
Homework Assignment #2 Math 235B UC Davis, Winter 2012

Homework due: Tuesday 2/21/12

Problems

1. Recall that if X1, X2, . . . is a sequence of random variables, an event A is called a tail event
for the sequence (Xn)n if for any n ≥ 1, A ∈ σ(Xn+1, Xn+2, . . .) (i.e., the question of whether
A occurred depends on the entire sequence but does not depend on any fixed initial number of
terms in the sequence). Kolmogorov’s 0-1 law is the famous result we proved last quarter
that says that if the random variables X1, X2, . . . are independent, then the probability of any
tail event is 0 or 1.

Use Lévy’s 0-1 law (see Theorem 3.25 in the lecture notes) to give a new proof of Kolmogorov’s
0-1 law.

2. Compute the probability pextinction that a Galton-Watson process will become extinct if the
distribution of the number of descendants is p0 = 1/8, p1 = 3/8, p2 = 3/8, p3 = 1/8. (Note
that in the genealogical tree interpretation of the process, this distribution corresponds to the
assumptions that each family has exactly 3 children, each child is male with probability 1/2,
and only males pass on the family name.)

3. Let 1 < p ≤ ∞, and let (Xi)i∈I be a family of random variables. Assume that the family is
bounded in Lp(Ω,F ,P), i.e., there exists some C > 0 such that ‖Xi‖p ≤ C for all i ∈ I.

(a) Prove that the family (Xi)i∈I is uniformly integrable.

(b) Give a counterexample demonstrating that the same assumption in the case p = 1 does
not imply uniform integrability.

4. In this problem we discuss a version of the optional stopping theorem, an important result
in martingale theory.

Recall that a stopping time (relative to a given filtration (Gn)∞n=0) is a random variable T :
Ω → N ∪ {∞} that has the property that for each n ≥ 0, the event {T ≤ n} is in Gn. Here,
we will consider only almost surely finite stopping times, i.e., we assume that P(T =∞) = 0.
If (Xn)∞n=0 is a martingale and T is a stopping time, the goal is to understand when is it true
that

E(XT ) = E(X0). (1)

Here XT represents the value of the martingale stopped at time T . This equality is a version
of the “you can’t beat the system” principle. (But it’s not always true — there are situations
when you can beat the system, see below.)

(a) Let (Sn)∞n=0 denote the simple symmetric random walk on Z, and let the stopping time
T be defined by T = inf{n ≥ 1 : Sn = 1}. We proved in class that T <∞ a.s. Does the
equation (1) above hold? If not, why would this be a poor method for a gambler to use a
gamble on a symmetric random walk as a guaranteed way of making money? (You might
want to read the next part of the question before attempting to answer this.)

(b) The formulation of the optional stopping theorem is as follows.

Theorem (Optional stopping theorem). Let (Xn)∞n=0 be a supermartingale, and let T be
an a.s. finite stopping time. If any of the following assumptions holds:
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(i) T is bounded (i.e., there is an M > 0 such that T ≤M);
(ii) The sequence Xn is uniformly bounded (i.e., there is an M > 0 such that |Xn| ≤M

for all n);
(iii) E(T ) <∞ and the martingale differences Xn+1 −Xn are uniformly bounded;
then XT is integrable and we have E(XT ) ≤ E(X0). If instead of a supermartingale we
assume (Xn)n is a martingale, then under the same conditions, the conclusion is that
E(XT ) = E(X0).

Prove the theorem, using the following hints for each of the conditions (i)–(iii).

Hint for (i). We showed in class that (XT∧n)∞n=0 is a supermartingale. Consider what
that means when n = M where M is the bound for T .

Hints for (ii) and (iii). Again consider the implications of (XT∧n)∞n=0 being a super-
martingale, this time when n→∞.

5. Use the optional stopping theorem formulated above to prove the following version of Wald’s
equation for random walks: if Sn =

∑n
k=1Xk is a random walk with i.i.d. steps satisfying

|Xn| ≤ M a.s. and mean value µ = E(X1), and T is a stopping time satisfying E(T ) < ∞,
then E(ST ) = µE(T ).

Notes. 1. The formula is still true if one assumes that E|X1| < ∞, without requiring that
the Xn be uniformly bounded — for the (easy) proof see Theorem 4.1.5 (pages 185–186) in
Durrett’s book.

2. Wald’s equation is frequently applied in a situation in which the stopping time T is actu-
ally independent of the random walk. (The theorem is still valid in that case, since we can
incorporate the additional randomness that goes into T into the filtration (Gn)∞n=1, defining
Gn = σ(X1, . . . , Xn, T ).) For example, if X1, X2, . . . is an i.i.d. sequence of Bernoulli(p) random
variables, and N ∼ Poisson(λ) is independent of the Xn’s, we can consider the sum

SN =
N∑

k=1

Xk

(a sum of a Poisson-random number of i.i.d. Bernoulli r.v.’s). This has the following intuitive
interpretation known as “Poisson splitting”: a stream of customers walk into a bank (say)
at random times, such that the number of customers who came in during a certain hour of
the day is a Poisson-distributed random variable N . Once at the bank, each customer either
turns left or right (since they need to do business with one of two departments). The choice of
whether to turn left or right is a Bernoulli variable with bias p, with each customer making the
choice independently of the others. The number of customers who went into the department
on the left is therefore represented by the random sum SN above. Wald’s equation gives the
unsurprising result that

E(SN ) = E(N)E(X1) = λp.

As a bonus problem, try showing that SN in fact has the Poisson distribution with mean λp,
that N − SN has the Poisson distribution with mean λ(1 − p), and that SN and N − SN are
independent of each other.
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