Math 22A

Practice questions for the 2/16 midterm

1. (a) Define
$$A = \begin{pmatrix} 1 & 3 & -1 \\ 1 & 4 & -1 \\ -1 & -3 & 2 \end{pmatrix}$$
. Compute the inverse matrix of A .
(b) Find the solution $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ to the equation $Av = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$.

2. Compute the following determinants:

(a)
$$\det \begin{pmatrix} 1 & 2 \\ 3 & k \end{pmatrix}$$
 (c) $\det \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 4 & -2 \\ 0 & 0 & 3 & 1 & 0 \end{pmatrix}$

(b) det
$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & -2 \\ 3 & 1 & 0 \end{pmatrix}$$
 (d) det (A^3) where $A = \begin{pmatrix} 2 & 0 & 0 \\ 13 & 2 & 0 \\ -19 & 1001 & -1 \end{pmatrix}$

3. Let σ be the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 6 & 5 & 4 \end{pmatrix}$ of order 6.

- (a) Find the sign $sgn(\sigma)$ of the permutation. Explain your answer a guess with no explanation is not a valid answer.
- (b) Find the inverse permutation σ^{-1} .
- 4. Let M be a 4×4 matrix. Let N be the matrix obtained from M by performing the following sequence of elementary row operations:
 - 1. Swap rows 2, 3.
 - 2. Multiply row 2 by 2.
 - 3. Add row 2 to row 1.
 - (a) If det(M) = 5, find det(N).
 - (b) Find a 4×4 matrix A such that N = AM.

5. Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation given by L(v) = Av, where $A = \begin{pmatrix} -10 & -6 \\ 18 & 11 \end{pmatrix}$. Find the two eigenvalues λ_1, λ_2 of A and for each eigenvector find an associated eigenvector.