a formula for the force F arising out of the gravitational
influence of celestial bodies). The quantities F and a are vectors, but in
simple problems where the motion is along only one axis can be taken
as scalars.

In the 18th and 19th centuries it was realized that Newton’s equa-
tions can be reformulated in two surprising ways. The new formula-
tions, known as Lagrangian and Hamiltonian mechanics, make it eas-
ier to analyze the behavior of certain mechanical systems, and also
highlight important theoretical aspects of the behavior of such sys-
tems which are not immediately apparent from the original Newtonian
formulation. They also gave rise to an entirely new and highly use-
ful branch of mathematics called the calculus of variations—a kind of
“calculus on steroids” (see Section 1.10).

Our goal in this chapter is to give an introduction to this deep and
beautiful part of the theory of differential equations. For simplicity, we
restrict the discussion mostly to systems with one degree of freedom,
and comment only briefly on higher-dimensional generalizations.

1.2. Hamiltonian systems. Recall that the general form of a planar
differential equation (i.e., a system of two first-order ODEs) is

ṗ = F (p, q, t),

q̇ = G(p, q, t),
(1)

where, in keeping with a tradition in the theory of ODEs, ḟ denotes
the derivative of a quantity f with respect to the time variable t. The
system is called a Hamiltonian system if there is a function

H = H(p, q, t)

(called the Hamiltonian associated with the system) such that the func-
tions F and G satisfy

F (p, q, t) = −∂H
∂q

, G(p, q, t) =
∂H

∂p
.
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In this case the system has the form

ṗ = −∂H
∂q

,

q̇ =
∂H

∂p
.

(2)

The variable p is sometimes called a generalized coordinate, and the
variable q is called the generalized momentum associated to p.

When can we say that a given system (1) is Hamiltonian? Assuming
that F and G are continuously differentiable, it is not difficult to see
that a necessary condition is that

∂F

∂p
= −∂G

∂q
,(3)

(or ∂F
∂p

+ ∂G
∂q

= 0) since both sides of the equation are equal to − ∂2H
∂p∂q

.

Equivalently, this condition can be written as

div V = 0,

where V denotes the planar vector field V = (F,G) (we interpret the
first coordinate of V as the “p-coordinate” and the second coordinate
as the “q-coordinate”), and div V denotes the divergence of V. In
physics, a vector field with this property is called divergence-free or
solenoidal. Yet another way to write (3) is

curl W = 0,

where W is the vector field W = (G,−F ), and curl is the (2-dimensional
version of the) curl operator, defined by curl(A,B) = ∂A

∂q
− ∂B

∂p
. A vector

field with this property is called curl-free or irrotational.

Lemma 1. If the equation (1) is defined on a simply connected domain,
the condition (3) is both necessary and sufficient for the system to be
Hamiltonian.

Proof. This is a slight reformulation of a familiar fact from vector cal-
culus, that says that in a simply connected domain, a vector field
W = (A,B) is curl-free if and only if it is conservative. A conser-
vative vector field is one for which the line integral of the field between
two points is independent of the contour connecting them, or equiva-
lently, such that the line integral on any closed contour vanishes. Such
a vector field can always be represented as W = ∇H (the gradient of
H) for some scalar function H; one simply defines H(p, q) as the line
integral (which for a conservative field is independent of the path of
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integration)

H(p, q) =

∫ (p,q)

(p0,q0)

W · ds =

∫ (p,q)

(p0,q0)

Adp+B dq

between some fixed but arbitrary initial point (p0, q0) and the point
(p, q). The fact that W = ∇H is immediate from the fundamental
theorem of calculus. In our case, W = (G,−F ) so the equation W =
∇H gives exactly the pair of equations F = −∂H

∂q
, G = ∂H

∂p
, with H

serving as the desired Hamiltonian. �

1.3. The Euler-Lagrange equation. Given a function of three vari-
ables L = L(q̇, q, t), the differential equation

d

dt

(
∂L

∂q̇

)
=
∂L

∂q
(4)

is called the Euler-Lagrange equation. Note that the notation here
may be slightly confusing: for the purpose of computing L(q̇, q, t) and
finding ∂L

∂q̇
, one must think of q̇ as an independent variable that has no

connection to q. But once ∂L
∂q̇

is evaluated, to apply the time-derivative
d
dt

, one should think of q̇ as the time-derivative of q. This leads to
a second-order ordinary differential equation for the quantity q. The
function L is called the Lagrangian.

1.4. Equivalence of the Lagrange and Hamilton formalisms.
We now wish to show that the Euler-Lagrange equation is equivalent
to the idea of a Hamiltonian system. Start with the equation (4).
Denote p = ∂L

∂q̇
. The Hamiltonian will be defined by

H(p, q, t) = pq̇ − L(q̇, q, t),(5)

where q̇ is again interpreted as a symbol representing an independent
variable, which is extracted from p, q, t by inverting the relation p = ∂L

∂q̇

(i.e., this relation defines a transformation from the system of variables
q̇, q, t to the system p, q, t). Then, using the chain rule we can compute

∂H

∂p
= q̇ + p

∂q̇

∂p
− ∂L

∂q̇

∂q̇

∂p
= q̇ + p

∂q̇

∂p
− p∂q̇

∂p
= q̇,

∂H

∂q
= p

∂q̇

∂q
− ∂L

∂q̇

∂q̇

∂q
− ∂L

∂q
= −∂L

∂q
= − d

dt

(
∂L

∂q̇

)
= −dp

dt
= −ṗ,

which shows that we indeed get the Hamiltonian system (2).
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Going in the other direction, if we start with a Hamiltonian system,
we can construct a Lagrangian by setting

L(q̇, q, t) = pq̇ −H(p, q, t),(6)

where in this definition p = p(q, q̇, t) is interpreted as a function of the
independent variables q, q̇, t, defined by the implicit equation q̇ = ∂H

∂p
.

Again computing using the chain rule and the Hamiltonian equations
(2), we now have that

∂L

∂q̇
= p+ q̇

∂p

∂q̇
− ∂H

∂p

∂p

∂q̇
= p,

∂L

∂q
= q̇

∂p

∂q
− ∂H

∂p

∂p

∂q
− ∂H

∂q
= −∂H

∂q
= ṗ =

d

dt

(
∂L

∂q̇

)
,

so we have recovered the Euler-Lagrange equation (4).

Exercise 1. Legendre transform. The connection between the Hamil-
tonian and Lagrangian is that each is obtained from the other via a
transformation called the Legendre transform. Here is a simplified ver-
sion of the definition of this transform: given a strictly convex smooth
function f(x) defined on some interval [x0, x1] (i.e., f ′′ > 0), its Le-
gendre transform is a function g(p) defined on the interval [p0, p1],
where pi = f ′(xi). To compute g(p), we first find the point x such
that p = f ′(x), and then set

g(p) = px− f(x).

(1) Prove that g is also strictly convex.
(2) Prove that the Legendre transform is its own inverse: i.e., f(x)

is the Legendre transform of g(p).
(3) Compute the Legendre transforms of the following functions:

(i) f(x) = xα, α > 1; (ii) f(x) = ex; (iii) f(x) = cosh x.

1.5. Lagrangian formulation of Newtonian mechanics. Assume
a particle of mass m is constrained to move in one dimension under
the influence of a force F = F (q, t), where q is the position coordinate.
The equation of motion is

q̈ =
F

m
= −∂U

∂q
,(7)

where U = U(q, t) is the potential energy per unit mass associated
with the force F at time t, defined by U(q) = − 1

m

∫ q
q0
F (u) du. Define

a Lagrangian L = L(q̇, q, t) by

L(q̇, q, t) = 1
2
q̇2 − U(q, t)
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(the kinetic energy of the particle minus the potential energy, divided
by its mass). Now let us write the Euler-Lagrange equation for this
Lagrangian. The relation p = ∂L

∂q
= q̇ means that p is simply equal to

the velocity of the particle, and (4) becomes

q̈ = ṗ =
d

dt

(
∂L

∂q̇

)
=
∂L

∂q
= −∂U

∂q
,

which is the same as (7). The strange-looking Lagrangian formal-
ism has reproduced Newton’s equation of motion! Also note that the
Hamiltonian associated with the system, related to the Lagrangian by
equations (5) and (6), is

H = pq̇ − L = q̇2 −
(

1
2
q̇2 − U(q, t)

)
= 1

2
q̇2 + U(q, t),

i.e., the Hamiltonian is the kinetic energy plus the potential energy, or
the total energy of the particle, divided by the mass.

Let us now see whether this phenomenon can be generalized. Assume
that the particle is now moving in three dimensions, so its position x(t)
as a function of time is a vector, which varies under the influence of
an external force field, which we take to be conservative. However,
since we prefer to keep working with planar ODEs for the time being,
assume that the motion of the particle is nonetheless constrained to lie
on some one-dimensional curve Γ = Γt (which could itself be moving in
space, so depends on t). For example, the physical interpretation can
be of a bead sliding without friction along a curved wire, which may be
moving in space. In this case, the equation of motion can be written
in the form

ẍ− 1

m
F = ẍ +∇U =

1

m
G(x, t),(8)

where F(x, t) denotes the external force field, associated with the po-
tential energy U(x, t), and where a second force function G(x, t) is a
constraint force acting in a direction normal to the curve Γt. The role
of the constraint force is to make sure that the particle’s trajectory
remains constrained to the curve.

Now, since the particle is constrained to a curve, we should be able
to describe its position at any instant using a single real number. That
means introducing a new (scalar) quantity q, such that x can be de-
scribed in terms of a functional relation with q:

x = x(q, t).

The idea is that q is a parameter measuring position along the curve
(in a way that may depend on t) in some way. For example, q may
measure arc length along the curve as measured from some known
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reference point x0(t) on the curve. The details of the definition of q
depend on the specific problem (there are many possible choices of q
for a given situation) and are not important for the present analysis.

Let us now show that the equation of motion can be represented
using the Lagrangian formalism as applied to the new coordinate q.
Begin by observing that we have the relation

G · ∂x

∂q
= 0,

since G acts normally to the curve and ∂x
∂q

is tangential to it. Then

taking the scalar product of both sides of (8) with ∂x
∂q

gives

ẍ · ∂x

∂q
+ (∇U) · ∂x

∂q
= 0,

or

ẍ · ∂x

∂q
+
∂U

∂q
= 0,(9)

where we now interpret U = U(x, t) as a function U(q, t) of q and
t. Now define the Lagrangian L by again taking the difference of the
kinetic and potential energies, namely

L = 1
2
|ẋ|2 − U = 1

2

∣∣∣∣∂x

∂q
q̇ +

∂x

∂t

∣∣∣∣2 − U,
which can be interpreted as a function of q, q̇ and t. Note that the
velocity ẋ = ∂x

∂q
q̇ + ∂x

∂t
, also considered as a function of q, q̇ and t,

satisfies
∂ẋ

∂q̇
=
∂x

∂q
.

Taking partial derivatives of L with respect to q and q̇, we get

∂L

∂q̇
= 1

2

∂

∂q̇
(ẋ · ẋ) = ẋ · ∂x

∂q
,

∂L

∂q
= 1

2

∂

∂q
(ẋ · ẋ)− ∂U

∂q
= ẋ · ∂ẋ

∂q
− ∂U

∂q
.

(10)

Also, note that

d

dt

(
∂x

∂q

)
=
∂ 2x

∂q2
q̇ +

∂ 2x

∂q∂t
=

∂

∂q

(
∂x

∂q
q̇ +

∂x

∂t

)
=
∂ẋ

∂q
(11)
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Combining the results (9), (10) and (11), we get finally that

d

dt

(
∂L

∂q̇

)
= ẍ · ∂x

∂q
+ ẋ · d

dt

(
∂x

∂q

)
= ẍ · ∂x

∂q
+ ẋ · ∂ẋ

∂q

= ẍ · ∂x

∂q
+

∂

∂q

(
1
2
|ẋ|2
)

= −∂U
∂q

+
∂

∂q
(L+ U)

=
∂L

∂q
.

Thus, the equation of motion becomes the Euler-Lagrange equation
for the Lagrangian L when the motion is parametrized using the scalar
coordinate q.

It is interesting to find also the Hamiltonian associated with the
system. Is it equal to the total energy per unit mass? The energy per
unit mass is

E = K + U,

where U is the potential energy and K = 1
2
|ẋ|2 is the kinetic energy,

which can be written more explicitly as

K = 1
2

∣∣∣∣∂x

∂q

∣∣∣∣2 q̇2 +

(
∂x

∂q
· ∂x

∂t

)
q̇ + 1

2

∣∣∣∣∂x

∂t

∣∣∣∣2 ,
(a quadratic polynomial in q̇). The generalized momentum coordinate
p is in this case given by

p =
∂L

∂q̇
=

∣∣∣∣∂x

∂q

∣∣∣∣2 q̇ +
∂x

∂q
· ∂x

∂t
.

Note that it is in one-to-one correspondence with q̇, as should happen.
By (5), we get the Hamiltonian as

H =

∣∣∣∣∂x

∂q

∣∣∣∣2 q̇2 +

(
∂x

∂q
· ∂x

∂t

)
q̇ − L

=

∣∣∣∣∂x

∂q

∣∣∣∣2 q̇2 +

(
∂x

∂q
· ∂x

∂t

)
q̇ − (K − U)

= E −
(
∂x

∂q
· ∂x

∂t

)
q̇ − 1

2

∣∣∣∣∂x

∂t

∣∣∣∣2 .
In particular, if x does not have an explicit dependence on t (which
corresponds to a situation in which x = x(q), i.e., the constraint curve
is stationary), then ∂x

∂t
= 0, and in this case H = E. However, in the

general case the Hamiltonian differs from the energy of the system.

Example 1. The harmonic oscillator. The one-dimensional harmonic
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oscillator corresponds to the motion of a particle in a parabolic poten-
tial well, U(q) = 1

2
kq2, where k > 0, or equivalently, motion under a

linear restoring force F (q) = −mkq (e.g., an oscillating weight attached
to an idealized elastic spring satisfiying Hooke’s law). In this case we
have

L = 1
2
q̇2 − 1

2
kq2,

H = 1
2
q̇2 + 1

2
kq2,

p =
∂L

∂q̇
= q̇,

and the equation of motion d
dt

(
∂L
∂q̇

)
= ∂L

∂q
is

q̈ = −kq.

Its general solution has the form

q = A cos(ωt) +B sin(ωt),

where ω =
√
k.

Example 2. The simple pendulum. Next, consider the simple pendu-
lum, which consists of a point mass m attached to the end of a rigid
rod of length ` and negligible mass, whose other end is fixed to a point
and is free to rotate in one vertical plane. This simple mechanical sys-
tem also exhibits oscillatory behavior, but its behavior is much richer
and more complex due to the nonlinearity of the underlying equation
of motion. Let us use the Lagrangian formalism to derive the equation
of motion. This is an example of the more generalized scenario of mo-
tion constrained to a curve (in this case a circle). The natural choice
for the generalized coordinate q is the angle q = θ between the two
vectors pointing from the fixed end of the rod in the down direction
and towards the pendulum, respectively. In this case, we can write

x = (` sin q, 0,−` cos q),

K = Kinetic energy per unit mass = 1
2
|ẋ|2 = 1

2
`2q̇2,

U = Potential energy per unit mass = −g` cos q,

L = K − U = 1
2
`2q̇2 + g` cos q,

p =
∂L

∂q̇
= `2q̇,

H = E = K + U = 1
2
`2q̇2 − g` cos q =

p2

2`2
− g` cos q.
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The equation of motion becomes `2q̈ = ṗ = ∂L
∂q

= −g` sin q, or

q̈ = −g
`

sin q.

This is often written in the form

q̈ + ω2 sin q = 0,(12)

where ω2 = g
`
. In Hamiltonian form, the equations of motion will be

ṗ = −g` sin q,

q̇ =
p

`2
.

Example 3. A rotating pendulum. Let us complicate matters by
assuming that the pendulum is rotating around the vertical axis (the
z-axis, in our coordinate system) with a fixed angular velocity ω. In
terms of the coordinate q, which still measures the angle subtended
between the vector pointing from the origin to the particle and the
vertical, the particle’s position will now be

x = (` sin q cos(ωt), ` sin q sin(ωt),−` cos(ωt)).

The kinetic and potential energies per unit mass, and from them the
Lagrangian and Hamiltonian, and the generalized momentum coordi-
nate p, can now be found to be

K = 1
2
|ẋ|2 = 1

2
`2(q̇2 + ω2 sin2 q),

U = −g` cos q,

L = 1
2
`2(q̇2 + ω2 sin2 q) + g` cos q,

p = `2q̇,

H =
p2

2`2
− g` cos q − 1

2
ω2`2 sin2 q.

The Euler-Lagrange equation of motion is

q̈ + Ω2 sin q − ω2 sin q cos q = 0,

where Ω2 = g
`
. The system in Hamiltonian form is

ṗ = −g` sin q + ω2`2 sin q cos q,

q̇ =
p

`2
.
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1.6. An autonomous Hamiltonian is conserved. In the last ex-
ample above, it is important to note that although the system in its
original form depends on time due to the motion of the constraint
curve, the Hamiltonian, Lagrangian and the associated equations are
autonomous, i.e., do not depend on time. This is an illustration of the
type of simplification that can be achieved using the Lagrangian and
Hamiltonian formulations. Furthermore, the fact that the Hamiltonian
is autonomous has an important consequence, given by the following
lemma.

Lemma 2. If the Hamiltonian is autonomous, then H is an integral
(i.e., an invariant or conserved quantity) of Hamilton’s equations.

Proof. The assumption means that ∂H
∂t

= 0. By the chain rule, it
follows that

dH

dt
=
∂H

∂p
ṗ+

∂H

∂q
q̇ +

∂H

∂t

=
∂H

∂p

(
−∂H
∂q

)
+
∂H

∂q

(
∂H

∂p

)
+
∂H

∂t
=
∂H

∂t
= 0.

�

In the first two examples of the harmonic oscillator and the sim-
ple pendulum, the Hamiltonian was equal to the system’s energy, so
Lemma 2 corresponds to the conservation of energy. In the example of
the rotating pendulum, the Hamiltonian is not equal to the energy of
the system, yet it is conserved. Can you think of a physical meaning
to assign to this conserved quantity?

1.7. Systems with many degrees of freedom. In the above dis-
cussion, we focused on a system with only one degree of freedom. In
this case the equations of motion consisted of a single second order dif-
ferential equation (the Euler-Lagrange equation), or in the equivalent
Hamiltonian form, a planar system of first-order equations. We can
describe the behavior of systems having more degrees of freedom, in-
volving for example many particles or an unconstrained particle moving
in three dimensions, using a multivariate form of the Euler-Lagrange
and Hamilton equations. We describe these more general formulations
of the laws of mechanics briefly, although we will not develop this gen-
eral theory here.

