Solutions to practice questions for the final

1. You are given the linear system of equations

 $\begin{cases} 2x_1 + 4x_2 + x_3 + x_4 = 8\\ x_1 + 2x_2 + x_3 &= 5\\ -x_1 - 2x_2 + x_3 - 2x_4 = -1\\ x_1 + 2x_2 &+ x_4 = 3 \end{cases}$

(a) Write an augmented matrix representing the system.

Solution.

(b) Find a reduced row echelon form (RREF) matrix that is row-equivalent to the augmented matrix.

Solution.

(1	2	0	1	3)	١
	0	0	1	-1	2	
	0	0	0	0	0	
	0	0	0	0	0	Ι

(c) Find the general solution of the system.

Solution.

$$\begin{pmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{pmatrix} = \begin{pmatrix} 3\\ 0\\ 2\\ 0 \end{pmatrix} + \lambda_1 \begin{pmatrix} -2\\ 1\\ 0\\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} -1\\ 0\\ 1\\ 1 \end{pmatrix}$$

(d) Write the homogeneous system of equations associated with the above (nonhomogeneous) system and find its general solution.

Solution. The homogeneous system is represented by the augmented matrix (2 - 2 - 4 - 1 - 1 + 0)

This is the same as the original system except that the rightmost column is the zero vector. The equivalent RREF is therefore

$$\left(\begin{array}{rrrrr} 1 & 2 & 0 & 1 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{array}\right)$$

and the general solution is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \lambda_1 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

$$0 \quad 0 \quad \rangle$$

2. Define $M = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & -1 \end{pmatrix}$.

(a) Find the inverse matrix of M using elementary row operations.

Solution.

$$M^{-1} = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 2 & -1 \end{array}\right)$$

- (b) Compute the adjoint matrix adj(M) using the definition of the adjoint matrix.
- (c) Compute $\det(M)$ and verify using the results of the above computations that $\operatorname{adj}(M) = \det(M)M^{-1}$.

Solution. det $(M) = 1 \cdot 1 \cdot (-1) = -1$, since M is a lower-triangular matrix.

3. Define
$$M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{pmatrix}$$
.

(a) Name an easily observable property of the matrix M that guarantees that it is diagonalizable.

Solution. M is a symmetric matrix.

(b) Compute the characteristic polynomial $P_M(\lambda)$ of M and find all its zeros.

Solution.

$$P_M(\lambda) = \det(\lambda I - M) = \det\begin{pmatrix}\lambda & 0 & 0\\ 0 & \lambda - 3 & 1\\ 0 & 1 & \lambda - 3\end{pmatrix} = \lambda[(\lambda - 3)^2 - 1]$$
$$= \lambda(\lambda^2 - 6\lambda + 8) = \lambda(\lambda - 2)(\lambda - 4)$$

The zeros of $P_M(\lambda)$ (which are the eigenvalues of M) are $\lambda_1 = 0, \lambda_2 = 2$ and $\lambda_3 = 4$.

(c) Find a basis of \mathbb{R}^3 consisting of eigenvectors of M.

Solution. A basis of eigenvectors corresponding to the eigenvalues λ_1, λ_2 and λ_3 is given by

$$v_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, v_2 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}, v_3 = \begin{pmatrix} 0\\1\\-1 \end{pmatrix}.$$

(d) Find a 3×3 invertible matrix P and a 3×3 diagonal matrix D such that $M = PDP^{-1}$.

Solution. The matrix P is constructed by putting the vectors v_1, v_2, v_3 in the columns of a matrix and the matrix D is the diagonal matrix having the eigenvalues $\lambda_1, \lambda_2, \lambda_3$ in the diagonal (they need to appear in the same order as the order of the eigenvectors in the columns of P). Thus:

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$$

4. (a) Let $\{u, v\}$ be an orthonormal basis for \mathbb{R}^2 . Let a, b be two real numbers such that $a^2 + b^2 = 1$. Show that the vectors $\{w, z\}$ given by

$$w = au + bv$$
$$z = -bu + av$$

also form an orthonormal basis for \mathbb{R}^2 .

Solution. Compute the dot products $w \cdot w$, $w \cdot z$ and $z \cdot z$, using the information that $u \cdot u = v \cdot v = 1$ and $u \cdot v = 0$:

$$\begin{split} w \cdot w &= (au + bv) \cdot (au + bv) \\ &= a^2(u \cdot u) + ab(u \cdot v) + ab(v \cdot u) + b^2(v \cdot v) = a^2 + b^2 = 1, \\ w \cdot z &= (au + bv) \cdot (-bu + av) \\ &= -ab(u \cdot u) + ab(v \cdot v) + a^2(u \cdot v) - b^2(u \cdot v) = -ab + ab = 0, \end{split}$$

and similarly $z \cdot z = 1$. So w, z are orthonormal. Note in particular that they are linearly independent (otherwise one is a scalar multiple of the other, in contradiction to the orthogonality), and since \mathbb{R}^2 is two-dimensional this implies that they are a basis.

(b) Define the linear subspace $U = \text{span}\{(1,1,1)\}$ of \mathbb{R}^3 . Find a basis for its orthogonal complement U^{\perp} .

Solution. U^{\perp} consists of all vectors (x, y, z) such that $(x, y, z) \cdot (1, 1, 1) = x + y + z = 0$. This is a "system" of one linear equation in three variables. Its solution set is found (using the standard method) to be

span{
$$v_1 = (1, -1, 0), v_2 = (1, 0, -1)$$
 }.

These two vectors are linearly independent so they form a basis for U^{\perp} .

(c) Find an *orthogonal* basis for the space U^{\perp} defined above.

Solution. Apply the Gram-Schmidt orthogonalization process to the vectors v_1, v_2 to get an orthogonal basis

$$u_1 = v_1 = (1, -1, 0),$$

$$u_2 = v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 = (1, 0, -1) - \frac{1}{2}(1, -1, 0) = (1/2, /2, -1).$$

5. (a) If u, v are two linearly independent vectors in a vector space V, prove that u + v, u - v are also linearly independent.

Solution. Denote p = u + v and q = u - v. If a, b are scalars such that ap + bq = 0, then

$$\underline{0} = a(u+v) + b(u-v) = (a+b)u + (a-b)v.$$

This is a linear combination of u and v that gives the zero vector. Since u, v are linearly independent this implies that the coefficients of the linear combination are both zero. So:

$$a+b=0, \qquad a-b=0$$

and this clearly implies (by considering the sum and the difference of the two equations) that a = b = 0, proving linear independence.

(b) If u_1, \ldots, u_k are vectors that span \mathbb{R}^5 , what are the possible values of k?

Solution. dim $(\mathbb{R}^5) = 5$, so a spanning set (which can be diluted to get a basis) must contain at least 5 vectors. Hence $k \geq 5$.

(c) If M is a 5×5 matrix such that the vectors

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

form a basis for the kernel $\ker(M)$, find the rank of M.

Solution. The data implies in particular that $\dim(\ker(M)) = 2$ (the nullity of M). By the dimension formula, $\dim(\ker(M)) + \operatorname{rank}(M) = 5$, so $\operatorname{rank}(M) = 3$.