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Note to the reader. These notes are based to a large extent on Chapters 1–3 in the text-

book Probability: Theory and Examples, 4th Ed. by Rick Durrett. References to Durrett’s

book appear throughout the text as [Dur2010]. References to the earlier 3rd edition appear

as [Dur2004].
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Part I — Foundations

Chapter 1: Introduction

1.1 What is probability theory?

In this course we’ll learn about probability theory. But what exactly is probability theory?

Like some other mathematical fields (but unlike some others), it has a dual role:

• It is a rigorous mathematical theory – with definitions, lemmas, theorems, proofs

etc.

• It is a mathematical model that purports to explain or model real-life phenomena.

We will concentrate on the rigorous mathematical aspects, but we will try not to forget the

connections to the intuitive notion of real-life probability. These connections will enhance

our intuition, and they make probability an extremely useful tool in all the sciences. And

they make the study of probability much more fun, too! A note of caution is in order, though:

mathematical models are only as good as the assumptions they are based on. So probability

can be used, and it can be (and quite frequently is) abused...

Example 1.1. The theory of differential equations is another mathematical theory

which has the dual role of a rigorous theory and an applied mathematical model. On the

other hand, number theory, complex analysis and algebraic topology are examples

of fields which are not normally used to model real-life phenomena.

1.2 The algebra of events

A central notion in probability is that of the algebra of events (we’ll clarify later what

the word “algebra” means in this context). We begin with an informal discussion. We

imagine that probability is a function, denoted P, that takes as its argument an “event”

(i.e., occurrence of something in a real-life situation involving uncertainty) and returns a

real number in [0, 1] representing how likely this event is to occur. For example, if a fair coin
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is tossed 10 times and we denote the results of the tosses by X1, X2, . . . , X10 (where each of

Xi is 0 or 1, signifying “tails” or “heads”), then we can write statements like

P(Xi = 0) = 1/2, (1 ≤ i ≤ 10),

P

(
10∑
i=1

Xi = 4

)
=

(
10
4

)
210

.

Note that if A and B represent events (meaning, for the purposes of the present informal

discussion, objects that have a well-defined probability), then we expect that the phrases

“A did not occur”, “A and B both occurred” and “at least one of A and B occurred”

also represent events. We can use notation borrowed from mathematical logic and denote

these new events by ¬A, A ∨ B, and A ∧ B, respectively. Thus, the set of events is not

just a set – it is a set with some extra structure, namely the ability to perform negation,

conjunction and disjunction operations on its elements. Such a set is called an algebra

in some contexts.

But what if the coin is tossed an infinite number of times? In other words, we now

imagine an infinite sequence X1, X2, X3, . . . of (independent) coin toss results. We want to

be able to ask questions such as

P(infinitely many of the Xi’s are 0) = ?

P

(
lim
n→∞

1

n

n∑
k=0

Xk =
1

2

)
= ?

P

(
∞∑
k=0

2Xk − 1

k
converges

)
= ?

Do such questions make sense? (And if they do, can you guess what the answers are?)

Maybe it is not enough to have an informal discussion to answer this...

Example 1.2. (a) An urn initially contains a white ball and a black ball. A ball is drawn

out at random from the urn, then added back and another white ball is added to the urn.

This procedure is repeated infinitely many times, so that after step n the urn contains 1

black ball and n+ 1 white balls. For each n ≥ 1, let An denote the event that at step n the

black ball was drawn. Now let A∞ denote the event

A∞ = “in total, the black ball was selected infinitely many times”,
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(i.e., the event that infinitely many of the events An occurred).

(b) While this experiment takes place, an identical copy of the experiment is taking place in

the next room. The random selections in the two neighboring rooms have no connection to

each other, i.e., they are “independent”. For each n ≥ 1, let Bn be the event that at step n

the black ball was drawn out of the “copy” experiment urn. Now let B∞ denote the event

B∞ = “in total, the black ball was selected infinitely many times in

the second copy of the experiment”,

(in other words, the event that infinitely many of the events Bn occurred).

(c) For each n ≥ 1, let Cn be the event that both An and Bn occurred, i.e.

Cn = “at step n, the black ball was selected simultaneously

in both experiments”,

and let C∞ denote the event “Cn occurred for infinitely many values of n”.

Theorem 1.3. We have

P(A∞) = P(B∞) = 1, P(C∞) = 0.