Let the system be described by n generalized coordinates q1, . . . , qn.
The Lagrangian will be a function of the coordinates and their time
derivatives (generalized velocities):

L = L(q1, . . . , qn, q̇1, . . . , q̇n, t)
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As before, the Lagrangian will be defined as the kinetic energy minus
the potential energy of the system. The equations of motion will be
given as a system of Euler-Lagrange second-order equations, one for
each coordinate:

d

dt

(
∂L

∂q̇j

)
=
∂L

∂qj
(j = 1, . . . , n).

To write the Hamiltonian formulation of the system, first we define gen-
eralized momentum coordinates p1, . . . , pn. They are given analogously
to the one-dimensional case by

pj =
∂L

∂q̇j
(j = 1, . . . , n).

The Hamiltonian system is written as a system of 2n first-order ODEs:

ṗj = −∂H
∂qj

,

q̇j =
∂H

∂pj
,

(j = 1, . . . , n),

where H = H(p1, . . . , pn, q1, . . . , qn, t) is the Hamiltonian, which (like
the Lagrangian) is still a scalar function. This is sometimes written as
the pair of vector equations

ṗ = −∂H
∂q

,

q̇ =
∂H

∂p
,

where we denote p = (p1, . . . , pn), q = (q1, . . . , qn).
As in the case of one-dimensional systems, it can be shown that

(under some mild assumptions) the Hamiltonian and Lagrangian for-
mulations are equivalent, and that they correctly describe the laws of
motion for a Newtonian mechanical system if the Lagrangian is defined
as the kinetic energy minus the potential energy. The relationship be-
tween the Lagrangian and Hamiltonian is given by

H =
n∑
j=1

q̇jpj − L.

Example 4. A pendulum with a cart. An important example that we
will discuss later from the point of view of control theory is that of a
simple pendulum whose point of support is allowed to slide without
friction along a horizontal axis (e.g., you can imagine the pendulum
hanging on a cart with wheels rolling on a track of some sort). We
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assume the sliding support has mass M . This system has two degrees
of freedom: the angle q1 = θ between the pendulum and the vertical
line extending down from the point of support, and the distance q2 = s
(measured in the positive x direction) between the point of support
and some fixed origin. To derive the equations of motion, we write the
kinetic and potential energies:

K = 1
2
Mṡ2 + 1

2
m

[(
ṡ+ `θ̇ cos θ

)2

+
(
`θ̇ sin θ

)2
]
,

U = −mg` cos θ.

The Lagrangian L = K − U is then given by

L = 1
2
Mṡ2 + 1

2
m

[(
ṡ+ `θ̇ cos θ

)2

+
(
`θ̇ sin θ

)2
]

+mg` cos θ

= 1
2
(M +m)ṡ2 +m`ṡθ̇ cos θ + 1

2
m`2θ̇2 +mg` cos θ.

Therefore the equations of motion d
dt

(
∂L
∂ṡ

)
= ∂L

∂s
, d
dt

(
∂L
∂θ̇

)
= ∂L

∂θ
become

d

dt

[
(M +m)ṡ+m`θ̇ cos θ

]
= 0,

d

dt

[
m(`ṡ cos θ + `2θ̇)

]
= −m(`ṡθ̇ + g`) sin θ,

or, written more explicitly,

(M +m)s̈+m`θ̈ cos θ −m`θ̇2 sin θ = 0,

θ̈ +
1

`
ẍ cos θ +

g

`
sin θ = 0.

Example 5. Double pendulum. The double pendulum consists of a
mass M hanging at the end of a rigid rod of negligible mass whose
other end is attached to a fixed point of support, and another equal
(for simplicity) mass hanging from another rigid rod, also of negligible
mass attached to the free end of the first rod. Denote by L1 and L2

the respective lengths of the two rods. If we denote by θ1, θ2 the angles
each of the rods forms with the vertical, a short computation gives the
Lagrangian of the system:

L = K − U = L1θ̇
2
1 + 1

2
L2θ̇

2
2 + L1L2 cos(θ1 − θ2)

+ 2gL1 cos θ1 + gL2 cos θ2.
(13)
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Figure 1. A color-coded map of the time required for
the double pendulum to flip over as a function of its
initial conditions reveals a chaotic structure. (Source:
Wikipedia)

It follows that the generalized momenta are given by

p1 =
∂L

∂θ̇1

= 1
2
L2

1θ̇1 − 2L1L2 sin(θ1 − θ2),

p2 =
∂L

∂θ̇2

= 1
2
L2

2θ̇2 + 2L1L2 sin(θ1 − θ2),

and from this we get the equations of motion for the system:

1
2
L2

1θ̈1 − 2L1L2 cos(θ1 − θ2)θ̇1 = −L1L2 sin(θ1 − θ2) + gL1 sin θ1,

1
2
L2

2θ̈2 − 2L1L2 cos(θ1 − θ2)θ̇2 = L1L2 sin(θ1 − θ2) + gL2 sin θ2.

This system of two nonlinear coupled second-order ODEs is in practice
impossible to solve analytically, and for certain values of the energy is
known to exhibit chaotic behavior which is difficult to understand in
any reasonable sense; see Figure 1. (Nonetheless, later in the course
we will learn about some interesting things that can still be said about
such systems.)

Exercise 2. The Lorentz force. From the study of electricity and
magnetism, it is known that the motion of a charged particle with
mass m and electric charge q is described by the equation F = mẍ,
where x is the (vector) position of the particle and F is the Lorentz
force, given by

F = q (E + ẋ×B) .
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The vector field E = E(x, y, z, t) is the electric field, and the vector
field B = B(x, y, z, t) is the magnetic field. Using Maxwell’s equations
one can show that there exist functions φ = φ(x, y, z, t) and A =
A(x, y, z, t) such that

E = −∇φ− ∂A

∂t
,

B = curl A.

The (scalar) function φ is called the electric potential, and the vector
A is called the magnetic potential, or vector potential. Note that E
behaves exactly like a conventional force field, causing the particle an
acceleration in the direction of E that is equal to the field magnitude
multiplied by the (constant) scalar q/m, whereas the influence of the
magnetic field B is of a more exotic nature, causing an acceleration
that depends on the particle’s velocity in a direction perpendicular to
its direction of motion.

Show that motion under the Lorentz force is equivalent to the Euler-
Lagrange equation d

dt

(
∂L
∂ẋ

)
= ∂L

∂x
, where the Lagrangian is given by

L(ẋ,x, t) = 1
2
m|ẋ|2 − qφ(x, t) + qA(x, t) · ẋ.

1.8. Rest points in autonomous Hamiltonian systems. Assume
that the Hamiltonian is autonomous. The rest points of the system
correspond to the stationary points of the Hamiltonian, i.e., points for
which

∂H

∂p
= 0,

∂H

∂q
= 0.

Let (p0, q0) be a rest point of the system. We can analyze the stability
properties of the rest point by linearizing. Setting

x = p− p0, y = q − q0,

the behavior of the system near (p0, q0) can be described as

ẋ = −bx− cy +O(x2 + y2),

ẏ = ax+ by +O(x2 + y2),

where

a =
∂2H

∂p2

∣∣∣
(p0,q0)

, b =
∂2H

∂p∂q

∣∣∣
(p0,q0)

, c =
∂2H

∂q2

∣∣∣
(p0,q0)

.

By the theory of stability analysis of planar ODEs, the stability type
of the rest point can now be understood in terms of the behavior of the
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eigenvalues of the matrix (
−b −c
a b

)
(the Jacobian matrix of the vector field at the rest point). The eigen-
values are given by

λ2 = b2 − ac.
So we see that, when b2 < ac, the eigenvalues are pure imaginary
numbers, and recall that in that case the rest point is a center. On the
other hand, when b2 > ac the eigenvalues are the two real square roots
±
√
b2 − ac. Since in that case we have one negative and one positive

eigenvalue, the stability theory says that the rest point is a saddle
point. (We assume that the Hessian matrix of second derivatives is
non-degenerate, i.e., that b2 6= ac, so that the usual criteria for stability
apply.) Liouville’s theorem, which we will discuss in a later section, will
give another, more geometric, explanation why rest points cannot be
asymptotically stable or unstable.

1.9. The principle of least action. For times t0 < t1, define the
action A(t0, t1) of a Lagrangian system from time t0 to time t1 as the
integral of the Lagrangian:

A(t0, t1) = action =

∫ t1

t0

L(q̇(t), q(t), t) dt.

The action is a function of an arbitrary curve q(t). The principle of
least action is the statement that if the system was in coordinate q0

at time t0 and in coordinate q1 at time t1, then its trajectory between
time t0 and time t1 is that curve which minimizes the action A(t0, t1),
subject to the constraints q(t0) = q0, q(t1) = q1. This is a surprising
statement, which we will see is almost equivalent to the Euler-Lagrange
equation—only almost, since, to get the equivalence, we will need to
first modify the principle slightly to get the more precise version known
as the principle of stationary action.

The principle of least action can be thought of as a strange, non-
causal interpretation of the laws of mechanics. We are used to thinking
of the laws of nature as manifesting themselves through interactions
that are local in space and time: a particle’s position x + dx and
velocity v + dv at time t+ dt, are related to its position x and velocity
v at time t, as well as to external forces acting on the particle, which
are also determined by “local” events in the vicinity of x at time t.
This way of thinking can be thought of as the causal interpretation,
in which every effect produced at a given point in space and time is
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immediately preceded by, and can be directly attributable to, another
event causing the effect. Mathematically, this means the laws of nature
can be written as (ordinary or partial) differential equations.

On the other hand, the principle of least action (and other similar
principles that appear in physics, including in more fundamental areas
of physics such as quantum mechanics, that we know represent a more
correct view of our physical reality) can be thought of as saying that,
in order to bring a physical system from state A to state B over a
given period of time, Nature somehow tries all possible ways of doing
it, and selects the one that minimizes the action. The entire trajectory
appears to be chosen “all at once,” so that each part of it seems to
depend on other parts which are far away in space and time. This
rather unintuitive interpretation is nonetheless mathematically correct,
and even at the physical level it has been suggested that there is some
truth to it (the arguments for why this is so involve deep ideas from
quantum mechanics that are beyond the scope of this course).

1.10. The calculus of variations . Let us consider the problem of
minimizing the action in slightly greater generality. In many areas of
mathematics we encounter expressions of the form

Φ(q) =

∫ t1

t0

L(q̇(t), q(t), t) dt(14)

which take a (sufficiently smooth) function q(t) defined on an interval
[t0, t1] and return a real number. The form of the integrand L(q̇, q, t)
depends on the problem, and may have nothing to do with Lagrangian
mechanics (indeed, in many problems with a geometric flavor, t repre-
sents a space variable instead of a time variable, and is therefore often
denoted by x; in this case, we write q′ instead of q̇ for the derivative
of q). Usually the function q is assumed to take specific values at the
ends of the interval, i.e., q(t0) = q0 and q(t1) = q1.

Such a mapping q 7→ Φ(q) is called a functional—note that a func-
tional is just like an ordinary function from calculus, except that it
takes as its argument an entire function instead of only one or several
real-valued arguments (that is why we call such functions functionals,
to avoid an obvious source of confusion). In many cases it is desir-
able to find which function q results in the least and/or the greatest
value Φ(q). Such a minimization or maximization problem is known
as a variational problem (the reason for the name is explained below),
and the area of mathematics that deals with such problems is called
the variational calculus, or calculus of variations. In more advanced
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variational problems the form of the functional (14) can be more gen-
eral and depend for example on a vector-valued function q(t), or on
higher-order derivatives of q, or on a function q(x1, . . . , xk) of several
variables

Here are some examples of variational problems.

(1) What is the shortest curve in the plane connecting two points?
We all know it is a straight line, but how can we prove it?
(And how do we find the answer to the same question on some
complicated surface?)

(2) What is the curve of given length in the plane bounding the
largest area? (It is a circle—this fact, which is not trivial to
prove, is known as the isoperimetric inequality.)

(3) What is the curve connecting a point A in the plane with an-
other lower point B such that a ball rolling downhill without
friction along the curve from A to B under the influence of grav-
ity will reach B in the minimal possible time? This problem
is known as the brachistochrone problem, and stimulated the
development of the calculus of variations in the 18th century.

(4) What is the curve in the phase space of a Lagrangian system
that minimizes the action?

The basic idea involved in solving variational problems is as follows:
if q is an extremum (minimum or maximum) point of the functional Φ,
then it is also a local extremum. That means that for any (sufficiently
smooth) function h : [t0, t1] → R satisfying h(t0) = h(t1) = 0, the
function

φq,h(s) = Φ(q + sh) =

∫ t1

t0

L(q̇(t) + sh′(t), q(t) + sh(t), t) dt

(an ordinary function of a single real variable s) has a local extremum
at s = 0. From ordinary calculus, we know that the derivative of φq,h
at 0 must be 0:

φ′q,h(0) = 0.
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To evaluate this derivative, differentiate under the integral sign and
integrate by parts, to get

φ′q,h(0) =

∫ t1

t0

d

ds

∣∣∣s=0
L(q̇(t) + sh′(t), q(t) + sh(t), t) dt

=

∫ t1

t0

(
∂L

∂q̇
h′(t) +

∂L

∂q
h(t)

)
dt

=

∫ t1

t0

(
− d

dt

(
∂L

∂q̇

)
+
∂L

∂q

)
h(t) dt+

∂L

∂q̇
h(t)

∣∣∣t=t1
t=t0

=

∫ t1

t0

(
− d

dt

(
∂L

∂q̇

)
+
∂L

∂q

)
h(t) dt

This brings us to an important definition. We denote

δΦq(h) =

∫ t1

t0

(
− d

dt

(
∂L

∂q̇

)
+
∂L

∂q

)
h(t) dt,(15)

and call this quantity the variation of the functional Φ at q, evaluated
at h (also sometimes called the first variation of Φ, since there is also
a second variation, third variation etc., which we will not discuss; this
is where the name calculus of variations comes from). It is analogous
to a directional derivative ∂f

∂u
= ∇f ·u of a function of several variables

in calculus, in that it measures the instantaneous rate of change of Φ if
we start from the “point” q and head off in a “direction” corresponding
to the small perturbation s · h. We say that the function q is a sta-
tionary point of Φ if δΦq(h) = 0 for any (sufficiently smooth) function
h satisfying h(t0) = h(t1) = 0. With the computation above, we have
proved:

Lemma 3. If q is an extremum (minimum or maximum) of the func-
tional Φ, then it is a stationary point.

Finally, note that the formula for the variation δΦq(h) involves a
quantity that is suspiciously reminiscent of the Euler-Langrange equa-
tion. Indeed, we can now easily prove:

Theorem 4. The function q is a stationary point of Φ if and only if
it satisfies the Euler-Lagrange equation

d

dt

(
∂L

∂q̇

)
=
∂L

∂q
.

Proof. It is easy to see that the integral on the right-hand side of (15)
is 0 for every h satisfying h(t0) = h(t1) = 0 if and only if the quantity
in parentheses in the integrand vanishes for all t. �
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Reformulating this result in the language of Lagrangian systems gives
the correct version of the principle of least action.

Theorem 5 (Principle of stationary action). Given a mechanical sys-
tem defined by a Lagrangian L, the trajectory of the system between
two times t1 < t2 satisfying q(t0) = q0 and q(t1) = q1 is a stationary
point of the action functional

Φ(q) = A(t0, t1) =

∫ t1

t0

L(q̇, q, t) dt.

The stationary point which solves the Euler-Lagrange equation will
usually be a minimum point for simple systems, but in general does
not have to be. There is a method for determining whether a given sta-
tionary point is a minimum, maximum, or saddle point, which involves
computing the second variation of the functional (analogous to the
Hessian matrix of second derivatives of a function of several variables),
but we will not discuss it here.

Let us see how the theory works in a few examples to solve some
interesting variational problems.

Example 6. Plane geodesics. Consider the problem of determining
the shortest line between two points (x1, y1) and (x2, y2), where we
assume for concreteness that x1 < x2 (The shortest line between two
points on a general surface or curved space is known as a geodesic.)
As is well-known from the arc length formula ds2 = dx2 + dy2 from
calculus, the length of a curve y = q(x) is given by

Φ =

∫ x2

x1

ds =

∫ x2

x1

√
1 + q′(x)2 dx =

∫ x2

x1

L(q′, q) dx,

where the “Lagrangian” is given by

L(q′, q) =
√

1 + q′(x)2.

To find the minimizing curve, we write the Euler-Lagrange equation:

d

dx

(
q′(x)√

1 + q′(x)2

)
=

d

dx

(
∂L

∂q′

)
=
∂L

∂q
= 0.

The solution is

q′(x)√
1 + q′(x)2

= const,

which is equivalent to q′(x) = const, i.e., we have recovered the equation
for a straight line y = ax+ b.
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Example 7. Brachistochrone problem. In this problem, we try to find
the curve connecting the points A and B in the plane, for which a ball
rolling downhill without friction from A to B, with an initial velocity
of 0, will take the shortest time to arrive. We choose a coordinate
system such that the x-axis is the vertical axis and points downward
for positive x, and such that A = (0, 0), B = (xb, yb) with xb, yb > 0. If
the curve is given by y = q(x), the time is given by the integral along
the curve

T =

∫ B

A

ds

v
,

where ds is the arc length element and v is the velocity of the ball
at each point. More explicitly, we have ds =

√
1 + q′(x)2 dx, and

v =
√

2gx, where g is the gravitational constant (this follows from
conservation of energy, which gives the relation 1

2
mv2 = mgx). So, the

functional we are trying to minimize is

T =

∫ xb

0

L(q′, q, x) dx,

where

L(q′, q, x) =

√
1 + q′2√
2gx

.

The Euler-Lagrange equation in this case becomes

d

dx

(
q′(x)√

2gx(1 + q′(x)2

)
= 0,

which therefore gives

q′(x)√
2gx(1 + q′(x)2)

= α,

where α is a constant. This can be rewritten as

q′(x)2

1 + q′(x)2
= x/λ,

where λ = (2α2g)−1, and then solved by solving for q′ and integrating,
giving the expression

q(x) =

∫ x

0

√
u

λ− u
du.(16)

Setting a = λ/2 and using the trigonometric substitution

u = 2a sin2(θ/2) = a(1− cos θ),
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we obtain a convenient parametric representation for the curve, namely

x(θ) = a(1− cos θ),

y(θ) =

∫ θ

0

√
1− cos θ

1 + cos θ
a sin θ dθ = a

∫ θ

0

(1− cos θ) dθ = a(θ − sin θ).

These are the equations for a cycloid (or, rather, an inverted cycloid,
as the cycloid is usually drawn with its “flat” side up): as can be seen
easily from the parametric equations, it describes the trajectory of a
point on a wheel that rolls along the y-axis (the parameter θ represents
the angle by which the wheel has rolled forward; see Figure 2). The
scaling constant a can now be chosen to fit the condition that q(xb) =
yb, i.e., the curve must pass through the point B. It may also be verified
using (16) that the nonparametric equation for the cycloid is

y = q(x) = a cos−1

(
a− x
a

)
−
√
x(2a− x).

Exercise 3. Tautochrone problem.

