Solutions to midterm quiz #2 Math 119B UC Davis, Spring 2012

Question 1

(a) Prove that if A, B are commuting square matrices (i.e., matrices which satisfy AB = BA) then
exp(A + B) = exp(A) exp(B).

Solution.

exp(A + B) = Z l,(A + B)"
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(b) Compute et for the following matrices A:
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Solution. Diagonalizing A, we find that it has eigenvalues \;y = 2, Ao = 3, with corre-
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expressed as A = PDP~!, where
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Therefore, using standard properties of matrix exponentials, we have
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sponding eigenvectors v; = < ! ), vy = ( ! ) Equivalently, this means that A can be
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Solution. Observe that A> = —I. We can therefore write the power series expansion as

UC Davis, Spring 2012

tA t2 2 t3 3 t4 4

12 3 4 o
:I+tA+5(—I)+§(—A)+—!I+EA+...

2t S 3 P
. cost 0 0 sint
—cost-I+smt-A—< 0 cost>+(—sint 0 )

. cost sint
~ \ —sint cost



Solutions to midterm quiz #2 Math 119B UC Davis, Spring 2012

Question 2

Let T : [0,1] — [0, 1] be the interval map defined by
T(x)=1-—u.

(a) Sketch the graph of T" and of its second iteration 7o T

Solution. (T'oT)(z) = T(T(x)) =1 — (1 — x) = z (the identity function), so the graphs are
as follows:
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The graph of T The graph of T o T

(b) Identify all the fixed points of T" and all the k-cycles for k£ > 1.

Solution. The fixed points of T" are solutions of the equation x = 1 — x, which gives a unique
fixed point x = 1/2. Next, to find the 2-cycles, we solve the equation T o T'(x) = x. Since
T o T(x) = x, the solutions are all the numbers in [0,1]. So any x € [0, 1], except z = 1/2
(which is a fixed point, i.e., a 1-cycle) belongs to a 2-cycle (z,T(x)) = (z,1 — x).

Finally, observe that there are no k-cycles for any k > 2; the 1-cycles and 2-cycles already cover
all the numbers in [0, 1], so there are no remaining points to belong to a k-cycle for higher k.
An alternative explanation is that since T o T is the identity function id, it follows that all
subsequent iterates 7% of the map are either T itself (for odd k) or the identity function (for
even k):

T3 =(T*)oT =idoT =T,
T* =idoid = id,
TP =idoido T =T,

As a result, when we try to solve the equation T*(x) = z to find candidate members of a
k-cycle, we will find the same solutions as for T' (for odd k) or for id (for even k).