Proof. These claims are consequences of the Borel-Cantelli lemmas which we will learn

about later in the course. Here is a sketch of the proof that P (C∞) = 0 (remember, this is

still an “informal discussion”, so our “proof” is really more of an exploration of what formal

assumptions are needed to make the claim hold). For each n we have

P(An) = P(Bn) =
1

n+ 1
,

since at time n each of the urns contains n + 1 balls, only one of which is black. Moreover,

the choices in both rooms are made independently, so we have

P(Cn) = P(An ∧Bn) = P(An)P(Bn) =
1

(n+ 1)2
.

It turns out that to prove that P(C∞) = 0, the only relevant bit of information is that the

infinite series
∑∞

n=1 P(Cn) is a convergent series; the precise values of the probabilities are
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irrelevant. Indeed, we can try to do various manipulations on the definition of the event C,

as follows:

C∞ = “infinitely many of the Cn’s occurred”

= “for all N ≥ 1, the event Cn occurred for some n ≥ N”.

For any N ≥ 1, denote the event “Cn occurred for some n ≥ N” by DN . Then

C∞ = “for all N ≥ 1, DN occurred”

= D1 ∧D2 ∧D3 ∧ . . . (infinite conjunction...?!)

=
∞∧
N=1

DN (shorthand notation for infinite conjunction).

In particular, in order for the event C∞ to happen, DN must happen for any fixed value of

N (for example, D100 must happen, D101 must happen, etc.). It follows that C∞ is at most

as likely to happen as any of the DN ’s; in other words we have

P(C) ≤ P(DN), (N ≥ 1).

Now, what can we say about P(DN)? Looking at the definition of DN , we see that it too

can be written as an infinite disjunction of events, namely

DN = CN ∨ CN+1 ∨ CN+2 ∨ . . . (infinite disjunction)

=
∞∨
n=N

Cn (shorthand for infinite disjunction).

If this were a finite disjunction, we could say that the likelihood for at least one of the

events to happen is at most the sum of the likelihoods (for example, the probability that it

will rain next weekend is at most the probability that it will rain next Saturday, plus the

probability that it will rain next Sunday; of course it might rain on both days, so the sum

of the probabilities can be strictly greater than the probability of the disjunction). What

can we say for an infinite disjunction? Since this is an informal discussion, it is impossible

to answer this without being more formal about the precise mathematical model and its

assumptions. As it turns out, the correct thing to do (in the sense that it leads to the most

interesting and natural mathematical theory) is to assume that this fact that holds for finite
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disjunctions also holds for infinite ones. Whether this has any relevance to real life is a

different question! If we make this assumption, we get for each N ≥ 1 the bound

P(DN) ≤
∞∑
n=N

P(Cn).

But now recall that the infinite series of probabilities
∑∞

n=1 P(Cn) converges. Therefore, for

any ε > 0, we can find an N for which the tail
∑∞

n=N P(Cn) of the series is less than ε. For

such an N , we get that P(DN) < ε, and therefore that P(C) < ε. This is true for any ε > 0,

so it follows that P(C) = 0.
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Chapter 2: Probability spaces

2.1 Basic definitions

We now formalize the concepts introduced in the previous lecture. It turns out that it’s

easiest to deal with events as subsets of a large set called the probability space, instead of as

abstract logical statements. The logical operations of negation, conjunction and disjunction

are replaced by the set-theoretic operations of taking the complement, intersection or union,

but the intuitive meaning attached to those operations is the same.

Definition 2.1 (Algebra). If Ω is a set, an algebra of subsets of Ω is a collection F of

subsets of Ω that satisfies the following axioms:

∅ ∈ F , (A1)

A ∈ F =⇒ Ω \ A ∈ F , (A2)

A,B ∈ F =⇒ A ∪B ∈ F . (A3)

A word synonymous with algebra in this context is field.

Definition 2.2 (σ-algebra). A σ-algebra (also called a σ-field) is an algebra F that sat-

isfies the additional axiom

A1, A2, A3, . . . ∈ F =⇒ ∪∞n=1An ∈ F . (A4)

Example 2.3. If Ω is any set, then {∅,Ω} is a σ-algebra – in fact it is the smallest possible

σ-algebra of subsets of Ω. Similarly, the power set P(Ω) of all subsets of Ω is a σ-algebra,

and is (obviously) the largest σ-algebra of subsets of Ω.

Definition 2.4 (Measurable space). A measurable space is a pair (Ω,F) where Ω is a

set and F is a σ-algebra of subsets of Ω.