(1) Find a formula for the time it takes a ball rolling down a brachis-
tochrone curve to get to the lowest point on the curve.

(2) Show that the inverted cycloid is also a tautochrone curve, i.e.,
it has the property that a ball placed on the curve and allowed
to roll downhill and then up repeatedly would undergo an oscil-
latory motion whose period is independent of the ball’s initial
position along the curve. (This fact was discovered by Chris-
tiaan Huygens, the famous 17th century Dutch mathematician
and astronomer. Huygens, who invented the pendulum clock,
was aware that the period of a pendulum does depend on its
amplitude of oscillation—a fact which limits its accuracy for
timekeeping applications—and tried unsuccessfully to design
a more accurate modified pendulum clock based on the tau-
tochrone curve.)

Example 8. Geodesics in the hyperbolic plane. The hyperbolic plane
is a well-known example of a non-Euclidean geometry, i.e., a geometry
in which Euclid’s parallel postulate fails to hold. A concrete realization
of the hyperbolic plane consists of the set

H = {(x, y) ∈ R2 : y > 0}
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Figure 2. The brachistochrone curve (cycloid) as the
trajectory of a point on the boundary of a circle rolling
on a line.

(known as the upper half plane in complex analysis), together with a
modified formula for the arc length of a line segment, namely

ds =

√
dx2 + dy2

y
,

which replaces the usual formula ds =
√
dx2 + dy2 for the ordinary

Euclidean arc length. In other words, in the hyperbolic plane, the
higher you go, the more “flat” in the vertical direction your hyperbolic
length measurement becomes, in the sense that you need to traverse
y units of ordinary Euclidean distance for each unit of hyperbolic arc
length.

(The hyperbolic plane can also be realized inside a unit disk, result-
ing in a geometry in which objects seem to shrink—to our Euclidean
eyes—as they approach the boundary of the disk. This geometry was
famously portrayed by the Dutch artist M. C. Escher in a beautiful
series of wood engravings; see Figure 3.)

Let us use the methods of the calculus of variations to find the hyper-
bolic geodesics, which are the “straight lines” (actually shortest paths)
between two points (x1, y1), (x2, y2) in the hyperbolic plane. Imitating
the setup of the plane geodesics example, we are trying to minimize
the functional

ΦH =

∫ x2

x1

ds =

∫ x2

x1

√
1 + q′(x)2

q
dx =

∫ x2

x1

LH(q′, q) dx,

which is expressed in terms of a Lagrangian

LH(q′, q) =

√
1 + q′2

q
.
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Figure 3. M. C. Escher’s Circle Limit III (1959).

The Euler-Lagrange equation becomes

d

dx

(
q′(x)

q(x)
√

1 + q′(x)2

)
=

d

dx

(
∂LH

∂q′

)
=
∂LH

∂q
= −

√
1 + q′(x)2

q(x)2
.

After a short computation, this reduces to the equation

1 + q′(x)2 + q(x)q′′(x) = 0,

or

d2

dx2

(
1
2
q(x)2

)
=

d

dx
(q(x)q′(x)) = −1.

This is readily integrated, to give
1
2
q(x)2 = −x2 + Cx+D,

or

q(x) =
√
a2 − (x− b)2,

where D = a2 − b2, C = 2b. The equation y = q(x) is the equation
for a semicircular arc that crosses the y-axis perpendicularly—these
semicircular arcs are the geodesics in the hyperbolic plane. In addi-
tion, in the case when x1 = x2, it is easy to verify that the geodesic
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connecting (x1, y1) to (x2, y2) will be a vertical straight line. (In the
“unit disk” version of the hyperbolic plane, the geodesics are circular
arcs that intersect the boundary of the disk perpendicularly.)

Exercise 4. Find a formula for the length (as measured using the
hyperbolic metric!) of a hyperbolic geodesic arc between the points
(x1, y1), (x2, y2) ∈ H.

Example 9. Isoperimetric inequality. The isoperimetric problem was
the classical problem, discussed already by the ancient Greeks, of find-
ing the simple closed curve in the plane with perimeter L that bounds
the largest area (in modern times the problem has been considerably
generalized to higher dimensions, curved spaces etc.). The answer is
that the so-called isoperimetric curve is a circle, and can be derived us-
ing the calculus of variations. A slight complication is that the problem
involves minimizing a functional (the area bounded by the curve) sub-
ject to a constraint (representing the fixed perimeter); this difficulty
can be addressed easily using the standard idea of Lagrange multi-
pliers from “ordinary” calculus (note the repeated occurrence of the
mathematician Joseph Louis Lagrange’s name—it is no coincidence, of
course).

We model the isoperimetric problem as the problem of minimizing
the area functional

A =

∫ x1

x0

q(x) dx

among all curves q(x) taking nonnegative values on [x0, x1], and satis-
fying q(x0) = q(x1) = 0 as well as the arc length constraint

∫ x1

x0

ds =

∫ x1

x0

√
1 + q′(x)2 dx = `.

Such a curve q(x) represents the “upper part” of the closed curve that
lies above the x-axis, and meets it at the points x = x0, x = x1. The
solution should be a semicircle meeting the x-axis perpendicularly at
those points; once this fact is derived, one can derive the claim about
circles being the solution to the isoperimetric problem without too
much effort, after making reasonable assumptions about the form of
the solution.
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Since this is an optimization problem under constraints, the tech-
nique of Lagrange multipliers requires us to solve the modified non-
constrained problem of optimizing the functional

Aλ =

∫ x1

x0

q(x) + λ
√

1 + q′(x)2 dx =

∫ x1

x0

Lλ(q
′, q) dx,

where Lλ is a new Lagrangian that is obtained by taking the “original”
Lagrangian L = q and adding a constant multiple of the constraint
function

√
1 + q′2. The price of replacing the constrained problem by

an unconstrained one is the introduction of an additional parameter,
λ, known as the Lagrange multiplier. After solving the unconstrained
problem in terms of the parameter λ, the requirement for the constraint
to be satisfied gives an equation for λ. (A proof that this technique
works is beyond the scope of this course, but the geometric intuition is
very similar to the case of Lagrange multipliers in ordinary calculus.)

To see how this idea works in practice, we write the Euler-Lagrange

equation d
dx

(
∂Lλ
∂q′

)
= ∂Lλ

∂q
for the unconstrained optimization problem.

This gives

d

dx

(
λq′(x)√
1 + q′(x)2

)
= 1,

or

q′(x)2

1 + q′(x)2
= (Ax+B)2,

where A,B are constants related to the values of λ and an integration
constant. Solving for q′ and then integrating, we get

q′(x) = ± Ax+B√
1− (Ax+B)2

,

q(x) = ±
√
A−1 − (x+B/A)2 + E = ±

√
C − (x+D)2 + E,

where C,D,E are constants. If we now impose the constraints that
q is nonnegative, q(x0) = q(x1) = 0, and assume that the arc length
` is exactly π

2
(x1 − x0), we find that the solution to our optimization

problem must have the form

q(x) =

√(
x1 − x0

2

)2

−
(
x− x1 + x0

2

)2

,

which is indeed a semicircular arc that meets the x-axis perpendicularly
at x0, x1.
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Figure 4. The catenoid, a minimal surface of revolu-
tion.

Exercise 5. Surfaces of revolution. The surface obtained by taking
a curve y = q(x) on some interval [x1, x2] and rotating it around the
x-axis is called the surface of revolution of the curve. Its surface area
is known to be

S =

∫ x2

x1

2πy ds = 2π

∫ x2

x1

q(x)
√

1 + q′(x)2 dx.

For given values of x1 < x2 and boundary values q(x1) = y1, q(x2) = y2,
find the nonnegative curve that minimizes S. The surface of revolution
of this famous curve can be physically realized as the shape of a soap
film between two circular metal rings (see Figure 4).

Exercise 6. A hanging rope. A rope of length L and uniform linear
density ρ hangs between two points A = (x1, y1), B = (x2, y2), where
x1 < x2, and clearly we have to assume that (x2−x1)2+(y2−y1)2 ≤ L2.
Its shape is determined by the requirement that the potential energy

E = −
∫ x2

x1

ρgy ds

is minimized. Find the general equation for the shape.

Example 10. The elastic rod. A thin elastic rod of length L is made
to bend as it is clamped horizontally between the two points (0, 0) and
(A, 0) (where A < L). Its shape can be determined from the condition
that the elastic energy is minimized. The energy is proportional to an
integral along the curve of the square of its curvature:

E =

∫
1
2
J(curvature)2 ds = 1

2
J

∫
κ(s)2 ds,
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where J is a constant characteristic of the material and geometric cross
section of the rod, and ds denotes arc length. The curvature κ(s) at
a point along the curve is the reciprocal of the radius of curvature,
defined as the radius of a circle that can be brought to touch the curve
tangentially in such a way that both the first and second derivatives of
the curve and circle coincide.

Let the shape of the rod be described by the functions (x(s), y(s))
of the arc length parameter s, which varies from 0 to L. Let θ = θ(s)
be the angle between the positive x-axis and the tangent to the curve
at the point (x(s), y(s)); i.e., we have the relations

tan θ =
dy

dx
, cos θ =

dx

ds
, sin θ =

dy

ds
.

From elementary geometry it is known that κ(s) = |dθ
ds
|, i.e., the curva-

ture is the absolute rate of change of the angle of the tangent with arc
length [it is also the magnitude of the acceleration vector (x′′(s), y′′(s))].
So, in terms of the angle-arc-length functional representation θ(s) of
the curve, the energy functional can be written as

E =

∫ L

0

1
2
Jθ′(s)2 ds.

To derive an ODE for this minimization problem, note that the bound-
ary conditions

y(0) = y(L) = x(0) = 0, x(L) = A,

translate to two constraints∫ L

0

dy

ds
ds =

∫ L

0

sin θ(s) ds = 0,∫ L

0

dx

ds
ds =

∫ L

0

cos θ(s) ds = A.

In addition, we have the condition θ(0) = θ(L) = 0. We therefore
need to introduce two Lagrange multipliers λ1, λ2, and solve the un-
constrained optimization problem for the modified energy functional

Eλ1,λ2 =

∫ L

0

(
1
2
Jθ′(s)2 − λ1 sin θ(s)− λ2 cos θ(s)

)
ds

This gives the Euler-Lagrange equation

Jθ′′(s) = −λ1 cos θ(s) + λ2 sin θ(s).(17)

Note that this equation is somewhat similar to the pendulum equation
(12), and indeed can be brought to the form of (12) by replacing the
function θ(s) by a shifted version of it ϕ(s) = θ(s) + α, for a suitable
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α. The curves solving (17) are known as elastica curves, and this
useful coincidence between the elastica equation and the theory of the
pendulum is the starting point for a beautiful analysis of the possible
shapes that can be assumed by an elastic rod. We will not go into the
details of this analysis here.

Exercise 7. Solid of revolution with least airflow resistance. The air
resistance experienced by a bullet, whose shape is the solid of revolution
of a curve y = q(x), moving through the air is

Φ = 4πρv2

∫ L

0

q(x)q′(x)3 dx,

where ρ is the density of the material, v is the velocity of motion and
L is the length of the body of the bullet. Find the optimal shape
q(x) that results in the smallest resistance, subject to the conditions
q(0) = 0, q(L) = R.

1.11. The phase flow and Liouville’s theorem. Hamiltonian sys-
tems often have quantities which are conserved; for example, in au-
tonmous systems we saw that the Hamiltonian itself is conserved. In
other cases, if the Lagrangian does not depend on one of the general-
ized coordinates qj, then ∂L

∂qj
= 0, so, by the Euler-Lagrange equation

for that coordinate, the generalized momentum pj = ∂L
∂q̇j

is a conserved

quantity (in such a case we say that qj is a cyclic coordinate). Such
invariant quantities lead directly to the usual conservation laws from
mechanics—the conservation of energy, of momentum, and of angular
momentum—as well as to more exotic conserved quantities that arise
in specific problems.

We now discuss a different kind of conserved quantity, one that is
associated not with specific solutions, but rather with an entire family
of solutions. What we will do is to start with an entire set of initial
states in the phase space, then let those states evolve according to the
dynamical equations. After some time t, the initial states have evolved
to occupy some new set in the phase space. It turns out that the total
area of the set is conserved: this is the statement of Liouville’s theorem.

To state the theorem formally, given a Hamiltonian system (2), for
each point x = (p0, q0) ∈ R2 and time t ≥ 0, denote by ϕt(x) the point
(p(t), q(t)), where (p(t), q(t)) are the solutions to the equations (2) with
initial condition p(0) = p0, q(0) = q0. (We assume that the system is
such that the solutions exist for all time t ≥ 0.) Thus, for each t ≥ 0
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we have constructed a mapping

ϕt : R2 → R2,

which takes a “present” point corresponding to the state of the system
at time 0 into a “future” point corresponding to the state of the system
t units of time later. The family of maps (ϕt)t≥0 is called the phase
flow of the system: it describes how points “flow” along the solution
lines of the system.

Theorem 6 (Liouville’s theorem). The phase flow preserves area. More
precisely, given a region E ⊂ R2 with finite area, for any t ≥ 0 we have

area(ϕt(E)) = area(E).

Proof. Note that for fixed t, there is a one-to-one correspondence be-
tween points (p, q) ∈ ϕt(E) and points (p0, q0) ∈ E, defined by (p, q) =
ϕt(p0, q0). This smooth map has a Jacobian

Jt =
∂(p, q)

∂(p0, q0)
,

i.e., Jt is the determinant of the Jacobian matrix

D(p, q)

D(p0, q0)
=

 ∂p
∂p0

∂p
∂q0

∂q
∂p0

∂q
∂q0

 .

The Jacobian factor Jt enters into the area computation via a change
of variables in a double integral, as follows:

area(ϕt(E)) =

∫∫
ϕt(E)

dp dq =

∫∫
E

∂(p, q)

∂(p0, q0)
dp0 dq0

=

∫∫
E

Jt dp0 dq0.

We claim that Jt ≡ 1 for all t. This will imply that

area(ϕt(E)) =

∫∫
ϕt(E)

dp dq =

∫∫
E

dp0 dq0 = area(E),

and therefore finish the proof. It will be instructive to do this by com-
puting Jt more generally for the generic (not necessarily Hamiltonian)
planar system

ṗ = F (p, q, t), q̇ = G(p, q, t).

Denote

Xt =
D(p, q)

D(p0, q0)
=

 ∂p
∂p0

∂p
∂q0

∂q
∂p0

∂q
∂q0

 ,
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and observe that, by the chain rule,

dXt

dt
=

 ∂ṗ
∂p0

∂ṗ
∂q0

∂q̇
∂p0

∂q̇
∂q0

 =

 ∂p
∂p0

∂F
∂p

+ ∂q
∂p0

∂F
∂q

∂p
∂q0

∂F
∂p

+ ∂q
∂q0

∂F
∂q

∂p
∂p0

∂G
∂p

+ ∂q
∂p0

∂G
∂q

∂p
∂q0

∂G
∂p

+ ∂q
∂q0

∂G
∂q

 = AtXt,

where

At = At(p0, q0) =

 ∂F
∂p

∂F
∂q

∂G
∂p

∂G
∂q

 .

In other words, for fixed (p0, q0), the matrix Xt satisfies the time-
dependent linear matrix ODE

Ẋt = AtXt,

with the initial condition X0 = I (the 2× 2 identity matrix).
As a consequence, we now claim that the determinant Jt = detXt

also satisfies an ODE, namely

J̇t = tr(At)Jt.(18)

Indeed, for small positive h > 0 we have

Jt+h = det(Xt+h) = det(Xt + hAtXt +O(h2))

= det((I + hAt)Xt +O(h2)) = det(I + hAt) det(Xt) +O(h2)

= (1 + h tr(At))Jt +O(h2),

where the last step is true because of the exercise below on determinants
of perturbations of the identity matrix. Subtracting Jt from both sides
and taking the limit as h ↓ 0 gives

dJt
dt

= lim
h↓0

Jt+h − Jt
h

= lim
h↓0

(tr(At)Jt +O(h)) = tr(At)Jt.

The equation (18) is an easy scalar ODE for Jt, with the initial condi-
tion J0 = 1. Its solution is

Jt = exp

(
tr

(∫ t

0

As ds

))
= exp

[∫ t

0

(
∂F

∂p
+
∂G

∂q

)
ds

]
= exp

(∫ t

0

div(F,G) ds

)
.

(19)
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Going back to the case of the Hamiltonian system, we recall that in
this case

div(F,G) =
∂F

∂p
+
∂G

∂q
= − ∂

2H

∂p∂q
+
∂2H

∂p∂q
= 0,

so we finally get that J ≡ 1, as claimed. �

Exercise 8. Determinants of perturbations of the identity matrix.
Show that if A is a square matrix then

d

dh

∣∣∣
h=0

det(I + hA) = tr(A),

or equivalently

det(I + hA) = 1 + h tr(A) +O(h2).

Exercise 9. Matrix exponentials. The exponential exp(A) of a square
matrix A = (ai,j)

d
i,j=1 is defined by

exp(A) =
∞∑
n=0

1

n!
An.

(1) Show that the series converges absolutely in the matrix norm

‖A‖ =
∑
i,j

|ai,j|.

(2) Show that the unique solution to the linear vector ODE

ẋ = Ax

with initial condition x(0) = x0 (where we think of x as a
column vector in Rd) can be expressed in terms of matrix ex-
ponentials, namely

x(t) = exp (tA) x0, t ≥ 0.

(3) Use this to explain the characterization of the stability of rest
points in a planar system in terms of the eigenvalues of the
Jacobian matrix.

(4) Prove that if A,B are commuting square matrices (i.e., matrices
which satisfy AB = BA) then exp(A+B) = exp(A) exp(B).

Exercise 10. Determinant of a matrix exponential. Prove the formula

det (exp(A)) = etr(A),

where A is a square matrix and tr(A) denotes the trace of A.
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Hint. Take determinants of both sides of the equation exp(A) =
exp(n−1A)n, which is true by part (4) of the exercise above, then use
the fact that exp(n−1A) = I + n−1A + O(n−2) and the exercise above
on determinants of matrices close to I.

Corollary 7. The phase flow of a planar system preserves area if and
only if the system is Hamiltonian.

Proof. We saw in the proof of Liouville’s theorem that the preservation
of area is determined by the Jacobian Jt of the phase flow: if Jt ≡ 1
then the system preserves area; conversely, if Jt(p, q) 6= 1 for some t
at a point (p, q) = ϕt(p0, q0), then a small disk of radius ε and area
πε2 around (p0, q0) is mapped by ϕt to a set of area approximately
πε2Jt 6= πε2, and therefore the phase flow does not preserve area.

To conclude, from the computation in (19) it follows that the system
preserves area if and only if div(F,G) = 0, and we already showed in
Lemma 1 that this is equivalent to the system being Hamiltonian. �

Corollary 8. The rest points of an autonomous Hamiltonian system
are either saddle points or centers.

