
Homework Set No. 8 – Probability Theory (235A), Fall 2011

Due: 11/22/11

1. (a) Let X1, X2, . . . be a sequence of independent r.v.’s that are uniformly distributed

on {1, . . . , n}. Define

Tn = min{k : Xk = Xm for some m < k}.

If the Xj’s represent the birthdays of some sequence of people on a planet in which the

calendar year has n days, then Tn represents the number of people in the list who have to

declare their birthdays before two people are found to have the same birthday. Show that

P(Tn > k) =
k−1∏
m=1

(
1− m

n

)
, (k ≥ 2),

and use this to prove that
Tn√
n

=⇒ Fbirthday,

where Fbirthday is the distribution function defined by

Fbirthday(x) =

0 x < 0,

1− e−x2/2 x ≥ 0

(note: this is not the same as the normal distribution!)

(b) Take n = 365. Assuming that the approximation FTn/
√

n ≈ Fbirthday is good for such

a value of n, estimate what is the minimal number of students that have to be put into a

classroom so that the probability that two of them have the same birthday exceeds 50%.

(Ignore leap years, and assume for simplicity that birthdays are distributed uniformly

throughout the year; in practice this is not entirely true.)

2. Consider the following two-step experiment: First, we choose a uniform random vari-

able U ∼ U(0, 1). Then, conditioned on the event U = u, we perform a sequence of n coin

tosses with bias u, i.e., we have a sequence X1, X2, . . . , Xn such that conditioned on the

event U = u, the Xk’s are independent and have distribution Binom(1, u). (Note: without

this conditioning, the Xk’s are not independent!)
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Let Sn =
∑n

k=1Xk. Assume that we know that Sn = k, but don’t know the value

of U . What is our subjective estimate of the probability distribution of U given this

information? Show that the conditional distribution of U given that Sn = k is the beta

distribution Beta(k + 1, n− k + 1). In other words, show that

P(U ≤ x | Sn = k) =
1

B(k, n− k)

∫ x

0

uk(1− u)n−k du, (0 ≤ x ≤ 1).

Note: This problem has been whimsically suggested by Laplace in the 18th century as a way

to estimate the probability that the sun will rise tomorrow, given the knowledge that it has

risen in the last n days. (Of course, this assumes the unlikely theological scenario whereby

at the dawn of history, a U(0, 1) random number U was drawn, and that subsequently,

every day an independent experiment was performed with probability U of success, such

that if the experiment is successful then the sun rises.)

Hint: Use the following density version of the total probability formula: If A is an event

and X is a random variable with density fX , then

P(A) =

∫
R
fX(u)P(A | X = u) du.

Note that we have not defined what it means to condition on a 0-probability event (this is

a somewhat delicate subject that we will not discuss in this quarter) — but don’t worry

about it, it is possible to use the formula in computations anyway and get results.

3. Let Z1, Z2, . . . be a sequence of i.i.d. random variables with the standard normal N(0, 1)

distribution. For each n, define the random vector

Xn = (Xn,1, . . . , Xn,n) =
1

(
∑n

i=1 Z
2
i )

1/2
(Z1, . . . , Zn)

(a) The distribution of the random vector Xn is called the uniform distribution on the

(n− 1)-dimensional sphere Sn−1 = {x ∈ Rn : ||x|| = 1}. Explain why this makes intuitive

sense, and if possible explain rigorously what conditions this distribution satisfies that

justifies describing it by this name.

(b) Show that
√
nXn,1 =⇒ N(0, 1) as n→∞.

Hint. Use the law of large numbers.
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(c) (Optional) For each n ≥ 1, find the density function of the coordinate Xn,1.

Hint. Do it first for n = 2 and n = 3, and generalize using ideas from multivariate

calculus. For n = 3, you should find that X3,1 ∼ U [−1, 1], a geometric fact which was

known to Archimedes.

4. Compute the characteristic functions for the following distributions.

(a) Poisson distribution: X ∼ Poisson(λ).

(b) Geometric distribution: X ∼ Geom(p) (assume a geometric that starts at 1).

(c) Uniform distribution: X ∼ U [a, b], and in particular X ∼ [−1, 1] which is especially

symmetric and useful in applications.

(d) Exponential distribution: X ∼ Exp(λ).

(e) Symmetrized exponential: A r.v. Z with density function fZ(x) = 1
2
e−|x|. Note

that this is the distribution of the exponential distribution after being “symmetrized”

in either of two ways: (i) We showed that if X, Y ∼ Exp(1) are independent then X−Y
has density 1

2
e−|x|; (ii) alternatively, it is the distribution of an “exponential variable

with random sign”, namely ε ·X where X ∼ Exp(1) and ε is a random sign (same as

the coin flip distribution mentioned above) that is independent of X.
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