Definition 2.5 (Probability measure). Given a measurable space (Ω,F), a probability

measure on (Ω,F) is a function P : F → [0, 1] that satisfies the properties:

P(∅) = 0, P(Ω) = 1, (P1)

A1, A2, . . . ∈ F are pairwise disjoint =⇒ P(∪∞n=1An) =
∞∑
n=1

P(An). (P2)
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Definition 2.6 (Probability space). A probability space is a triple (Ω,F ,P), where (Ω,F)

is a measurable space, and P is a probability measure on (Ω,F).

Intuitively, we think of Ω as representing the set of possible outcomes of a probabilistic

experiment, and refer to it as the sample space. The σ-algebra F is the σ-algebra of

events, namely those subsets of Ω which have a well-defined probability (as we shall see

later, it is not always possible to assign well-defined probabilities to all sets of outcomes).

And P is the “notion” or “measure” of probability on our sample space.

Probability theory can be described loosely as the study of probability spaces (this is of course

a gross oversimplification...). A more general mathematical theory called measure theory

studies measure spaces, which are like probability spaces except that the measures can take

values in [0,∞] instead of [0, 1], and the total measure of the space is not necessarily equal to

1 (such measures are referred to as σ-additive nonnegative measures). Measure theory is

an important and non-trivial theory, and studying it requires a separate concentrated effort.

We shall content ourselves with citing and using some of its most basic results. For proofs

and more details, refer to Chapter 1 and the measure theory appendix in [Dur2010] or to a

measure theory textbook.

2.2 Properties and examples

Lemma 2.7. If (Ω,F ,P) is a probability space, then we have:

(i) Monotonicity: If A,B ∈ F , A ⊂ B then P(A) ≤ P(B).

(ii) Sub-additivity: If A1, A2, . . . ∈ F then P(∪∞n=1An) ≤
∑∞

n=1 P(An).

(iii) Continuity from below: If A1, A2, . . . ∈ F such that A1 ⊂ A2 ⊂ A3 ⊂ . . ., then

P(∪∞n=1An) = lim
n→∞

P(An).

(iv) Continuity from above: If A1, A2, . . . ∈ F such that A1 ⊃ A2 ⊃ A3 ⊃ . . ., then

P(∩∞n=1An) = lim
n→∞

P(An).
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Exercise 2.8. Prove Lemma 2.7.

Example 2.9. Discrete probability spaces. Let Ω be a countable set and let p : Ω →
[0, 1] be a function such that ∑

ω∈Ω

p(ω) = 1.

This corresponds to the intuitive notion of a probabilistic experiment with a finite or count-

ably infinite number of outcomes, where each individual outcome ω has a probability p(ω) of

occurring. We can put such an “elementary” or “discrete” experiment in our more general

framework by defining the σ-algebra of events F to be the set of subsets of Ω, and defining

the probability measure P by

P(A) =
∑
ω∈A

p(ω), A ∈ F .

If Ω is a finite set, a natural probability measure to consider is the uniform measure,

defined by

P(A) =
|A|
|Ω|

.

Example 2.10. Choosing a random number uniformly in (0, 1). The archetypical

example of a “non-elementary” probability space (i.e., one which does not fall within the

scope of the previous example) is the experiment of choosing a random number uniformly

in the interval (0, 1). How do we know that it makes sense to speak of such an experiment?

We don’t, yet. But let us imagine what constructing such an experiment might entail. We

are looking for a hypothetical probability space (Ω,F ,P), in which the sample space Ω is

simply (0, 1), F is some σ-algebra of subsets of (0, 1), and P is a probability measure that

corresponds to our notion of a “uniform” choice of a random number. One plausible way to

formalize this is to require that intervals of the form (a, b) ⊂ (0, 1) be considered as events,

and that the probability for our “uniform” number to fall in such an interval should be equal

to its length b− a. In other words, we shall require that

(a, b) ∈ F , (0 ≤ a < b ≤ 1),

and that

P
(
(a, b)

)
= b− a, (0 ≤ a < b ≤ 1). (1)
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How do we generate a σ-algebra of subsets of (0, 1) that contains all the intervals? We

already saw that the set of all subsets of (0, 1) will work. But that is too large! If we take all

subsets, we will see in an exercise later that it will be impossible to construct the probability

measure P to satisfy our requirements. So let’s try to build the smallest possible σ-algebra.