Proof. An asymptotically stable or unstable rest point (which is either
a node or a spiral) would imply that the phase flow either contracts or
expands small disks around the rest point; by Liouville’s theorem, this
is impossible. �

1.12. Poincaré recurrence theorem. Liouville’s theorem is the start-
ing point for a set of important investigations into the qualitative be-
havior of Hamiltonian systems. The following theorem illustrates the
kind of conclusions that the theorem will enable us to draw.

Theorem 9 (Poincaré recurrence theorem). Let D be a bounded region
of the plane. Let ϕ : D → D be a continuous one-to-one map which is
area-preserving. Then in any neighborhood N ⊂ D, there exists a point
p = (p, q) ∈ N such that the sequence of points (ϕk(p))∞k=0 returns to
N infinitely many times. Here, ϕk(p) denotes the kth iterate of ϕ, i.e.,
ϕ2(p) = ϕ(ϕ(p)), ϕ3(p) = ϕ(ϕ(ϕ(p))), etc.

Proof. The images of the neighborhood N under ϕ are

N,ϕ(N), ϕ2(N), ϕ3(N), . . .

Since ϕ preserves areas, these are all sets of equal area, which lie in the
bounded region D. It follows that there must be two of them which
intersect (otherwise the total area would be infinite), that is, we have
ϕk(N) ∩ ϕ`(N) 6= ∅ for some k > ` ≥ 0. If p1,p2 ∈ N are two points
such that ϕ`(p1) = ϕk(p2) = ϕ`(ϕk−`(p2)), then, since ϕ is one-to-one,
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we get that ϕk−`(p2) = p1. We have shown that there is a point p2 ∈ N
and an integer j > 0 such that ϕj(p2) ∈ N , i.e., the point returned
to N after j iterations. To prove the stronger claim that there is a
point that returns to N infinitely many times, the idea is to apply the
same argument again, replacing N with N ∩ ϕj(N). This is left as an
exercise to the reader. �

In the context of an autonomous Hamiltonian system, Theorem 9
becomes applicable (by taking ϕ = ϕs for any fixed s > 0) when
there is a set of trajectories that is known to be bounded; for example,
trajectories with energy bounded from above in such a way that we
know no trajectory can escape to infinity. The conclusion in this case is
that in the vicinity of each state of the system included in the bounded
region, there are states which, after evolving for some time, will return
to the vicinity of the same state.

It should be noted that in all but the simplest possible systems, it is
hopeless to solve the equations analytically. Many systems, such as the
double pendulum, exhibit an additional complexity to their behavior,
known as chaos, which makes them even more difficult to analyze in
detail. Thus, in many cases obtaining a rough understanding of the
system’s behavior, using qualitative results such as the Poincaré recur-
rence theorem, is our only hope. Note that Liouville’s theorem also
holds for Hamiltonian systems with more than one degree of freedom
(we will not prove this, but the proof is not much more difficult than
the planar case).

1.13. Liouville’s theorem and “statistical dynamics”. Another,
more quantitative, way in which Liouville’s theorem makes it possi-
ble to reach a broad understanding of a complicated nonlinear system
without being able to describe in detail specific solutions, is by looking
at statistical behavior. To be more concrete, if p(t) is a solution curve
in Rd of an autonomous Hamiltonian system with d degrees of freedom,
instead of trying to understand in detail the motion of p(t) through the
phase space, we can simply ask about the frequency of time p(t) spends
in any given part of it. That is, for a well-behaved (say, bounded and
open) set A ⊆ R2, we look at the time average

fA(T ) =
1

T

∫ T

0

1{p(t)∈A} dt,

where the integrand is equal to 1 if p(t) ∈ A or 0 otherwise, and ask
whether this quantity (which might be called the empirical frequency
of visits to A) might converge to an interesting limit (which will be a
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function of the set A) as T → ∞. An ideal situation is one in which
the limit does not depend on the initial condition p(0), and looks like

lim
T→∞

fA(T ) = f
(∞)
A :=

∫
A

g(p) dp.(20)

In this case we will say that the density g(p) describes in some sense the
“ideal” statistics of the system: by following the trajectory of a single
solution for a long time, we will learn about the relative proportion
of time spent in each part of the phase space by any solution. Such
knowledge may have very practical applications. Can we say what the

density g(p) might be? Note that the function f
(∞)
A by its definition

ought to be invariant under the phase flow, in the sense that for all
t ≥ 0,

f
(∞)
A = f

(∞)
ϕt(A)

(an exercise to the reader: prove this). Liouville’s theorem says that A
and ϕ(A) have the same volume, i.e.,∫

A

dp =

∫
ϕt(A)

dp,

so it is reasonable to guess that if (20) holds then the density g(p)
might simply be a constant. Again, if a result of this type were true
it would give us a very nice and potentially useful insight into the
behavior of the system. It turns out that (20) in its literal form cannot
be true, for the simple reason that the system has a natural conserved
quantity, the Hamiltonian (which here for convenience we will call the
energy); so, each solution only gets to explore a part of the phase space
with a constant energy, and therefore the limit on the right-hand side
of (20) cannot be independent of the initial condition and must instead
necessarily be a function of the initial energy. However, there is a way
to work around this slight complication and it does not detract from the
usefulness of the statistical approach to analyzing dynamical systems.
In fact, the argument we just sketched is the beginning of an area of
mathematics called ergodic theory, which we will discuss more in detail
in the second part of the course.

1.14. The pendulum equation, falling trees and domino waves.
In this section we show how to obtain an exact solution of the simple
pendulum equation

θ̈ +
g

`
sin θ = 0
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Figure 5. The phase portrait of the simple pendulum:
in the planar representation, the constant energy curves

are given by the equation y = ±2
√
λ
(
k2 − sin2(x/2)

)
for

different values of k.

and show several applications of this solution. Unfortunately, the so-
lution involves some exotic special functions that are unfamiliar to
most people (possibly even to most mathematicians!)—the elliptic in-
tegrals and Jacobi elliptic functions—but it is useful (and entertaining)
nonetheless.

1.14.1. Analytic solution using elliptic integrals. We derive the solution
under the assumption that θ(0) = 0, θ̇(0) > 0. Let λ = g/`, so the

equation becomes θ̈ + λ sin θ = 0. Conservation of energy gives the
equation

1
2
θ̇2 − λ cos θ = const(21)

(to verify this, differentiate both sides). For reasons which will become
clear soon, denote the integration constant on the right by λ(2k2 − 1),
where k ≥ 0 and use the relation cos θ = 1− 2 sin2 θ

2
. This brings (21)

to the form

(θ̇)2 = 4λ
(
k2 − sin2 θ

2

)
.(22)

Note that this already makes it easy to plot the phase portrait (in the

θ-θ̇ plane, or wrapped around a cylinder, since adding multiples of 2π
to θ does not change the physical state of the system); see Figure 5.
The relation between the parameter k and the initial angular velocity
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θ̇(0) is found by setting t = 0 in (22), giving

k =
1

2
√
λ
θ̇(0).

It is also easy to see from the energy conservation equation (22) that
the periodic solutions (which are the solutions for which θ remains
bounded) correspond to 0 < k < 1, and that in that case we have
k = sin(θmax/2) where θmax = supt≥0 θ(t) is the maximal angle that the
pendulum will reach (or approach asymptotically, in the case θmax = π).
The equation (22) is a first-order ODE, and is in a form suitable for
separation of variables; e.g., we can write

dθ√
k2 − sin2 θ

2

= 2
√
λ dt,

or (since we stipulated that θ(0) = 0)∫ θ

0

dθ√
k2 − sin2 θ

2

= 2
√
λt.(23)

From this point on, assume that k < 1. Making the substitution ku =
sin(θ/2) in the integral on the left, we get the equivalent form∫ u

0

du√
(1− u2)(1− k2u2)

=
√
λt.

The integral on the left is related to a special function known as sn(u, k)
(one of a family of special functions called the Jacobi elliptic functions),
by

sn−1(u, k) =

∫ u

0

du√
(1− u2)(1− k2u2)

,

(meaning the inverse function of sn(u, k) as a function of u; the variable
k is thought of as a parameter, sometimes called the elliptic modulus).
It follows that

1

k
sin

θ

2
= u = sn(

√
λt, k),

so finally we get that

sin
θ

2
= k sn(

√
λt, k).(24)

We have thus obtained our analytic solution, given by the rather in-
timidating formula

θ = 2 arcsin
[
k sn(

√
λt, k)

]
.
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1.14.2. Formula for the period. We can now easily derive a formula for
the period of oscillation T of the pendulum. Let tmax be the time at
which the maximal angle θmax is attained. We have

k = sin(θmax/2) = k sn(
√
λ tmax, k),

so sn(
√
λtmax, k) = 1, or equivalently,

√
λ tmax = sn−1(1, k) =

∫ 1

0

du√
(1− u2)(1− k2u2)

.

The integral on the right-hand side is known as the complete elliptic
integral of the second kind, and denoted by K(k):

K(k) =

∫ 1

0

du√
(1− u2)(1− k2u2)

.

which is also sometimes written as

K(k) =

∫ π/2

0

dφ√
1− k2 sin2 φ

,

using the substitution u = sinφ. By symmetry, the period of oscillation
of the pendulum is 4tmax (refer to Figure 5; the time from 0 to tmax

represents a passage around one quadrant in the phase plane). So, we
have derived the well-known formula

T =
4√
λ
K(k) = 4

√
`

g
K(k) = 4

√
`

g
K(sin(θmax/2)).

Since K(0) = π/2, for small values of θmax we get the approximate
formula for small oscillations

T ≈ T0 = 2π

√
`

g
.

Figure 6 illustrates the dependence of the period on the oscillation
amplitude θmax.

1.14.3. Falling time of a tree. A related question concerns the time
it takes a vertical standing object such as a tree to fall over from its
vertical position once it is given a small destabilizing push. This cor-
responds almost exactly to the pendulum starting from the inverted
position θ(0) = π, except for the fact that a tree is actually a com-
pound pendulum whose mass is distributed in some fashion along its
entire length. However, the essential facts remain the same for such a
pendulum—one simply has to change the length parameter ` (see the
exercise below, which deals with the case in which the distribution of
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Figure 6. The period T of a pendulum (measured in

units of the period T0 = 2π
√
`/g for small oscillations)

as a function of the oscillation amplitude θmax.

mass is uniform along the length of the rod on which the pendulum
swings). Of course, if the initial angular velocity θ̇(0) is 0, then we
have an equilibrium state and the tree will not fall over. But this is an
unstable equilibrium, so even a tiny non-zero initial angular velocity
θ̇(0) = ω0 would lead to toppling.

To derive the toppling time, which we denote by τ , observe that
the question is equivalent to asking how long it would take for the
pendulum starting from the modified initial condition θ(0) = 0, θ̇(0) =
ωmax to swing between the angles θ = π/2 and θ = π, where ωmax, the
angular velocity at the bottom position θ = 0 (which is the maximal
angular velocity the pendulum will attain during its motion), is related
to ω0 by the conservation of energy equation

1
2
ω2

0 − λ cos(π) = 1
2
ω2

max − λ cos(0),

giving the relation ωmax =
√
ω2

0 + 4λ. In other words, using the so-
lution we just derived for just such initial conditions, and specifically
(23), the quantity we are trying to compute can be written as the
difference of two times τ = t2 − t1, where

2
√
λ t1 =

∫ π/2

0

dθ√
k2 − sin2 θ

2

,

2
√
λ t2 =

∫ π

0

dθ√
k2 − sin2 θ

2
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and k = ωmax/2
√
λ =

√
1 +

ω2
0

4λ
. This can be written succinctly in

terms of the special function K(k) and another variant, the incomplete
elliptic integral of the first kind F (α, k), defined by

F (α, k) =

∫ α

0

dφ√
1− k2 sin2 φ

.

(Note that K(k) = F (π/2, k).) In this notation, we have

τ =
1

2
√
λ

∫ π

π/2

dθ√
k2 − sin2 θ

2

=
1

k
√
λ

∫ π/2

π/4

dφ√
1− k−2 sin2 φ

= K(k−1)− F (π/4, k−1).

Note that τ becomes arbitrarily large when ω0 approaches 0.

Exercise 11. Compound pendulum. The falling tree problem is more
accurately modeled by a compound pendulum, where we assume the
mass m is spread out uniformly along the length of the swinging rod,
instead of being concentrated at its end. Show that the motion of a
compound pendulum with length ` is equivalent to that of a simple
pendulum with length 2`/3.

1.14.4. The speed of a wave of falling dominoes.1 If you have ever
set up a long chain of dominoes that topple each other in a wavelike
progression, you must have wondered how long it would take for all
the dominoes to fall once the experiment is set in motion (as everyone
knows, it ends all too quickly given the tedious work involved in setting
up the dominoes...). We can now answer this question, in a slightly
simplified model, using the theory of the pendulum discussed above.

Let us fix some notation for the setup of our domino wave. We as-
sume a row of standing dominoes of height ` is arranged on a plane,
with a fixed horizontal distance of d between each two successive domi-
noes. For simplicity, we will model each domino as a simple inverted
pendulum with mass m (it is not difficult to adapt the analysis to the
case of a compound pendulum) and that its thickness is small com-
pared to the inter-domino spacing d. We denote by β the angle formed
between two adjacent dominoes when one rotates around its contact
point with the floor until it just touches the other; it is given by

β = sin−1 d

`
.

1This section is adapted from the paper Domino waves by C. J. Efthimiou and
M. D. Johnson (SIAM Review 49 (2007), 111–120).
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d

`
β

Figure 7. A row of falling dominoes.

See Figure 7.
Our analysis of the speed of the domino wave will be based on ana-

lyzing what happens during collisions between dominoes. We will make
the following idealized assumptions:

i. Only collisions between successive dominoes occur (i.e., we neglect
the possible interaction between two dominoes separated by a third
domino).

ii. The bottom end of each domino is fixed in place by static friction
with the floor while it topples, so the domino is only free to rotate
around it.

iii. Collisions are instantaneous and are elastic, i.e., involve no dissi-
pation of energy: both the energy and momentum of the system
are the same immediately before and after a collision (of course,
during other times energy and momentum are not conserved due
to friction forces and dissipation of kinetic energy when dominoes
hit the floor).

We will now derive equations relating the initial angular velocity ω0

of one domino, “domino A”, to the initial angular velocity ω1 of the
next one in the row, “domino B”. Two intermediate quantities that
will play a role in the analysis are the angular velocity Ω0 of domino
A just before it collides with domino B, and its angular velocity Ω1

immediately after the collision. The relationships between the four
quantities ω0, ω1,Ω0,Ω1 are determined by the conservation of energy
and momentum.

First, conservation of energy during the motion of domino A from
the time it starts to rotate until it hits domino B gives the equation

1
2
m`2ω2

0 +mg` = 1
2
m`2Ω2

0 +mg` cos β,
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which can be solved for Ω0 to give

Ω2
0 = ω2

0 +
2g

`
(1− cos β).(25)

Next, conservation of energy during the collision gives
1
2
m`2Ω2

0 = 1
2
m`2Ω2

1 + 1
2
m`2ω2

1,

which simplifies to

Ω2
0 = Ω2

1 + ω2
1.(26)

To express the conservation of momentum, it is easier (and equivalent)
to write an equation for the conservation of angular momentum around
the base point of domino B. This gives

m`2Ω0 cos2 β = m`2Ω1 cos2 β +m`2ω1.

That is,

Ω0 cos2 β = Ω1 cos2 β + ω1.(27)

It is not difficult to solve (26), (27) for Ω1 and ω1, to get

ω1 = f+Ω0,

Ω1 =
f+

f−
Ω0,

(28)

where

f± =
2

cos2 β ± cos−2 β
.

Plugging the value of Ω0 obtained from (25) into (28) finally yields an
equation expressing ω1 in terms of ω0, namely

ω1 = f+

√
ω2

0 +
2g

`
(1− cos β) = H(ω0).

Our analysis has produced the following result: if we start the domino
wave going by giving the first domino in the chain a slight push that
gives it an initial angular velocity ω0, then the next domino it will
collide with will start its motion with an initial angular velocity equal
to ω1 = H(ω0). That domino will collide with a third domino, which
will acquire an initial angular velocity of ω2 = H(ω1) = H(H(ω0)),
and so forth: the nth domino in the chain will get an initial angular
velocity of

ωn−1 = Hn(ω0) = H(H(H(. . . H(ω0))) . . .)

(the nth functional iterate of H). While it may appear as if the way the
wave gets started is important, a more careful look at the properties
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of the function H shows that in fact the wave will settle down to an
equilibrium state in which each domino gets an initial angular velocity
equal to

ω∞ = lim
n→∞

ωn.

This equilibrium angular velocity must satisfy the equation

ω∞ = H(ω∞) = f+

√
ω2

0 +
2g

`
(1− cos β),

which can be solved to give

ω∞ =
2g

`

f 2
+

1− f 2
+

(1− cos β) =
2g

`
f 2
−(1− cos β).

We are finally ready to answer the original question regarding the speed
of a traveling domino wave. Once the wave has reached its equilibrium
state, each domino starts its motion with the angular velocity ω∞, and
rotates through an angle of β before colliding with the next domino.
By the theory of falling times for the inverted pendulum discussed in
the previous section, the time this rotation takes is given by

τ =
1

2
√
g/`

∫ π

π−β

dθ√
k2 − sin2 θ

2

=
1

k
√
g/`

∫ π/2

(π−β)/2

dφ√
1− k−2 sin2 φ

=
1

k
√
g/`

(
K(k−1)− F ((π − β)/2, k−1)

)
,

where

k =

√
4g/`+ ω2

∞
4g/`

.

During each such rotation cycle, one can say that the wave has travelled
the distance d equal to the inter-domino spacing. Thus, the speed of
the domino wave is given by the grand formula

vwave =
d

τ
= kd

√
g

`

(
K(k−1)− F ((π − β)/2, k−1)

)−1
,

Note that all quantities in this formula are expressed as functions of
the “free” parameters d, ` and g.

End of Part 1
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Part 2. Discrete-time dynamics, chaos and ergodic theory

2.1. Introduction. In this part of the course, we will consider a dif-
ferent flavor of nonlinear systems in which time flows in discrete steps
instead of continuously. The set of states of such a system is a set Ω
commonly referred to as the state space. In many cases Ω is a subset
of R or the vector space Rd. The state of the system as a function of
time is a sequence (xn)∞n=0 of elements of Ω; i.e., it can be thought of as
a function of time n 7→ xn, where the time variable takes only discrete
values (and therefore is frequently denoted by the letter n instead of t).

With a continuous-time system, we commonly use an ordinary dif-
ferential equation ẋ = F (x, t) to describe the dynamics, i.e., the rules
according to which the state of the system evolves. The analogous con-
cept for a discrete-time system (xn)n≥0 is called a difference equation,
which is an equation of the form

xn+1 − xn = F (xn, n),(29)

where F is a function F : Ω × N0 → Ω (note that this only makes
sense if the set Ω is a subset of a vector space so that the operation
of subtraction is defined). Given a state a ∈ Ω, we can solve the
difference equation (29) starting from the initial condition x0 = a. The
solution is obtained (and is easily seen to be unique) by rewriting (29)
as xn+1 = xn + F (xn, n) and iterating this “forward evolution” rule,
e.g.,

x1 = x0 + F (x0, 0),

x2 = x1 + F (x1, 1),

x3 = x2 + F (x2, 2), . . .

