
Homework Assignment #4 Math 235B UC Davis, Winter 2012

Homework due: Monday 3/19/12 at noon. Submit by email or by bringing the HW
to my office, MSB 2218 (slide it under the door if I’m not there).

Problems

1. Prove that entropy is a concave function of probability vectors, i.e., satisfies the inequality

H(αp + (1− α)q) ≥ αH(p) + (1− α)H(q).

2. (a) Prove that the entropy of a geometric random variable X ∼ Geom(p) is given by the
formula

H(X) =
1

p
H(p, 1− p).

Can you think of an intuitive explanation for this identity? (See also problem 5 below
for a possible clue.)

(b) Show that H(X) for the above geometric r.v. maximizes the entropy H(Z) among all
random variables taking values in the positive integers and satisfying E(Z) = E(X).

Hint. Use Gibbs’s inequality.

3. (a) Let f : R → [0,∞) be a probability density function, and let g : R → [0,∞) be a sub-
probability density function, i.e., a nonnegative function satisfying

∫
g(x) dx ≤ 1. Prove

that

−
∫ ∞
−∞

f(x) log f(x) dx ≤ −
∫ ∞
−∞

f(x) log g(x) dx

(note that both sides of the inequality may be infinite).

(b) The quantity −
∫∞
−∞ f(x) log f(x) dx is a continuous version of the entropy of a proba-

bility distribution, and is denoted by H(f), or H(X) if X is a random variable such that
f = fX . (In this context, the convention is to use the natural logarithm rather than the
logarithm to base 2, since the entropy no longer has the meaning of measuring bits.)

Let X ∼ N(µ, σ2) be a normal r.v. with mean µ and variance σ2. In analogy with the
result of problem 2(b) above, prove that H(X) ≥ H(Z) for any absolutely continuous
random variable Z satisfying E(Z) = µ, V(Z) = σ2.

Note. The maximum entropy principle is a principle in statistics that says that
if one has partial information about a probability distribution, it is natural (in some
senses) to assume that the distribution is the one that has maximal entropy subject
to the known information. For example, given a distribution on d symbols with no
additional information, it makes sense to assume that it is the uniform distribution.
Problems 2(b) and 3(b) show that the geometric and normal distributions are both
natural entropy-maximizing distributions subject to simple constraints and therefore
are likely to appear in many applications—as they indeed do.

4. The goal of this problem is to show that any uniquely decodable code can be replaced by a
prefix code with the same word lengths. Let C = {w1, . . . , wd} ⊂ {0, 1}∗ = ∪∞m=1{0, 1}m be
a uniquely decodable code, with length(wj) = `j , j = 1, . . . , d.
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(a) Consider the polynomial G(x) =
∑d

j=1 x
`j . Explain why for each k ≥ 1, the coefficients

of the polynomial G(x)k give for each power xm the number of binary strings of length
m that can be formed by concatenating k words from the code C.

(b) Explain why this implies that for x > 0, G(x)k ≤
∑kL

i=1 2ixi, where L = max(`1, . . . , `d)
is the maximal length of a code word. Set x = 1/2 and let k → ∞ to deduce that the
word lengths `1, . . . , `d satisfy Kraft’s inequality

d∑
j=1

2−`j ≤ 1.

(c) Infer (no need to write this) using the converse to Kraft’s inequality that we proved in
class that a prefix code with word lengths `1, . . . , `d exists.

5. (Optional problem) Let p = (p1, . . . , pd) be a probability vector. A simulation method for the
discrete distribution p using unbiased coin tosses is a (possibly infinite) prefix code

C ⊂ {0, 1}∗,

together with a function f : C → {1, . . . , d}, such that for any 1 ≤ j ≤ d we have∑
w∈C : f(w)=j

2−length(w) = pj ,

(so, in particular,
∑

w∈C 2−length(w) =
∑

j pj = 1). The idea is that the code defines an
almost surely finite stopping time T on a sequence X1, X2, . . . of i.i.d. Bernoulli(1/2) random
variables by

T = min{k ≥ 1 : (X1, . . . , Xk) ∈ C},
and then the random variable Y = f((X1, . . . , XT )) (the output of the simulation) is dis-
tributed according to p.

Prove the following analogue of the noiseless coding theorem to simulations, which gives an
alternative interpretation of the meaning of entropy:

Theorem (Simulation theorem, Knuth-Yao 1976). (i) For any simulation method of p using
unbiased coin tosses, the expected stopping time (i.e., the average number of coin tosses needed
to simulate p) satisfies

E(T ) =
∑
w∈C

length(w)2−length(w) ≥ H(p).

(ii) It is possible to find a simulation method of p for which the expected stopping time satisfies

E(T ) ≤ H(p) + 2.

Note. If you don’t feel like figuring out the proof yourself, you can read about it in Section
5.11 of the book Elements of Information Theory, 2nd ed., by Cover and Thomas. A gen-
eralization of the theorem that deals with simulation of p that uses i.i.d. samples from an
arbitrary discrete distribution q, instead of unbiased coin tosses, is proved in my paper Sharp
entropy bounds for discrete statistical simulation.
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