One way (which can perhaps be described as the bottom-up approach) would be to start

with the intervals, then take all countable unions of such and add them to our collection of

sets, then add all countable intersections of such sets, then add all countable unions, etc.

Will this work? In principle it can be made to work, but is a bit difficult and requires

knowing something about transfinite induction. Fortunately there is a more elegant way

(but somewhat more abstract and less intuitive) of constructing the minimal σ-algebra, that

is outlined in the next exercise below, and can be thought of as the top-down approach.

The resulting σ-algebra of subsets of (0, 1) is called the Borel σ-algebra; its elements are

called Borel sets.

What about the probability measure P? Here we will simply cite a result from measure

theory that says that the measure we are looking for exists, and is unique. This is not too

difficult to prove, but doing so would take us a bit too far off course.

Theorem 2.11.. Let B be the σ-algebra of Borel sets on (0, 1), the minimal σ-algebra

containing all the sub-intervals of (0, 1), proved to exist in the exercise below. There exists a

unique measure P on the measure space satisfying (1), called Lebesgue measure on (0, 1).

Exercise 2.12 (The σ-algebra generated by a set of subsets of Ω). (i) Let Ω be a set, and let

{Fi}i∈I be some collection of σ-algebras of subsets of Ω, indexed by some index set I. Prove

that the intersection of all the Fi’s (i.e., the collection of subsets of Ω that are elements of

all the Fi’s) is also a σ-algebra.

(ii) Let Ω be a set, and let A be a collection of subsets of Ω. Prove that there exists a unique

σ-algebra σ(A) of subsets of Ω that satisfies the following two properties:

1. A ⊂ σ(A) (in words, σ(A) contains all the elements of A).

2. σ(A) is the minimal σ-algebra satisfying property 1 above, in the sense that if F is any

other σ-algebra that contains all the elements of A, then σ(A) ⊂ F .
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Hint for (ii): Let (Fi)i∈I be the collection of all σ-algebras of subsets of Ω that contain A.

This is a non-empty collection, since it contains for example P(Ω), the set of all subsets of

Ω. Any σ-algebra σ(A) that satisfies the two properties above is necessarily a subset of any

of the Fi’s, hence it is also contained in the intersection of all the Fi’s, which is a σ-algebra

by part (i) of the exercise.

Definition 2.13. If A is a collection of subsets of a set Ω, the σ-algebra σ(A) discussed

above is called the σ-algebra generated by A.

Example 2.14. The space of infinite coin toss sequences. Another archetypical

experiment in probability theory is that of a sequence of independent fair coin tosses, so

let’s try to model this experiment with a suitable probability space. If for convenience we

represent the result of each coin as a binary value of 0 or 1, then the sample space Ω is

simply the set of infinite sequences of 0’s and 1’s, namely

Ω =
{

(x1, x2, x3, . . .) : xi ∈ {0, 1}, i = 1, 2, . . .
}

= {0, 1}N.

What about the σ-algebra F? We will take the same approach as we did in the previous

example, which is to require certain natural sets to be events, and to take as our σ-algebra

the σ-algebra generated by these “elementary” events. In this case, surely, for each n ≥ 1,

we would like the set

An(1) := {x = (x1, x2, . . .) ∈ Ω : xn = 1} (2)

to be an event (in words, this represents the event “the coin toss xn came out Heads”).

Therefore we take F to be the σ-algebra generated by the collection of sets of this form.

Finally, the probability measure P should conform to our notion of a sequence of inde-

pendent fair coin tosses. Generalizing the notation in (2), for a ∈ {0, 1} define

An(a) = {x = (x1, x2, . . .) ∈ Ω : xn = a}.

Then P should satisfy

P(An(a)) =
1

2
,

representing the fact that the n-th coin toss is unbiased. But more generally, for any n ≥ 1

and (a1, a2, . . . , an) ∈ {0, 1}n, since the first n coin tosses are independent, P should satisfy

P
(
A1(a1) ∩ A2(a2) ∩ . . . ∩ An(an)

)
=

1

2n
. (3)
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As in the example of Lebesgue measure discussed above, the fact that a probability measure

P on (Ω,F) that satisfies (3) exists and is unique follows from some slightly non-trivial

facts from measure theory, and we will take it on faith for the time being. Below we quote

the relevant theorem from measure theory, which generalizes the setting discussed in this

example to the more general situation of a product of probability spaces.