You can see that this process of iteration is much more straightfor-
ward than the process of solving ODEs. For example, one does not
have to deal with issues of existence or uniqueness of solutions. In
fact, in many cases one does not even need to know calculus to work
with such equations. On the other hand, as we shall see, many of
the other delicate issues that show up in the study of ODEs (such as
chaotic behavior, stability and instability, and bifurcations) exist also
for difference equations.

2.2. Difference equations and maps. As we commented above, the
equation (29) can be rewritten in a way that eliminates the differencing
operation, namely as

xn+1 = T (xn, n),(30)
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where T (xn, n) = xn + F (xn, n). In many cases the evolution rule of
a system is described by giving the function T : Ω × N0 → Ω instead
of F : Ω × N0 → Ω; clearly these two descriptions are equivalent,
but the latter has the advantage that it makes sense even when Ω
is an abstract set with no extra structure (in which case there is no
“differencing” operation, so it does not make sense to talk about a
difference equation). In the case of the equation (30), usually it will
be called a recurrence relation instead of a difference equation. An
especially nice (and very common) situation is one in which T does not
depend on the time variable n, but instead is simply a function T (x)
of the state. In this case (30) becomes

xn+1 = T (xn),

and the function T : Ω → Ω is called the evolution map, or just the
map, associated with the system; it tells the state of the system one
unit of time into the future as a function of the present state. We shall
be concerned exclusively with such time-independent systems.

Example 11. Arithmetic growth. The equation for arithmetic growth
is

xn+1 = xn + b,

where b ∈ R is a constant. As a difference equation, it will be written
as

xn+1 − xn = b.

Its solution is the arithmetic sequence

xn = x0 + bn.

Example 12. Geometric growth. The equation for geometric growth
is

xn+1 = rxn,

where r ∈ R is a constant, or xn+1 − xn = (r − 1)xn as a difference
equation (so, like the ODE ẋ(t) = cx(t), it is suitable to model situa-
tions in which the rate of change of a quantity is proportional to it).
The solution is the geometric sequence

xn = x0r
n.

Example 13. Fibonacci numbers. The sequence of Fibonacci num-
bers (Fn)∞n=1 is defined as the unique sequence that satisfies the initial
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conditions F1 = F2 = 1 together with the recurrence relation

Fn+2 = Fn+1 + Fn (n ≥ 0).(31)

Note that this is a second-order recurrence relation—the discrete-time
analogue of a second order differential equation. In general, a second-
order recurrence will have the form

xn+2 = T (xn, xn+1, n),

i.e., each successive value in the sequence is computed as a function of
the last two values (and possibly the time parameter). To solve the
recurrence we will need to specify not one but two initial conditions,
e.g. (if we are trying to solve the recurrence for n ≥ 0) x0 and x1.

It is well-known that the solution to the recurrence (31) is given by
the amusing formula

Fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

.(32)

This can be proved by induction by verifying the initial conditions and
then substituting the expression on the right-hand side into (31).

Is there a systematic way to derive such mysterious formulas? As
with ODEs, it is often more convenient to represent a second- (or
higher-) order system as a first-order system. We can do this by con-
structing a new system whose state space is R2 instead of R, where the
recurrence relation is given by(

Xn+1

Yn+1

)
=

(
Xn + Yn
Xn

)
=

(
1 1
1 0

)(
Xn

Yn

)
.(33)

Substituting

(
Xn

Yn

)
=

(
Fn+1

Fn

)
into (33), we get(

Fn+2

Fn+1

)
=

(
Xn+1

Yn+1

)
=

(
Xn + Yn
Xn

)
=

(
Fn+1 + Fn
Fn+1

)
,

which reproduces (31). Denoting the 2 × 2 matrix on the right-hand
side of (33) by A, the recurrence relation (33) can be thought of as
“geometric growth with a matrix multiplier”. By analogy with the
geometric growth example, it is easy to see that its solution is(

Fn+1

Fn

)
= An−1

(
1
1

)
.(34)

The formula (32) can now be derived using standard diagonalization
techniques from linear algebra.
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Exercise 12. Derive the formula (32) by diagonalizing the matrix

A =

(
1 1
0 1

)
and using the solution (34).

Example 14. 3x+ 1 map. On the state space Ω = N, define the map
T : N→ N by

T (x) =

{
x/2 if x is even,

3x+ 1 if x is odd.

It is interesting to ask what happens if we start from some initial value
x0 and apply the map to get the subsequent values x1 = T (x0), x2 =
T (x1) = T (T (x0)), etc. Let’s look at some examples:

x = 1 : 1 7→ 4 7→ 2 7→ 1 7→ [infinite cycle of 4, 2, 1],

x = 3 : 3 7→ 10 7→ 5 7→ 16 7→ 8 7→ 4 7→ 2 7→ 1 7→ [cycle of 4, 2, 1],

x = 6 : 6 7→ 3 7→ . . . [see above] . . . 7→ [infinite cycle of 4, 2, 1],

x = 7 : 7 7→ 22 7→ 11 7→ 34 7→ 17 7→ 52 7→ 26 7→ 13 7→ 40 7→ 20

7→ 10 7→ . . . [see above] . . . 7→ [infinite cycle of 4, 2, 1].

Is it true that for any initial number x0, iterating the map will even-
tually reach the infinite cycle 4, 2, 1? This famous question, known as
the Collatz problem, was proposed 75 years ago. Extensive research
and numerical computations suggest that the answer is yes, but no one
knows how to prove this.

Example 15. Discretized forward evolution of an ODE. If ẋ = F (x) is
an autonomous ODE (say on R or some region of Rd), we can discretize
time by allowing it to flow only in integer multiples of some fixed time
step τ . That is, we consider the phase flow (ϕt)t≥0 of the system, and
for each initial condition x0 define a sequence (xn)∞n=0 by

xn = ϕnτ (x0) (n ≥ 1).

Because the phase flow satisfies the equation ϕt+s(x) = ϕt ◦ϕs(x), it is
easy to see that xn satisfies the recurrence relation

xn+1 = T (xn),

where T = ϕτ . So, the ODE has given rise to a discrete-time dynamical
system by fixing the time-step τ .

Example 16. Poincaré section map of an ODE. The time-discretization
procedure described in the above example requires an arbitrary choice
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of a time unit. There is a more natural way to construct a discrete-
time dynamical system starting from an ODE that avoids this difficulty,
called the Poincaré section map or first-return map. Assume the phase
space Ω of the ODE is n-dimensional (i.e., a subset of Rn, or more gen-
erally, an “n-dimensional manifold”). Furthermore, assume that there
is an (n − 1)-dimensional subset A ⊂ Ω that has the property that
all solutions are known to pass infinitely many times through A and
through its complement Ω\A. The Poincaré map T : A→ A is defined
by

T (x) = ϕτ(x)(x),

where τ(x) = inf{t > 0 : ϕt(x) ∈ A} and ϕt : Ω→ Ω is the phase flow
of the system.

Poincaré maps are an extremely useful tool in the analysis of ODEs.
A nice illustration of this general construction and its applicability in
a specific example is given on page 279 of Strogatz’s book Nonlinear
Dynamics and Chaos.

Example 17. Logistic map. An important and fascinating exam-
ple that we will spend a lot of time discussing is the logistic map
L : [0, 1]→ [0, 1], a dynamical system with state space Ω = [0, 1]. It is
actually not one map, but a family of maps L = Lr where 0 ≤ r ≤ 4 is
a parameter. The map Lr is defined by the formula

Lr(x) = rx(1− x).

The logistic map was introduced as a simple model for the fluctua-
tions in the population of a species of animals (or plants, or bacteria
etc.) in an environment with limited resources. The idea is that x
represents the size of the population (as a fraction of some absolute
maximum), and the assumptions are that for small values of x, the
population will increase in a roughly geometric pattern, but for large
values of x the growth will taper off as the animals deplete the avail-
able food resources, leading to starvation and a dramatic reduction in
population size for even larger values of x (see Figure 8). The behavior
of the logistic map, depending on the value of r, can be very simple, or
very complicated (or somewhere in between)—in fact, it is one of the
simplest examples of a chaotic system, and studying it will give us valu-
able insights into the more general theory of discrete-time dynamical
systems.

Example 18. Billiard maps. An interesting class of examples with
a geometric flavor are the billiard maps. Given some odd-shaped
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Figure 8. The logistic map Lr for r = 2.5.

bounded region D in the plane, we let a billiard ball bounce around in
D, reflecting off the walls without loss of energy. This is a continuous
time system, but a standard simplification step is to take its Poincaré
section map with respect to the set of times at which the ball hits the
wall. Thus, the state space of a billiard system considered as a discrete-
time system is the set of pairs (x, θ) where x ∈ ∂D is a boundary point
and θ ∈ [0, 2π) is the angle of the ball’s velocity immediately after it
reflects off the wall at x.

Billiard systems exhibit an extremely rich behavior that is exten-
sively studied by mathematicians and physicists as a toy model for
more complicated systems such as the behavior of an ideal gas. De-
pending on the shape of the “billiard table,” the system can have a
chaotic structure or a more orderly behavior where nearby initial con-
ditions do not drift far apart. See Figure 9 for some examples.

2.3. Interval maps. A discrete-time system is called one-dimensional
if it has either R or a sub-interval of R as its state space. There are
many interesting examples of such systems, and it will be especially
convenient to focus on maps defined on an interval, usually taken to be
the unit interval [0, 1] (or in some cases the open interval (0, 1)). Such
a map is called an interval map. The logistic map is one especially
interesting example of an interval map. Here are some additional maps
that we will consider later.

Example 19. Doubling map. The doubling map D : [0, 1) → [0, 1) is
defined by

D(x) = 2x mod 1 =

{
2x if 0 ≤ x < 1

2
,

2x− 1 if 1
2
≤ x < 1,
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(a) (b)

(c) (d)

Figure 9. Billiard dynamical systems: (a) The “Buni-
movich stadium”; (b) The “Sinai billiard” (source:
Wikipedia); (c) and (d) billiard in an ellipse-shaped re-
gion.

(see Figure 10). As we will see later, it is closely related to binary ex-
pansions of real numbers in (0, 1). In particular, trying to understand
the statistical properties of binary expansions of random numbers leads
naturally to questions about properties of the doubling map—see Sec-
tion 2.10 for further discussion.

Example 20. Circle rotation map. For 0 < α < 1, the circle rotation
map Rα : [0, 1)→ [0, 1) is defined by

Rα(x) = x+ α mod 1 =

{
x+ α if 0 ≤ x < 1− α,
x+ α− 1 if 1− α ≤ x ≤ 1.

The reason for the name of this map is that if one considers the inter-
val [0, 1] as a topological circle by identifying the two ends, the map
corresponds to a rotation of the circle by the angle 2πα.

Example 21. Tent map. The tent maps are another one-parameter
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family of maps Λa, 0 < a ≤ 2, defined by

Λa(x) =

{
ax if 0 ≤ x < 1

2
,

a− ax if 1
2
≤ x ≤ 1.

Figure 10 illustrates the extreme case a = 2.

Example 22. Gauss map. Denote by {x} = x − bxc the fractional
part of a real number x (where bxc = max{n ∈ Z : n ≤ x} is the
integer part of x). The Gauss map G : (0, 1)→ [0, 1), which is related
to so-called continued fraction expansions of real numbers, is defined
by

G(x) =

{
1

x

}
,

i.e., G(x) = 1/x− n for 1/(n+ 1) < x < 1/n, (n = 1, 2, . . .).

Exercise 13. Properties of the Gauss map.

(1) Show (or read in a number theory textbook how to show) that
the numbers x ∈ [0, 1] for which the sequence of iterates Gn(x)
eventually reaches 0 (and is therefore undefined for larger values
of n) are precisely the rational numbers.

(2) Show that the eventually periodic points of G (numbers x for
which for some n, Gn(x) belongs to an m-cycle, see the defi-
nition below) are the quadratic irrationals, i.e., the irrational
numbers which are solutions of quadratic equations.

(3) Find a formula for all the fixed points of G.

2.4. Fixed points and cycles. When we studied ODEs, we were
interested in rest points, which are static points of the phase state which
remain stationary under the ODE dynamics, and in periodic orbits
which close in on themselves and lead to infinite repetition of a sequence
of movements. In discrete-time systems, the analogous concepts are
fixed points and cycles. A point x ∈ I is a fixed point of a map
T : I → R if T (x) = x. We call a finite sequence (xj)

n
j=1 a cycle (or

an n-cycle if we want to emphasize its length) of T if all the xj’s are
distinct and T (x1) = x2, T (x2) = x3, . . . , T (xn−1) = xn, T (xn) = x1.

The fixed points can be found graphically by drawing the graph of T
and the graph of the curve y = x, and finding their intersections. Note
that if (xj)

n
j=1 is an n-cycle of T then x1 = T (T (T (. . . (T (x1))) . . .)

(that is, iterating T n-times starting from x1 leads back to x1). The
map T iterated n times is denoted T n (usually it is understood from the
context that this represents an iteration rather than raising to a power;
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Figure 10. (a) The doubling map; (b) The circle rota-
tion map Rα for α = 0.3; (c) the tent map Λ2; (d) The
Gauss map.

when there is risk of confusion one needs to be careful and say explicitly
what is meant). So, the n-cycles can be found by first computing the
iterated map T n and then finding the fixed points of T n. Note that
such a fixed point could turn out to be the first point of an n-cycle, or
it could be a fixed point of T , or a fixed point of T k for some k < n
that is a divisor of n (in this case we can use it to generate a k-cycle
x1, T (x1, . . . , T

k−1(x1)). In practice, finding the n-cycles often becomes
very hard to do when n is larger than some very small number.

Example 23. Consider the map T (x) = x2 on [0, 1]. The fixed points
are solutions of x2 = x, i.e., x = 0 and x = 1. Computing the iterated
maps gives T 2(x) = T (T (x)) = x4, T 3(x) = x8, . . . , T n(x) = x2n , . . ..
The fixed points of T n are still x = 0 and x = 1, which means there
are no n-cycles for n > 1.

Example 24. The doubling map D(x) = 2x mod 1 has no fixed
points. What about 2-cycles? We have D2(x) = D(D(x)) = 4x mod 1.
The equation x = D(D(x)) has two solutions: x1 = 4x1 − 1 gives
x1 = 1/3; x2 = 4x2 − 2 = 2/3 = D(x1). So we have found a 2-cycle
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(1/3, 2/3). In general, it is possible to identify all k-cycles, by noting
an important connection between the doubling map and the binary
expansion of a real number.

Exercise 14. k-cycles of the doubling map. Identify all the k-cycles of
the doubling map, by using the connection with binary expansions (see
the discussion in Section 2.10). Alternatively, plot Dk(x) = 2kx mod 1
and use a graphical approach to identify all the k-cycles.

2.5. Stability of fixed points. What happens to the system xn+1 =
T (xn) if we move slightly away from a fixed point x∗? We will call the
fixed point x∗ asymptotically stable, or attracting, if it has the property
that for initial points x0 in some small neighborhood (x∗ − δ, x∗ + δ)
of x∗, the sequence of iterates xn = T n(x0) converges to x∗. We will
say that x∗ is asymptotically unstable, or repelling, if there is some
δ > 0 such that for any initial point x0 6= x∗, the sequence of iterates
xn = T n(x0) will eventually leave the interval [x∗ − δ, x∗ + δ]. It is
also possible for a fixed point to exhibit a mixture of the two types of
behavior; for example, it may be attracting for initial points x0 > x∗
and repelling for x0 < x∗.

To understand the stability properties near a fixed point, consider
the linear approximation to T around x∗ (assuming it is continuously
differentiable in a neighborhood of the fixed point):

T (x) = T (x∗) + T ′(x∗)(x− x∗) + o(x− x∗)
= x∗ + T ′(x∗)(x− x∗) + o(x− x∗),

i.e., if the initial point x0 is near x∗ then by the neglecting the little-o
o(x − x∗) term, we see that for the first few values we have approxi-
mately

xn+1 − x∗ ≈ T ′(x∗)(xn − x∗),

or, denoting yn = xn − x∗ and λ = T ′(x∗),

yn+1 ≈ λyn,

which is the recurrence for geometric growth. Ignoring the small in-
accuracy that comes from the linearization, clearly yn → 0 if |λ| < 1,
and |yn| becomes larger than some fixed small number δ > 0 if |λ| > 1.
Thus, we have essentially proved the following fact.

Lemma 10. For a fixed point x∗, if |T ′(x∗)| < 1 then the fixed point
is asymptotically stable, and if |T ′(x∗)| > 1 then the fixed point is
asymptotically unstable.
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Exercise 15. Complete the argument sketched above to get a rigorous
proof of Lemma 10.

Example 25. In the example above involving T (x) = x2, we have
T ′(0) = 0 and T ′(1) = 2, so 0 is an asymptotically stable fixed point,
and 1 is an asymptotically unstable fixed point.

Example 26. Pull out a pocket calculator and repeatedly press the
“cos” button. The value on the display will converge to the number
x∗ ≈ 0.739085, which is the unique fixed point of T (x) = cos x. Note
that T ′(x∗) = − sin(x∗) ≈ −0.673, which shows that the fixed point is
asymptotically stable. Note that the fact that T ′(x) < 0 means that
the values of xn = cosn(0) will oscillate around x∗, producing values
that are alternately bigger and smaller than x∗.

Exercise 16. In the case in which |T ′(x∗)| = 1 but T ′′(x∗) 6= 0,
characterize the asymptotic stability of the fixed point as a function of
T ′(x∗) and T ′′(x∗).

2.6. A detailed study of the logistic map. This section is based on
sections 10.2–10.5 in Strogatz’s book Nonlinear Dynamics and Chaos.

2.7. Measures and measure preserving maps. Our study of maps
so far has shown that even very simple maps such as the logistic map
or the 3x + 1 map can lead to extremely complicated behavior of the
associated dynamical system. Is there any hope of understanding such
complicated systems in some meaningful sense? Yes, there is. A key
insight is that one should focus on questions of a statistical nature: in-
stead of trying to predict in detail where the orbit of a particular initial
point x0 will go (which is hopeless for a chaotic system), instead we will
try to make predictions about statistical behavior of orbits, i.e., how
often they visit each part of the state space. The mathematical object
that encodes such a set of statistics is called a probability measure, and
as we will see, a natural condition for a measure to encode the correct
information about a map is that the map is measure preserving.

Let Ω be a set. The theory of probability measures can be developed
in much greater generality, but for our purposes we will assume that
Ω is a connected open (or closed) subset of R or of Rd. Thus, on Ω
there is a natural “measure” dx of d-dimensional volume familiar from
multivariate calculus. The probability measures that we will consider
take the form

P (dx) = f(x) dx
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where f is a nonnegative function such that
∫

Ω
f(x) dx = 1. Formally,

the measure P is considered to be a function A 7→ P (A) that takes a
subset A ⊂ Ω and returns a number

P (A) =

∫
A

f(x)dx.

Both the function f , called the probability density function associated
with P , and the set A are assumed to be sufficiently well-behaved that
P (A) is defined. (You can learn about the precise technical definitions,
which we will not discuss here, in an advanced class on real analysis,
measure theory or probability theory). A set A for which P (A) is
defined is called a measurable set. It is an annoying fact of life that not
all sets are measurable, but in practice all sets that you are ever likely
to encounter will be measurable, so we will not worry about that.

Now, if T : Ω → Ω is a map and P is a probability measure on Ω,
we say that T preserves the measure P (or is measure preserving for
P ) if for any measurable set A the following identity holds:

P (A) = P (T−1(A)),

that is, ∫
A

f(x)dx =

∫
T−1(A)

f(x)dx.

For interval maps, it is sufficient to prove this when A is an inter-
val. The intuitive meaning of the definition is that if the measure P
represents the statistical distribution of a random element x in Ω (cor-
responding to the state of the dynamical system at some time n), then
T (x), which corresponds to the state at time n+ 1, will have the same
statistical distribution. In other words, the probabilistic behavior is
stationary with respect to the time dynamics. A dynamical system
(Ω, T ) together with a probability measure P that is preserved by T is
called a measure preserving system. If T preserves the measure P , we
say that P is an invariant measure for T .

Example 27. Circle rotation map. The circle rotation map Rα pre-
serves the standard length measure on [0, 1) (which in analysis is called
Lebesgue measure—pronounced like le-baig), i.e., the measure with den-
sity f(x) ≡ 1.

Proof. This fact is obvious if you think of the intuitive meaning of the
circle rotation map, but for illustration purposes here is a formal proof.
If A is a subset of [α, 1) then R−1

α (A) = A − α, so clearly the length
measure is preserved. Similarly, if A ⊂ [0, α) then R−1

α (A) = A+ 1−α
and again the length measure is preserved. For a general A ⊂ [0, 1),
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write A as a disjoint union A = A′ tA′′ where A′ ⊂ [0, α), A′′ ⊂ [α, 1),
then R−1

α (A) = R−1
α (A′) tR−1

α (A′′) has the same Lebesgue measure as
A. �

Example 28. Doubling map. The doubling map also preserves Lebesgue
measure.

Proof.

P (D−1(A)) = P
(

1
2
A t

(
1
2
A+ 1

2

))
= 1

2
P (A) + 1

2
P (1

2
+ A) = P (A).

�

Exercise 17. Tent map Λ2. Show that the tent map Λ2 (the special
case a = 2 of the family of tent maps Λa) preserves Lebesgue measure.

Example 29. Logistic map L4. For r = 4, the logistic map Lr = L4

preserves the measure

P (dx) =
1

π
√
x(1− x)

dx.

Proof. Denote f(x) = 1

π
√
x(1−x)

. If A ⊂ [0, 1] is an interval, then

P (L−1
4 (A)) =

∫
L−1
4 (A)

f(x) dx

=

∫
L−1
4 (A)∩[0,1/2]

f(x) dx+

∫
L−1
4 (A)∩[1/2,1]

f(x) dx

=

∫
A

f(λ1(y))
dy

L′4(λ1(y))
+

∫
A

f(λ2(z))
dz

−L′4(λ2(z))
,

where we define λ1(y) = 1
2
(1 −

√
1− y), λ2(z) = 1

2
(1 +

√
1− z) (the

functions x = λ1,2(w) are the two solutions of the equation L4(w) = x),
and we make the substitutions

y = L4(x)↔ x = λ1(y) in the first integral,

z = L4(x)↔ x = λ2(z) in the second integral.

Note that L4 is decreasing on [1/2, 1], which explains why we needed to
insert a minus sign in front of the L′4(λ2(z)) term in the second integral.

Now, since we are trying to prove that the expression above is equal
to P (A) =

∫
A
f(x) dx, it will be enough to show that the following
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identity holds:

f(x) = f(λ1(x))
1

|L′4(λ1(x))|
+ f(λ2(x))

1

|L′4(λ2(x))|
(the absolute value signs make the sum on the right more symmetric,
though of course the first one is unnecessary). This identity is strange
but easy to verify: noting the simple relations

L′4(w) = 4(1− 2w),

f(w) =
2

π
√
L4(w)

,

L4(λ1(x)) = L4(λ2(x)) = x,

the right-hand side of the identity becomes

2

π
√
x
· 1

4(1− (1−
√

1− x))
− 2

π
√
x
· 1

4(1− (1 +
√

1− x))

=
1

2π

(
1√
x
· 1√

1− x
+

1√
x
· 1√

1− x

)
=

1

π
√
x(1− x)

= f(x).

�

The idea used in the proof above can be generalized to give a criterion
for checking whether a map is measure-preserving.

Lemma 11. Let T : I → I be an interval map that is piecewise smooth
and monotonic, i.e., the interval I can be decomposed into a union of
finitely many subintervals on each of which T is smooth and monotonic
(in fact, the claim is true even if this is true for a subdivision into
countably many subintervals). Then T preserves the measure P (dx) =
f(x)dx if and only if the density f(x) satisfies the equation

f(x) =
∑

y∈T−1(x)

f(y)

|T ′(y)|

for all but countably many points x ∈ I, where the sum ranges over all
pre-images of x.

Exercise 18. Prove Lemma 11.

Example 30. Gauss map. The Gauss map G(x) preserves the measure
γ on (0, 1) (called Gauss measure), defined by

γ(dx) =
1

log 2
· 1

1 + x
dx.
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Exercise 19. Use Lemma 11 to prove this.

Exercise 20. Additive Gauss map. The additive Gauss map g :
[0, 1]→ [0, 1] is defined by

g(x) =

{
x

1−x if 0 ≤ x ≤ 1
2
,

1−x
x

if 1
2
≤ x ≤ 1

(see Figure 11(a)). Show that g preserves the measure

m(dx) =
1

x
dx.

(Note: this measure is not a probability measure, since the integral of
the density is infinite. However, the concept of measure-preservation
makes sense for such measures, and Lemma 11 is still valid in this
context.)

Exercise 21. Boole map. Show that Boole’s transformation

B(x) = x− 1

x
preserves Lebesgue measure on R.

Exercise 22. Pythagorean triples map. The interval map N : [0, 1]→
[0, 1] 

x
1−2x

if 0 ≤ x ≤ 1
3
,

1
x
− 2 if 1

3
≤ x ≤ 1

2
,

2− 1
x

if 1
2
≤ x ≤ 1,

arises in the study of Pythagorean triples. (Figure 11(b) explains why
it is denoted by N .) Show that it preserves the measure

π(dx) =
1

x(1− x)
dx.

Although much of our discussion has been focused on interval maps,
the concept of measure preserving systems appears in many different
contexts (including some rather exotic ones), as the next few examples
illustrate.

Example 31. Hamiltonian flow. By Liouville’s theorem, the phase
flow of a Hamiltonian system preserves area measure in R2 (also called
the two-dimensional Lebesgue measure). This is a continuous-time dy-
namical system, but the notion of measure preserving dynamics makes
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Figure 11. (a) The additive Gauss map; (b) The
Pythagorean triples map.

sense for such systems as well. In particular, if the system is discretized
by fixing a time step τ , we get a map preserving Lebesgue measure.

Example 32. Geodesic flow. The geodesic flow is a continuous-time
dynamical system on a curved surface. Its phase space is the set of
points (x, v) where x is a point on the surface and v is a tangent vector
to the surface based at x (representing the direction and speed in which
a person standing at x will start walking). The flow ϕt(·, ·) takes such
a pair (x, v) and maps it to a new pair (x′, v′) = ϕ(x, v) representing
where the person will be, and which direction they will be pointing at,
t time units later. It can be shown that the geodesic flow preserves
the natural volume measure associated with the phase space (roughly
speaking, the measure is product of the surface area measure of the
surface in the component x, and a standard area measure in the v
component).

Example 33. Billiard map. Billiard maps can be thought of as a
limiting case of certain Hamiltonian systems (think of a limit in which
the reflecting wall is actually a strongly repelling potential well that
becomes steeper and steeper), so they too have an invariant measure. In
certain natural coordinates φ, θ, `, the formula for the invariant measure
becomes

P (A) =

∫
A

sin θ

sin θ1

dθ dφ d`.

(For the meaning of these quantities, see the interesting article What is
the ergodic theorem?, G. D. Birkhoff, American Math. Monthly, April
1942.)

Example 34. 3x+ 1 map. One of the many (ultimately unsuccessful)
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attempts at solving the famous 3x+1 problem mentioned in Section 2.1
was based on the observation that since the formula of the 3x+ 1 map
T (x) depends on the parity of x, the range of definition of T can be
expanded to include numbers of the form

a0 + a1 · 2 + a2 · 4 + a3 · 8 + . . .+ an · 2n + . . . =
∞∑
n=0

an2n.

Such exotic numbers, which have an infinite binary expansion to the left
of the “binary point”, are called 2-adic integers and have fascinating
properties. In particular, there is a natural measure associated with
them that is analogous to Lebesgue measure on R. It can be shown
that the extended 3x+ 1 map preserves this measure.

2.8. Measure 0 sets. A set E ⊂ R is called a measure 0 set if its
Lebesgue measure is 0. Although we have not discussed (and do not
plan to discuss) precise definitions of Lebesgue measure or of the notion
of measurability, for the case of measure 0 sets there is an easy explicit
definition. E has measure 0 if and only if for any ε > 0, E can be
covered by a countable union of open intervals whose lengths add up
to less than ε:

∀ε > 0 E ⊂
∞⋃
n=1

(an, bn),
∞∑
n=1

(bn − an) < ε ⇐⇒ measure 0.

Exercise 23. Prove that any countable set E ⊂ R has measure 0.

2.9. Invariant sets, ergodicity and the ergodic theorem. We
now come to a key idea that underlies the basis for all of ergodic the-
ory and explains the importance of invariant measures in discrete-time
dynamics. Given a map T : I → I and the associated recurrence
xn+1 = T (xn), for every sub-interval A ⊂ I we can compute the fre-
quency of visits of the dynamical system to A, namely

µ(n)
x (A) =

1

n
#
{

0 ≤ k ≤ n− 1 : T k(x) ∈ A
}
.

Note that this depends on the set A as well as on n (the number
of elements in the sequence of iterates we are using to compute the
frequency) and x, the initial point. If we fix n and x, the function

A 7→ µ
(n)
x (A) is a probability measure (but it is a discrete probabil-

ity measure, which assigns a positive measure of 1/n to the specific
points x, T (x), . . . , T n−1(x), instead of the measures we considered ear-
lier which were defined in terms of a density function f(x)). Now let
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n → ∞ (for fixed x). If we are lucky, the probability measures µ
(n)
x (·)

will converge to a limiting measure P (dx) = f(x)dx, in the sense that

µ(n)
x (A) −−−→

n→∞
P (A) =

∫
A

f(x) dx for any subinterval A ⊂ I.

It is not hard to see that the limiting measure needs to be an invariant
measure for T :

P (T−1(A)) = lim
n→∞

µ(n)
x (T−1(A))

= lim
n→∞

1

n
#
{

0 ≤ k ≤ n− 1 : T k(x) ∈ T−1(A)
}

= lim
n→∞

1

n
#
{

0 ≤ k ≤ n− 1 : T k+1(x) ∈ A
}

= lim
n→∞

1

n
#
{

1 ≤ k ≤ n : T k(x) ∈ A
}

= lim
n→∞

1

n
#
{

0 ≤ k ≤ n− 1 : T k(x) ∈ A
}

= P (A).

It is therefore clear that an invariant measure which arises in this
way encodes useful statistical information about the orbit of the point
x under the map T . On the other hand, the limiting measure may
depend on x (or we may have convergence to a limiting measure for
some values of x, and fail to have convergence for other values). It
turns out that for a wide family of maps, called ergodic maps, the limit
is mostly independent of the initial point x. We summarize the relevant
facts, whose proof is beyond the scope of the course, in the following
result, which is a version of a famous theorem known as Birkhoff’s
Pointwise Ergodic Theorem:

Theorem 12 (The ergodic theorem). If T : I → I is an interval map
which preserves a measure P (dx) = f(x)dx, then:

(1) There is a set E ⊂ I such that I \E is a measure-0 set and for

any x ∈ E, the measures µ
(n)
x (·) converge to a limiting invariant

measure Px in the sense described above.
(2) If T satisfies a natural condition known as ergodicity, then Px

is independent of x and is equal to the invariant measure P for
all x ∈ E.

Maps for which the condition of part (b) applies are the ergodic
maps. In such a case, one can say that “the statistics of most orbits
reproduce the ideal statistics of the system”, or that “time averages
are equal to space averages”. That is, by observing a typical orbit for
a long time we can learn about the statistical behavior of almost all
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other orbits. We will not discuss the precise definition of ergodicity,
preferring instead to explore some of the interesting consequences of the
result above. Roughly speaking (setting aside some nuances involving
measure 0 sets), a map is ergodic if I can’t be divided into two disjoint
parts A and B such that P (A) > 0, P (B) > 0 and for any points
x ∈ A, y ∈ B, T k(x) ∈ A and T j(y) ∈ B for all j, k ≥ 0. Such sets
A and B are called invariant sets for T . The existence of a nontrivial
invariant set is a fairly obvious obstacle to the statement of part (b) in
the theorem above holding true, and the main difficulty in proving the
result is showing that when there are no invariant sets then (in some
sense) there is nothing else that can go wrong and therefore the result
must be true.

Another thing to note is that actually checking whether a given map
is ergodic may be rather difficult. However, we will use the theorem
in a few cases in which ergodicity is known and not very difficult to
prove.

2.10. The doubling map and normal numbers. Our first appli-
cation of the ergodic theorem is related to the doubling map D(x) =
2x mod 1, which as we have seen preserves Lebesgue measure on (0, 1).
We will use without proof the fact that this map is ergodic. The reason
this is interesting is because the orbits Dn(x) of a number x encode
information about the binary expansion of x. More precisely, write

x =
∞∑
n=1

an(x)2−n,

where an(x) ∈ {0, 1} is the nth digit in the binary expansion of x (in
the case of a dyadic number m/2N for which there is a small amount
of ambiguity, choose the expansion which terminates with an infinite
succession of 0’s). Applying the doubling map gives

D(x) = 2x mod 1 =
∞∑
n=1

an(x)2−(n−1) mod 1 =
∞∑
n=1

an+1(x)2−n,

from which we conclude that an(D(x)) = an+1(x) – in terms of the
binary expansion, the doubling map has the effect of “chopping off”
the leading digit in the expansion. Successive applications of D will
chop off additional digits. By tracking the frequency of visits of D(x)
to a specific set such as (0, 1/2) = {u ∈ (0, 1) : a1(u) = 0}, we can
prove the following result:
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Theorem 13. All numbers x ∈ (0, 1) except those lying in some measure-
0 set have the property:

1

n
# {1 ≤ k ≤ n : an(x) = 0} −−−→

n→∞
1
2
,(35)

and, more generally, for any b1, . . . , bm ∈ {0, 1}, we have

1

n
# {1 ≤ k ≤ n : ak(x) = b1, . . . , ak+m−1(x) = bm} −−−→

n→∞

1

2m
.(36)

Proof. The frequency on the left-hand side of (35) is what we denoted

earlier by µ
(n)
x ((0, 1/2)) (with respect to the doubling map), so by the

ergodic theorem, it converges to P ((0, 1/2)) = 1/2. Similarly, the left-
hand side of (36) converges to the Lebesgue measure of the interval
[
∑m

j=1 bj2
−j,
∑m

j=1 bj2
−j + 2−m), which is 1/2m. �

A number x ∈ (0, 1) is called normal to base 2 if it satisfies the
condition (36)—that is, if its binary expansion contains the digits 0
in 1 in the right asymptotic frequency of 1/2, and similarly contains
each of the types of successive pairs “00”, “01”, “10” and “11” with
asymptotic frequency 1/4, each triple of digits with frequency 1/8, etc.
In other words, the binary expansion of a number that is normal to
base 2 is hard to distinguish (at least based on statistics) from the
output of an ideal random number generator. We proved above that
“almost every” x ∈ (0, 1) (all x except for those in some measure-0 set)
is normal to base 2. This can be generalized to arbitrary bases.

Exercise 24. Normal numbers to base 10. Define the notion of a
number x ∈ (0, 1) that is normal to base 10. Define an interval map
E : (0, 1)→ (0, 1) that is related to the decimal expansion of a number
in the same way that D is related to the binary expansion, and use it
to prove that almost every number x ∈ (0, 1) is normal to base 10.

2.11. Circle rotations and equidistribution on (0, 1). Our next
application of the ergodic theorem will be to the circle rotation map
Rα(x) = x + α mod 1. Note that Rn

α(x) = x + nα mod 1 = {x+ nα}
(where {u} = u− buc denotes the fractional part of a real number u).

Theorem 14. The map Rα is ergodic if and only if α is irrational.

Proof. If α = p/q is rational, the set

E =
[
0, 1

2q

]
∪
[

1
q
, 3

2q

]
∪
[

2
q
, 5

2q

]
∪
[

3
q
, 7

2q

]
∪ . . . ∪

[
q−1
q
, 2q−1

2q

]
is an example of a nontrivial invariant set. The other direction (that
if α is irrational then the map is ergodic) can be proved using Fourier
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series. Here is a sketch of the proof. The idea is to check the ergodic
theorem by taking some well-behaved function g : [0, 1) → R and
looking at sums of the form

µ(n)
x (g) =

1

n

n−1∑
k=0

g(Rk
α(x))

(such sums are called ergodic averages, since they represent an aver-
aging of the values of g over orbits of x). It can be shown that if

the averages converge to the “ideal average”
∫ 1

0
g(x) dx (the average of

g with respect to the invariant measure, which in this case is simply
Lebesgue measure) for a sufficiently large family of functions g, then
the map is ergodic. It turns out that for the circle rotation map, this
is particularly simple to check when gm(x) = e2πimx is a complex ex-
ponential, m ∈ Z. For m = 0 the claim is trivial, and for m 6= 0 we
have

µ(n)
x (gm) =

1

n

n−1∑
k=0

gm(Rk
α(x)) =

1

n

n−1∑
k=0

exp(2πimRk
α(x))

=
1

n

n−1∑
k=0

exp(2πim(x+ kα mod 1))

=
1

n

n−1∑
k=0

exp(2πim(x+ kα)) =
1

n
e2πimx

n−1∑
k=0

e2πimkα

=
1

n
e2πimx1− e2πinmα

1− e2πimα
−−−→
n→∞

0 =

∫ 1

0

e2πimx dx =

∫ 1

0

gm(x) dx.