Theorem 2.15 (Products of probability spaces). Let
(
(Ωn,Fn,Pn)

)∞
n=1

be a sequence of

probability spaces. Denote Ω =
∏∞

n=1 Ωn (the cartesian product of the outcome sets), and let

F be the σ-algbera of subsets of Ω generated by sets which are of the form

{(x1, x2, . . .) ∈ Ω : xn ∈ A}

for some n ≥ 1 and set A ∈ Fn. Then there exists a unique probability measure P on (Ω,F)

such that for any n ≥ 1 and any finite sequence

(A1, A2, . . . , An) ∈ F1 ×F2 × . . .×Fn

the equation

P
({

(x1, x2, . . .) ∈ Ω : x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An
})

=
n∏
k=1

Pk(Ak)

holds.

Exercise 2.16. Explain why the “infinite sequence of coin tosses” experiment is a special

case of a product of probability spaces, and why the existence and uniqueness of a probability

measure satisfying (3) follows from Theorem 2.15.

In an upcoming homework exercise we will show an alternative way of proving the ex-

istence of the probability space of infinite coin toss sequences using Lebesgue measure on

(0, 1).
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Chapter 3: Random variables

3.1 Random variables and their distributions

As we have seen, a probability space is an abstract concept that represents our intuitive

notion of a probabilistic experiment. Such an experiment however can be very long (even

infinite) and contain a lot of information. To make things more manageable, we consider

numerical-valued functions on probability spaces, which we call random variables. How-

ever, not any function will do: a random variable has to relate in a nice way to the measurable

space structure, so that we will be able to ask questions like “what is the probability that this

random variable takes a value less than 8”, etc. This leads us to the following definitions.

Definition 3.1. If (Ω1,F1) and (Ω2,F2) are two measurable spaces, a function X : Ω1 → Ω2

is called measurable if for any set E ∈ F2, the set

X−1(E) = {ω ∈ Ω1 : X(ω) ∈ E}

is in F1.

Definition 3.2. If (Ω,F ,P) is a probability space, a real-valued function X : Ω → R is

called a random variable if it is a measurable function when considered as a function from

the measurable space (Ω,F) to the measurable space (R,B), where B is the Borel σ-algebra

on R, namely the σ-algebra generated by the intervals.

Exercise 3.3. Let (Ω1,F1) and (Ω2,F2) be two measurable spaces such that F2 is the σ-

algebra generated by a collection A of subsets of Ω2. Prove that a function X : Ω1 → Ω2 is

measurable if and only if X−1(A) ∈ F1 for all A ∈ A.

It follows that the random variables are exactly those real-valued functions on Ω for

which the question

“What is the probability that a < X < b?”

has a well-defined answer for all a < b. This observation makes it easier in practice to check

if a given function is a random variable or not, since working with intervals is much easier

than with the rather unwieldy (and mysterious, until you get used to them) Borel sets.
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What can we say about the behavior of a random variable X defined on a probability

space (Ω,F ,P)? All the information is contained in a new probability measure µX on the

measurable space (R,B) that is induced by X, defined by

µX(A) = P(X−1(A)) = P(ω ∈ Ω : X(ω) ∈ A).

The number µX(A) is the probability that X “falls in A” (or “takes its value in A”).

Exercise 3.4. Verify that µX is a probability measure on (R,B). This measure is called

the distribution of X, or sometimes referred to more fancifully as the law of X. In some

textbooks it is denoted LX .

Definition 3.5. If X and Y are two random variables (possibly defined on different probabil-

ity spaces), we say that X and Y are identically distributed (or equal in distribution)

if µX = µY (meaning that µX(A) = µY (A) for any Borel set A ⊂ R). We denote this

X
d
= Y.

How can we check if two random variables are identically distributed? Once again,

working with Borel sets can be difficult, but since the Borel sets are generated by the intervals,

a simpler criterion involving just this generating family of sets exists. The following lemma

is a consequence of basic facts in measure theory, which can be found in the Measure Theory

appendix in [Dur2010].

Lemma 3.6. Two probability measures µ1, µ2 on the measurable space (R,B) are equal if

only if they are equal on the generating set of intervals, namely if

µ1

(
(a, b)

)
= µ2

(
(a, b)

)
for all −∞ ≤ a < b <∞.