�

Applying the ergodic theorem, we get (see the exercise below the
proof) the following famous result in number theory, proved in 1909
and 1910 independently by Weyl, Sierpinski and Bohl.

Theorem 15 (Equidistribution theorem). If α ∈ (0, 1) is irrational
then for any 0 ≤ a < b ≤ 1

1

n
#
{

1 ≤ k ≤ n : {nα} ∈ (a, b)
}
−−−→
n→∞

b− a.(37)

Exercise 25. The ergodic theorem only guarantees the result that

1

n
#
{

1 ≤ k ≤ n : {x+ nα} ∈ (a, b)
}
−−−→
n→∞

b− a(38)
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holds for all x ∈ [0, 1) except on a measure-0 set. Explain why in the
case of the rotation map Rα, the truth of this claim is independent of
the initial point x, and therefore (37) follows from (38).

2.12. Statistics of the logistic map L4. As a final example of the
application of the ergodic theorem, we justify our earlier claim that the
logistic map L4 can be understood statistically even though its orbits
are chaotic. We rely on another unproved fact from ergodic theory,
which is that L4 is ergodic.

Theorem 16. For all 0 ≤ a < b ≤ 1 and for all x ∈ [0, 1] except on a
set of measure 0, we have

1

n
#
{

0 ≤ k ≤ n− 1 : Lk4(x) ∈ (a, b)
}

−−−→
n→∞

1

π

∫ b

a

du√
u(1− u)

=
2

π
arcsin(

√
b)− arcsin(

√
a).

Exercise 26.

(1) Prove that the logistic map L4 is related to the tent map Λ2 by

Λ2(x) = (h ◦ L4 ◦ h−1)(x),

where h(x) = 2
π

arcsin(
√
x). (Two interval maps that are re-

lated to each other via a relation of the type T1 = h ◦ T2h
−1,

where h : I → I is invertible, are called conjugate maps, and
share many similar properties.)

(2) Use this to prove that the tent map satisfies a similar statistical
distribution result, namely that for all x ∈ [0, 1] except on a set
of measure 0, we have

1

n
#
{

0 ≤ k ≤ n− 1 : Λk
2(x) ∈ (a, b)

}
−−−→
n→∞

b− a.

End of Part 2
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Part 3. Control theory

3.1. Introduction: the problem of control. The dynamical sys-
tems we find in nature are plagued by a host of undesirable effects such
as instabilities, unpredictable and chaotic behavior, and unwanted os-
cillations. Left to their own devices, ecosystems can suffer cycles of
uninhibited growth followed by mass starvation; economies undergo
cyclical downturns; human hearts go into fibrillation; aircraft would
plunge down to earth; etc. The goal of control theory is to devise
methods to steer dynamical systems away from unfavorable modes of
behavior and towards desired ones, by manipulating the differential
equation itself—usually through manipulation of a specific term (or
set of terms) present in the equation, known as the control function.
Control theory is a large field, and its proper study requires a sepa-
rate concentrated effort. In these notes we will merely give a short
introduction to the subject, focusing on a few simple examples which
illustrate some of the main ideas of this fascinating (and extremely
useful) subject and how it relates to the theory of ODEs.

In mathematical terms, the problem of control can be formulated as
follows. We are given a vector equation of the form

ẋ = G(x,u, t)

where x is a d-dimensional vector dynamic variable andG : Rd+k+1 → Rd

is a smooth function. We think of u as a k-dimensional input that is a
parameter to the equation. That is, given a curve u(t) in Rk, we can
plug it into the equation to get an ODE ẋ(t) = G(x(t),u(t), t) for the
vector variable x. The assumption is that we can pick u, with the goal
being of steering the solution x(t) towards a specified desired behavior.
For example, u could represent a driving force in a mechanical sys-
tem; an electric voltage applied by a digital controller in an electronic
circuit; an interest rate on government-issued bonds set by a central
bank, etc. A common goal is to make x go to a specific point in Rd

and stay there, i.e., to stabilize the system at a state that it would not
normally (in the absence of deliberate control) remain stable at. We
refer to u as the control variable (or variables), or control function.

3.2. Feedback. If the control variable u at a given time t needs to
be specified simply as a function u(t) of time, without reference to
the current state x(t) of the dynamical system, we are talking about
control without feedback (technically, this is known as open-loop con-
trol). Alternatively, if we allow u to be specified as a function u(x, t)
(that is, if the controller is allowed to “look at what she is doing”),
this means that the control system incorporates feedback. A control
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Figure 12. Kapitza’s pendulum (source: Wikipedia).

system of this type is known as closed-loop control. Feedback is an
extremely powerful idea—as anyone who has tried to drive a car blind-
folded knows! Indeed, almost all of control theory focuses on control
with feedback. However, as we shall see below, open-loop control also
has some surprising uses.

3.3. An inverted pendulum with a vertically oscillating base.
The simple pendulum has two rest points: it can be “hanging down” or
“standing up”. A pendulum in the “standing up” position is called an
inverted pendulum. Since this rest point is asymptotically unstable, one
rarely observes pendulums in this position! However, from the point of
view of control theory, the inverted pendulum is much more interesting
than the pendulum in its stable state. It turns out that the pendulum
can be stabilized around the inverted rest point, using both open-loop
and closed-loop control schemes. The Segway personal transportation
device is a practical invention built precisely around this idea.

As our first example in control theory, we will show how the inverted
pendulum can be stabilized in an open-loop control scheme whereby
the base of the pendulum is made to oscillate along the vertical di-
rection. This dynamical system is known as Kapitza’s pendulum (see
Figure 12). The amplitude and frequency of the oscillation need to
be adjusted to suitable values to achieve stability, but in practice the
effect is quite easy to achieve, and entertaining video demonstrations
of this surprising and unintuitive result can be found online.
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Let ` denote the length of the rod of the pendulum. We assume
the base is moving along the vertical axis as a function u(t) of time
(which plays the role of the “control function” in this problem), and
denote by x the angle the pendulum forms with the upward-pointing
vertical, so that x = 0 (rather than x = π with the more commonly
used angular coordinate) represents the unstable equilibrium point of
the inverted pendulum. The position of the swinging mass is r =
(` sinx, ` cosx+ u(t)). We can now write the kinetic energy, potential
energy and the Lagrangian, as follows:

K = 1
2
|ṙ|2 = 1

2

(
`2ẋ2 cos2 x+ `2ẋ2 sin2 x− 2`u̇ẋ sinx+ u̇2

)
= 1

2
`2ẋ2 + 1

2
u̇2 − `u̇ẋ sinx,

U = g` cosx+ gu,

L = 1
2
`2ẋ2 + 1

2
u̇2 − `u̇ẋ sinx− g` cosx− gu.

Therefore we have

∂L

∂x
= −`u̇ẋ cosx+ gl sinx,

∂L

∂ẋ
= `2ẋ− `u̇ sinx,

d

dt

(
∂L

∂ẋ

)
= `2ẍ− `ü sinx− `u̇ẋ cosx,

and the Euler-Lagrange equation for this Lagrangian is

ẍ =
g + ü

`
sinx.

That is, the effect of the vertical driving acceleration ü(t) applied to
the base point is to make the effective gravity felt by the pendulum
change as a function of time. We shall now make some assumptions to
simplify the analysis. First, we shall study the behavior in the vicinity
of the rest point, so we can replace the equation with its linearized
version

ẍ =
g + ü

`
x.

Next, we assume that u(t) is a periodic function with period 2T and
frequency f = 1/2T , and furthermore, we assume that its second de-
rivative ü(t) takes only two values ±a, changing its sign exactly every
half-period T , so that the graph of u over each half-period is a parabolic
arc rather than the sinusoidal arc typically used for periodic motions
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Figure 13. In our analysis, the driving function u(t) for
the height of the oscillating base is assumed to be peri-
odic with period 2T , and each half-period is a parabolic
arc with second derivative ±a and amplitude d.

(this can even be a realistic assumption depending on the way the driv-
ing mechanism operates in practice, but the main reason for assuming
it is that it results in a simpler mathematical analysis); see Figure 13.
With this assumption, the equation becomes

ẍ = (ω2 ± A2)x,

with the notation ω =
√
g/`, A =

√
a/`, and where “±” denotes the

square wave function

± =

{
+1 if sin(2πft) > 0,

−1 if sin(2πft) < 0.

We assume that A > ω, i.e., the “artificial gravity” induced by the
vibrations dominates the gravity of the more usual type. It can be
easily checked that the amplitude d of the oscillation is given by

d =
T 2a

8
.

As a final notational step before we start the analysis, we do the
usual trick of representing a second-order system as a planar first-order
system:

ẋ = y,

ẏ = (ω2 ± A2)x.

Note that this is a linear, but time-dependent, system, so we can rep-
resent it in vector notation as

ẋ = Btx,(39)
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where x = (x, y)> and Bt =

(
0 1

ω2 ± A2 0

)
.

We are now in a position to study when (as a function of the pa-
rameters a, T, `, g) we can expect the system to be stable at x = 0.
The idea is to reduce the problem to understanding the stability of an
autonomous discrete-time dynamical system which we can explicitly
compute. For real numbers t0 < t1, define a map ψt0,t1 : R2 → R2,
analogous to the phase flow map ϕt we studied for autonomous sys-
tems, as follows:

ψt0,t1(x0) = x(t1) where x(t)t≥t1 is the solution of the system (39)

with initial condition x(t0) = x0.

That is, ψt0,t1 evolves a point forward in time from time t0 to time t1.
(In the case of an autonomous system, we could write this as ϕt1−t0(x0)
since it would depend only on the duration of the evolution rather than
the specific starting and ending times.) The evolution maps ψt0,t1 have
several important properties. First, they are linear, since the system
(39) is linear. Second, they satisfy the composition property

ψt0,t2(x0) = ψt1,t2(ψt0,t1(x0)) (t0 < t1 < t2),

or equivalently

ψt0,t2(x0) = ψt1,t2 ◦ ψt0,t1 (t0 < t1 < t2),(40)

since evolving a solution from time t0 to t2 can be done by evolving it
up to time t1 and then evolving the resulting point from t1 to t2. Third,
because the matrix function t 7→ Bt in the equation (39) is periodic
with period 2T , we have

ψt0+2T,t1+2T (x0) = ψt0,t1(x0).

By the composition property (40), we can now express the solution
x(t) with an initial condition x(0) = x0 at time 0 as the result of a
sequence of evolution steps along small time intervals of length T . More
precisely, if n is an integer such that 2nT ≤ t < 2(n + 1)T , then we
have

x(t) = ψ0,t(x0)

= ψT,t ◦ ψ0,T (x0)

= ψ2T,t ◦ ψT,2T ◦ ψ0,T (x0) = . . .

= ψ2nT,t ◦ ψ(2n−1)T,2nT ◦ . . . ◦ ψ2T,3T ◦ ψT,2T ◦ ψ0,T (x0)

= ψ2nT,t ◦ S− ◦ S+ ◦ S− ◦ S+ ◦ . . . ◦ S− ◦ S+(x0)

= ψ0,t−2nT ◦ (S− ◦ S+)n(x0) = ψ0,t−2nT ◦ P n(x0),

(41)
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where we denote

S+ = ψ0,T , S− = ψT,2T , P = S− ◦ S+ = ψ0,2T .

The analysis will now revolve around an explicit computation of the
2×2 matrices associated with the linear maps S± and their composition
P , the period evolution map. A key observation is the following:

Lemma 17. If | tr(P )| < 2 then the system (39) has a stable rest point
at x = 0.

Proof. P is a 2× 2 matrix of real numbers with determinant det(P ) =
det(S−) det(S+) = 1 (this fact also follows from Liouville’s theorem).
Its eigenvalues λ1, λ2 are the roots of a quadratic polynomial with real
coefficients, and satisfy

λ1λ2 = det(P ) = 1,

λ1 + λ2 = tr(P ).

If both eigenvalues are real then the fact that λ2 = 1/λ1 implies that

|λ1 + λ2| =
∣∣∣∣λ1 +

1

λ1

∣∣∣∣ ≥ 2,

in contradiction to the assumption that | tr(P )| < 2. The only other
possibility is that λ1 and λ2 are conjugate complex numbers, which
must lie on the unit circle, since λ1λ2 = λ1λ1 = |λ1|2 = 1. This implies
that for some constant C > 0, we have

|P nx| ≤ C|x|

for all n ≥ 1 and x ∈ R2, since λ1 = eiθ for some real θ, and
from linear algebra we know that by representing such a matrix in
an appropriate basis one can bring it to the form of a rotation matrix(

cos θ − sin θ
sin θ cos θ

)
. In other words, this shows that the discrete-time

dynamical system defined by the matrix P has a (neutrally) stable rest
point at x = 0.

Finally, observe that the family of matrices (ψ0,s)0≤s≤2T is the image
of a compact interval [0, 2T ] under a continuous map s 7→ ψ0,s, and
therefore this set of matrices is compact, and hence bounded in norm,
in the space of 2× 2 matrices. Therefore there is some constant D > 0
such that

max
0≤s≤2T

|ψ0,s(y)| ≤ D|y|
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for any y ∈ R2. Combining this with the previous comment and with
(41), we get that

|ψ0,t(x0)| ≤ CD|x0|

for all t ≥ 0, which shows that x = 0 is a neutrally stable rest point of
the system (39). �

To compute S− and S+, observe that they are both obtained by
evolution of the system along time intervals for which the matrix Bt is
constant; for such intervals the system (39) behaves like an autonomous
system, and can be solved explicitly using matrix exponentials.

Lemma 18. The matrices S± are given by

S+ =

(
cosh (kT ) 1

k
sinh (kT )

k sinh (kT ) cosh (kT )

)
,

S− =

(
cos (jT ) 1

j
sin (jT )

−j sin (jT ) cos (jT )

)
,

(42)

where k =
√
A2 + ω2 =

√
(a+ g)/`, j =

√
A2 − ω2 =

√
(a− g)/`.

Proof. By the comment above, we have

S+ = exp

(
T

(
0 1
k2 0

))
= exp(M+),

S− = exp

(
T

(
0 1
−j2 0

))
= exp(M−),

where we denote M+ =

(
0 T
k2T 0

)
, M− =

(
0 T
−j2T 0

)
. Note that

M± satisfy

M2
+ = k2T 2I, M2

− = −j2T 2I.

As a result, it is easy to evaluate the matrix exponentials exp(M±) by
directly summing the power series

∑∞
n=0

1
n!
Mn
± (since the even powers

are scalar multiples of I and the odd powers are scalar multiples of
M±) to obtain the expressions in (42). The computation is left as an
exercise. �

Exercise 27. Perform the power series summation outlined above to
verify the formulas (42).
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The final step consists of studying tr(P ) = tr(S−S+) to show that for
an appropriate choice of parameters, stability can be achieved. Denote
σ = σ(a, g, `, T ) = tr(P ). By the formulas (42), we have

σ = 2 cos (jT ) cosh (kT ) +

(
k

j
− j

k

)
sin (jT ) sinh (kT )

= 2 cos

(
T

√
a− g
`

)
cosh

(
T

√
a+ g

`

)

+

(√
a+ g

a− g
−
√
a− g
a+ g

)
sin

(
T

√
a− g
`

)
sinh

(
T

√
a+ g

`

)
.

We can now prove:

Theorem 19. There are values of the parameters a, g, `, T for which
Kapitza’s pendulum is stable.

Proof. Using the metric system of units, take g = 9.8 m
sec2

(the Earth’s
gravitational constant), ` = 20 cm, d = 1 cm, f = 40 sec−1. With these
values we have T = 1

80
sec, a = 512 m

sec2
. For these parameters the

computer returns the value

σ(a, g, `, T ) = 1.97728 . . . ,

so in particular |σ| < 2 and the pendulum is stable. �

It is possible to get a better understanding of the subset of the pa-
rameter space for which the motion is stable, at least for oscillations
with small amplitude and high frequency, that explains why the “lucky”
numbers above work to produce a stable value |σ| < 2. This can be
done by introducing two dimensionless parameters w, z, defined by

w2 =
g

a
(the ratio of “natural” to “artificial” gravity),

z2 =
d

`
(the ratio of the oscillation amplitude to the pendulum length),

and to consider a limit in which both variables w, z tend simultaneously
to 0 (with the variable T changing accordingly).

Exercise 28. Asymptotic stability regime of Kapitza’s pendulum. Rep-
resent σ as a function of the variables w, z, then expand σ in a Taylor
series in w, z, including all terms up to and including order 4 (i.e., all
monomials of the form wizj for 0 ≤ i + j ≤ 4). From this approxima-
tion, deduce that if w, z → 0 in such a way that w < cz where c is a
constant satisfying 0 < c <

√
2/3, then for small enough values of w, z

the stable regime |σ| < 2 is entered, i.e., the motion becomes stable.



74

3.4. Alternating gradient focusing. While the example discussed
above is interesting mostly for its curiosity value, the mathematical
idea underlying it has found a serious application as a method for fo-
cusing beams of charged particles in particle accelerators. The method,
known as alternating gradient focusing or strong focusing, is an essen-
tial piece of technology used in all particle accelerator designs since
the invention of the technique in the early 1950’s. Roughly, the idea is
as follows. In particle accelerators, beams of charged particles moving
at close to the speed of light are directed along an approximately cir-
cular path by passing them through a sequence of powerful magnets.
To focus the beams in order to achieve a high-quality beam suitable
for performing useful experiments, the magnetic fields are carefully de-
signed to create magnetic analogues of optical lenses. However, due to
the way the physical law (called the Lorentz force) that governs how
charged particles are influenced by magnetic fields works, it turns out
that these magnetic lenses can only focus a beam along one axis: if the
lens focuses the beam along the x-axis (where we imagine the beam
to be moving in the y-direction), then it will defocus the beam along
the z-axis, and vice versa. The alternating gradient focusing technique
is based on the observation that a series of magnetic lenses that focus
the beam along alternating axes (an x-focusing lens, followed by a z-
focusing lens, followed by an x-focusing lens, etc.) will achieve a net
focusing effect along both axes! Mathematically, the analysis showing
the validity of the idea is virtually identical to the stability analysis we
performed above for the inverted pendulum with an oscillating base2.

3.5. Electromagnetic levitation. A famous practical demonstration
of control theory is that of electromagnetic levitation. This is a method
for causing a small magnetic object to hover in the air by causing
an electromagnet (a coil that behaves like a magnet when an electric
current is passed through it) positioned above the object to pull on
it, balancing the magnetic attraction force against the force of gravity.
There are several known ways to achieve stable levitation, a few of
which use physical principles that are unrelated to control theory (for
example, one of the most amusing demonstrations of levitation was
in an experiment performed by a group of Dutch researchers in the
year 2000 that used the physical effect of diamagnetism to levitate a
live frog). However, the easiest—and from our point of view, the most

2see equations (2.11), (2.12), (2.33) and (2.34) in the paper The-
ory of the alternating gradient synchrotron, by E. D. Courant and
H. S. Snyder (Annals of Physics 3 (1958), 1–48), available online at
http://ab-abp-rlc.web.cern.ch/ab-abp-rlc/AP-literature/Courant-Snyder-1958.pdf

http://ab-abp-rlc.web.cern.ch/ab-abp-rlc/AP-literature/Courant-Snyder-1958.pdf
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interesting—approach is to modulate the attractive magnetic field of
the electromagnet using a feedback control scheme.

We will discuss the following simple model for a levitation device.
The levitating object is idealized as a particle moving along a one-
dimensional (vertical) axis, whose position x(t) satisfies the equation

ẍ =

{
−1 if the electromagnet is off,

1 if the electromagnet is on.

The idea is that when the electromagnet is turned off, the particle expe-
riences a downward acceleration due to the effect of gravity, and when
the electromagnet is switched on, the attractive magnetic force causes
an upward acceleration that overcomes gravity and exactly negates it.
For simplicity, we choose units such that the gravitational constant g
is equal to 1, and assume that the acceleration when the electromag-
net is switched on is exactly equal in magnitude (and opposite in its
direction) to the gravitational acceleration. The control variable u is
a binary “on/off” variable that corresponds to the decision of when to
activate the electromagnet (a control scheme based on a binary control
variable is sometimes called a switching control). Our goal is to design
a feedback-based control rule

u = u(x, ẋ)

(where we denote u = ẍ = ±1 to correspond to the two states of the
electromagnet) such that the system will have an asymptotically stable
equilibrium point at x = 0 to which all the orbits converge.

3.5.1. A first attempt. An obvious idea to try is to switch the electro-
magnet on when x < 0 and off when x > 0. That is, we try the control
rule u = − sgn(x) (where sgn(x) = x/|x| is the signum function), lead-
ing to the equation of motion

ẍ =

{
−1 if x > 0

1 if x < 0
= − sgn(x).(43)

This can be represented in the usual way as a planar system of first-
order ODEs, namely

ẋ = y, ẏ = − sgn(x).

It is not hard to see how to draw the phase portrait for this system.
First, imagine that there is no electromagnet, which leads to the simpler
system (describing simply the motion of a particle under a uniform
gravitational force)

ẋ = y, ẏ = −1.(44)
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Figure 14. The phase portrait for a particle falling un-
der the influence of gravity.

The solutions of this equation take the form

x(t) = x0 + y0t− 1
2
t2, y(t) = y0 − t,

where x0 is the initial position and y0 is the initial velocity. We then
have that y = y0 − t, and therefore

x = x0 + y0(y0 − y)− 1
2
(y0 − y)2 = (x0 + 1

2
y2

0)− 1
2
y2,

in other words, the solution curves of the system have the form x =
a− 1

2
y2 where a is some arbitrary parameter. This leads to the phase

portrait shown in Figure 14.
Next, the system (43) consists of modifying the equation vector field

by reflecting the flow curves for negative x so that they mirror the lines
for positive x. This leads to the phase portrait in Figure 15. We see that
the system indeed has a rest point at (x, y) = (0, 0). However, the rest
point is a center, i.e., it is only neutrally stable (this is to be expected,
since in fact this is an autonomous Hamiltonian system arising from a
potential energy U(x) = |x|, and we know energy is conserved in such
systems, leading to periodic oscillatory motions). So, a particle moving
according to these equations of motion will indeed levitate, but will do
so in a way that oscillates around the reference point x = 0, and only
under the unrealistic assumption that the physical system is indeed
described to perfect precision by the equations (43). In practice, due
to the finite speed of response of the switching control, any physical
implementation of this control rule will be unstable.
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Figure 15. The phase portrait for the equation of mo-
tion of a magnetically levitated object, using the “naive”
approach. The rest point is only neutrally stable, and in
practice this approach does not result in stable levitation.

3.5.2. Taking velocity into account. It is apparent that to achieve sta-
ble levitation, a new idea is needed. Note that until now we only used
information about the position of the particle. Why not use informa-
tion about its velocity (the y coordinate of the system’s state (x, ẋ)
when represented as a planar system) as well? Intuitively, this should
help, since it’s clear that the reason for oscillations developing in the
previous scheme is that we are allowing the particle to overshoot the
equilibrium point from either direction before toggling the state of the
electromagnet; by looking at the velocity we could predict where the
particle will be in a short time and do the toggling in advance in a way
that will gradually reduce the size of the oscillations.

Formally, the idea described above leads to a feedback rule of the
type

u = − sgn(x+ bẋ),

where b > 0 is a small numerical constant. This leads to the modified
system

ẋ = y, ẏ = − sgn(x+ by).

To draw the phase portrait for the modified system, again one has
to combine the curves from the simple gravity system (44) with their
mirror images, but the choice of which one to draw at a given point goes
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Figure 16. A feedback rule based on a linear combina-
tion of position and velocity leads to stable levitation.
The final stage of the convergence to the equilibrium
point is a non-smooth “sliding motion” along a “chat-
tering curve”, shown in black.

according to which side of the line x+ by = 0 the point is on. Finding
the intersection points of the parabolas x = a − 1

2
y2 and x = a + 1

2
y2

with the line x + by = 0 leads to quadratic equations which are easily
solved, so the phase portrait can be plotted fairly easily. The result is
shown in Figure 16.

A look at the phase portrait suggests that the idea is successful, and
indeed results in stable levitation. It is not difficult to confirm this
analytically. One interesting behavior that emerges upon closer exam-
ination of the properties of this system is that when (x, y) crosses the
switching line x + by = 0, if the point is close enough to the origin
then the equation of motion becomes ill-defined, since the vector field
(y,− sgn(x + by)) starts pointing back towards the switching line. In
practice, due to time-delay effects in any physical implementation of
the system, the particle will undergo a “sliding motion” in which it
oscillates violently around both sides of the switching motion, all the
while still sliding towards the origin. This phenomenon has been re-
ferred to as chattering, since in physical implementations where the
binary switching is done using an electrical relay, the high frequency
switching makes a chattering noise. We can estimate the rate at which
the particle will approach the origin during the sliding motion stage:
since the sliding motion happens very near the line x + by = 0 and
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we have the equation ẋ = y, the particle’s position will approximately
satisfy the ODE ẋ = −x/b, whose solution is given by

x(t) = ce−t/b.

That is, the convergence to the origin in the final sliding stage is expo-
nential, with a time constant of 1/b.

Exercise 29.

(1) Show that the sliding motion for points along the line x+by = 0
happens precisely for |x| ≤ b2.

(2) If we start the system at a point (x0, y0) that lies on the switch-
ing line x + by = 0, find a formula for the time it takes the
point to flow into the sliding motion area connecting the points
(−b2, b) and (b2,−b).)

3.5.3. Optimal switching control. Although we have achieved our goal
of designing a stable levitation control scheme, it is not necessary to
stop here. A natural question is to ask for the optimal control rule,
namely the one that causes the particle to reach the stable equilibrium
point in the shortest time, regardless of its initial conditions. Using
ideas from the theory of nonlinear optimal control which are beyond
the scope of this course, it is possible to prove that the optimal control
rule is

u(x) = − sgn
(
x+ 1

2
ẋ|ẋ|

)
.

This makes intuitive sense, since the idea behind this control rule is to
toggle the electromagnet as soon as the state of the system reaches the
curve x = 1

2
y|y|. The flow from that point on takes place along the

parabola x = 1
2
y2 (if x > 0) or x = −1

2
y2 (if x < 0) and leads directly

to the origin with no further toggling of the controller’s state required.
The phase portrait of the system governed by this control rule is shown
in Figure 17.

Exercise 30. Optimal switching time. Find a formula for the time
τ(x, ẋ) it takes the particle to get to the origin when the optimal switch-
ing rule is used.

3.6. Linear Quadratic Performance control. In this section we
consider control problems which take the general form

ẋ = Ax +Bu,(45)

where the state x of the dynamical system is an n-dimensional vector,
the control variable u is an m-dimensional vector, and A,B are linear
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Figure 17. Phase portrait for the optimal switching
control.

Figure 18. A homemade electromagnetic levitation device.

operators (i.e., A is an n×n matrix and B is an n×m matrix). The goal
of the control will be to bring the dynamical variable x to the origin.
Moreover, we associate with any proposed solution a cost functional
that measures how effective it is. The cost functional will take the
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form

J =

∫ t2

t1

(
x>Px + u>Qu

)
dt,(46)

where −∞ < t1 < t2 ≤ ∞, P is an n× n positive-definite matrix and
Q is an m ×m positive-definite matrix. The idea is that we want to
incentivize the controller to bring x to the origin as fast as possible
by “pushing” on it as hard as possible; at the same time, in a typi-
cal situation the “pushing” also incurs a price since it uses resources
such as electricity, fuel, etc. The problem of optimal control is to find
the feedback-based solution u = u(x) that minimizes the overall cost
functional, which finds a balance between the cost of resources and the
desire to achieve good performance. It turns out that the solution has
the form

u = −Kx,(47)

where K is a time-dependent linear operator which we will identify.
Usually K is expressed in the form K(t2 − t), i.e., as a function of the
“time-to-go” variable T = t2 − t. The most interesting case is that of
an infinite time horizon: t2 = ∞; in this case we look for a stationary
solution in which K is a constant matrix, called the gain matrix.

Note that the mapping that takes a pair (u, a) where u is the control
function and a is the initial condition x(t1) = a to the solution of (45)
is linear, and the cost functional (46) is a quadratic expression in x and
u. Thus this type of problem is referred to as Linear Quadratic Perfor-
mance (LQP) control. The main advantage of LQP control problems
is that they have an explicit solution in terms of an ordinary differen-
tial equation, the Ricatti equation, which furthermore is easy to solve
numerically.

3.6.1. The one dimensional LQP control problem. Since the problem
in this generality is somewhat complicated to analyze, to illustrate the
main ideas we will focus on a simple one-dimensional settting in which
m = n = 1, the differential equation becomes

ẋ = ax+ bu

for some constants a, b ∈ R, and the cost functional takes the form

I =

∫ t2

t1

(px2 + qu2) dt

for some numbers p, q > 0. Note that, for a given control rule, to
compute I all that one needs to know is the initial condition x(t1) and
the duration T = t2 − t1 over which the cost is integrated (that is,
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changing the left endpoint t1 of the interval [t1, t2] while keeping its
length fixed will not change the cost functional). Let I∗(w, T ) denote
the optimal control cost associated with an initial condition x(t1) = w
and an interval [t1, t2] of length T :

I∗(w, T ) = min
control rule u

∫ t1+T

t1

(px2 + qu2) dt (x(t1) = w).

In the derivation that follows, we assume that t2 <∞ and that I∗(w, T )
is a smooth function of w and T . Furthermore, it is not hard to see
due to the quadratic nature of I that the dependence of I∗(w, T ) on w
is also quadratic, i.e., we can write

I∗(w, T ) = v(T )w2

for some smooth function v(T ). The variable T = t2−t1 is nonnegative,
and for T = 0 we clearly have v(0) = 0.

Now, let δ be a small positive number. We separate the interval
[t1, t2] into the subintervals [t1, t1 + δ] and [t1 + δ, t2]. When optimal
control is used for the entire interval [t1, t2], in particular the control
rule for each subinterval is also optimal. Thus, we have the equation

I∗(w, T ) = I∗(w, δ) + I∗(z, T − δ),(48)

where z = x(t1 + δ) is the value obtained from the solution of the
optimal control problem with initial condition x(t1) = w for the interval
[t1, t1+δ]. When δ is small, we have the following linear approximations
in δ:

I∗(w, δ) = (pw2 + qu2
∗)δ +O(δ2),

z = w + ẋ(0)δ +O(δ)2 = w + (aw + bu∗)δ +O(δ2),
(49)

where u∗ is the value of the control variable at time t = t1 when optimal
control is used with initial condition x(t1) = w over the interval [t1, t2].
Note that like I∗, u∗ depends only on w and T = t2− t1. Furthermore,
by dimensional considerations, the dependence of u∗ on w is linear, so
we may write

u∗ = −k(T )w.

The scalar quantity k(T ) is a gain factor, analogous to the operator
K mentioned above in connection with the LQP control problem in
arbitrary dimension.
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Now, continuing (48), we may further expand all terms on the right-
hand side as linear approximations in δ:

I∗(w, T ) = I∗(w, δ) + I∗(z, T − δ)
= (pw2 + qu2

∗)δ

+ I∗(w, T ) +
∂I∗
∂w

(w, T )(z − w) +
∂I∗
∂T

(w, T )(−δ) +O(δ2)

= I∗(w, T ) + δ
[
(pw2 + qu2

∗) + 2wv(T )(aw + bu∗)− v′(T )w2
]

+O(δ2).

In the limit when δ ↓ 0 we therefore get that

(pw2 + qu2
∗) + 2wv(T )(aw + bu∗)− v′(T )w2 = 0,

or, substituting −k(T )w for u∗, we have the equation

w2
(
p+ qk2 + 2av(T )− 2bkv(T )− v′(T )

)
= 0,

where we write k instead of k(T ). Since w is arbitrary, we get the
relation

p+ qk2 + 2av(T )− 2bkv(T )− v′(T ) = 0.(50)

We still don’t know k (or equivalently, u∗); but now, recalling that u∗
was defined from the value of the control variable under optimal control,
we see that the left-hand side of (50), which is a quadratic polynomial
in k, must take its minimum at the correct value k = k(T ):

k = value of s for which qs2 − 2bv(T )s+ p− v′(T ) is minimized

=
bv(T )

q
.

(Recall that a quadratic polynomial a2s
2 + a1s + a0 has its extremum

point when s = −a1/2a2, as can be seen by equating its derivative
to 0).

Summarizing, we have found that the unknown gain function k(T )
is given by k(T ) = bv(T )/q, where v(T ), heretofore also unknown, is
the solution of the differential equation

v′(T ) = p+ 2av(T )− b2

q
v(T )2(51)

obtained by plugging the expression for k(T ) back into (50), with the
initial condition v(0) = 0. This is the Ricatti equation with constant
coefficients.
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3.6.2. The case of an infinite time horizon. The case t2 = ∞ can be
approached by letting T →∞ in the equation above. The solution v(T )
of the Ricatti equation should converge to a stationary point satisfying
v′(T ) = 0, so we get for this case that the limiting value v∞ of v(T )
must satisfy the quadratic equation

v2
∞ −

2aq

b2
v∞ −

pq

b2
= 0,

giving that

v∞ =
aq

b2

(
1±

√
1 +

pb2

qa2

)
.

Since we know that v∞ ≥ 0 and p, q > 0, it can be checked that the
correct choice of sign is:

v∞ =


aq
b2

(
1−

√
1 + pb2

qa2

)
if a < 0,

aq
b2

(
1 +

√
1 + pb2

qa2

)
if a > 0.

The optimal control gain k = k∞ is then given as before by k∞ = bv∞/q.
Note that the case a < 0 corresponds to a situation in which the object
is stable even in the absence of a control force, i.e., if we take u = 0.

3.6.3. Generalization to arbitrary dimension. By repeating the above
analysis in a careful manner for the general LQP problem in arbitrary
dimension discussed at the beginning of this section, one can derive
the solution for that general case. For the LQP problem with a fi-
nite horizon, the gain matrix K(T ) from (47) is expressed as a matrix
product

K(T ) = Q−1B>V (T ),

where V (T ) is a matrix related to the optimal cost function J∗(w, T )
(defined analogously to I∗(w, T )) by

J∗(w, T ) = w>V (T )w.

Furthermore, V satisfies the matrix differential equation (also referred
to as the Ricatti equation)

dV

dt
= P + A>V (T ) + V (T )A− V (T )BQ−1B>V (T )

with boundary condition V (0) = 0 (the zero matrix). For an infinite
time horizon, we again look for stationary solutions, which leads to the
algebraic Ricatti equation

P + A>V + V A− V BQ−1B>V = 0,
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x

force u

q

Figure 19. The inverted pendulum and cart.

which is a system of quadratic equations in the entries of V . The
(constant) gain matrix K is again given by

K = Q−1B>V.

While these equations may seem intimidating at first sight, they are
easy to solve numerically on a computer. Symbolic math software ap-
plications such as Mathematica even contain specialized packages for
control theory that make the process of deriving optimal LQP con-
trol rules highly automated and quite simple in practice, as the next
example demonstrates.

Example 35. The inverted pendulum with cart: LQP optimal control
with Mathematica.3 The controlled inverted pendulum with cart is a
dynamical system with 2 degrees of freedom θ = θ(t) (representing the
angle of the pendulum relative to the positive x-axis) and x = x(t)
(representing the displacement of the cart along the x-axis), satisfying
the equations of motion

4ẍ = θ̈ sin θ + θ̇2 cos θ + 2u,

0 = θ̈ + 2 cos θ − 2ẍ sin θ,

where u is the control variable representing a control force being applied
to the cart—see Figure 19.

3This example is based on a blog post written by Andrew Moylan on the website
of Wolfram Research (maker of the Mathematica software); see the link:
http://blog.wolfram.com/2011/01/19/stabilized-inverted-pendulum/ .

http://blog.wolfram.com/2011/01/19/stabilized-inverted-pendulum/
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The system can be thought of in the usual way as a system of
4 coupled first-order ODEs in the variables θ, θ̇, x, ẋ. The goal of
the control problem is to bring the system to a stable equilibrium at
(x, ẋ, θ, θ̇) = (0, 0, π/2, 0). In Mathematica, we type the following com-
mands:

In[1]= eqns =
{

2u[t] + Cos[θ[t]]θ′[t]2 + Sin[θ[t]]θ′′[t] == 4x′′[t],

2Cos[θ[t]]− 2Sin[θ[t]]x′′[t] + θ′′[t] == 0} ;

In[2]= model = StateSpaceModel
[
eqns,{

{x[t], 0}, {x′[t], 0},
{
θ[t],

π

2

}
, {θ′[t], 0}

}
, u[t], {}, t

]

Out[2]=


0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 4 0 2


S

The second command causes Mathematica to linearize the equations of
motion around the desired rest point. The output is an augmented ma-
trix of the form (A |B) where A,B are the two matrices in the resulting
linearized equation (45). This brings the problem to the familiar setup
of LQP optimal control which we discussed above. We now type:

In[3]= gains = LQRegulatorGains[N[model],

{DiagonalMatrix[{1, 10, 10, 100}], {{1}}}]//First

Out[3]= {−1.,−5.97415, 14.8452, 13.7966}
This asks Mathematica to compute the gain matrix K (in this case a
vector with 4 coordinates) associated with the cost functional (46) (in
the case t2 =∞ of an infinite time horizon), where the quadratic forms
P,Q are defined by

P =


1 0 0 0
0 10 0 0
0 0 100 0
0 0 0 1000

 , Q = (1).

Using the gain matrix computed by Mathematica, we see that the
solution to the optimal control problem we defined is given by the
feedback rule

u = −x− 5.97415 ẋ+ 14.8452 θ + 13.7966 θ̇.

End of Part 3
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