3.2 Distribution functions

Instead of working with distributions of random variables (which are probability measure on

the measurable space (R,B) and themselves quite unwieldy objects), we will encode them in

a simpler object called a distribution function (sometimes referred to as a cumulative

distribution function, or c.d.f.).
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Definition 3.7. The cumulative distribution function (or c.d.f., or just distribution

function) of a random variable X defined on a probability space (Ω,F ,P) is the function

FX : R→ [0, 1] defined by

FX(x) = P(X ≤ x) = P(X−1((−∞, x])) = P({ω ∈ Ω : X(ω) ≤ x}), (x ∈ R).

Note that we have introduced here a useful notational device that will be used again

many times in the following sections: if A is a Borel set, we will often write {X ∈ A} as

shorthand for the set {ω ∈ Ω : X(ω) ∈ A}. In words, we may refer to this as “the event that

X falls in A”. When discussing its probability, we may omit the curly braces and simply

write P (X ∈ A). Of course, one should always remember that on the formal level this is

just the set-theoretic inverse image of a set by a function!

Theorem 3.8 (Properties of distribution functions). If F = FX is a distribution function,

then it has the following properties:

(i) F is nondecreasing.

(ii) limx→∞ F (x) = 1, limx→−∞ F (x) = 0.

(iii) F is right-continuous, i.e., F (x+) := limy↓x F (y) = F (x).

(iv) F (x−) := limy↑x F (y) = P(X < x).

(v) P(X = x) = F (x)− F (x−).

(vi) If G = FY is another distribution function of a random variable Y , then X and Y are

equal in distribution if and only if F ≡ G.

Proof. Exercise (recommended), or see page 9 of [Dur2010].

Definition 3.9. A function F : R → [0, 1] satisfying properties (i)–(iii) in the previous

theorem is called a cumulative distribution function, or just distribution function.

Theorem 3.10. If F is a distribution function, then there exists a random variable X such

that F = FX .
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This fact has a measure-theoretic proof similar to the proof of Theorem 2.11, but fortu-

nately in this case, there is a more probabilistic proof that relies only on the existence of

Lebesgue measure. (This is one of many examples of probabilistic ideas turning out to be

useful to prove facts in analysis and measure theory). This involves the probabilistic concept

of a quantile, (a generalization of the concepts of percentile and median that we frequently

hear about in news reports).

Definition 3.11. If X is a random variable on a probability space (Ω,F ,P) and 0 < p < 1

is a number, then a real number x is called a p-quantile of X if the inequalities

P(X ≤ x) ≥ p,

P(X ≥ x) ≥ 1− p

hold.

Note that the question of whether t is a p-quantile of X can be answered just by knowing

the distribution function FX of X: since P(X ≤ x) = FX(x) and P(X ≥ x) = 1 − F (x−),

we can write the conditions above as

FX(x−) ≤ p ≤ FX(x).

Lemma 3.12. A p-quantile for X always exists. Moreover, the set of p-quantiles of X is

equal to the (possibly degenerate) closed interval [ap, bp], where

ap = sup{x : FX(x) < p},

bp = inf{x : FX(x) > p}.

Exercise 3.13. Prove Lemma 3.12.

Proof of Theorem 3.10. Let ((0, 1),B,P) be the unit interval with Lebesgue measure, repre-

senting the experiment of drawing a uniform random number in (0, 1). We shall construct

our random variable X on this space. Inspired by the discussion of quantiles above, we define

X(p) = sup{y : F (y) < p}, (0 < p < 1).
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If F were the distribution function of a random variable, then X(p) would be its (minimal)

p-quantile.

Note that properties (i) and (ii) of F imply that X(p) is defined and finite for any p and

that it is a monotone nondecreasing function on (0, 1). In particular, it is measurable, so it

is in fact a random variable on the probability space ((0, 1),B,P). We need to show that F

is its distribution function. We will show that for each p ∈ (0, 1) and x ∈ R, we have that

X(p) ≤ x if and only if p ≤ F (x). This will imply that for every x ∈ R we have the equality

of sets

{p : X(p) ≤ x} = {p : p ≤ F (x)},

and, applying P to both sides of this equation we will get

FX(x) = P(X ≤ x) = P
(
p : p ≤ F (x)

)
= P

(
(0, F (x)]

)
= F (x)

(since P is Lebesgue measure).

To prove the claim, note that if p ≤ F (x) then all elements of the set {y : F (y) < p} satisfy

y ≤ x, and therefore the supremum X(p) of this set also satisfies X(p) ≤ x. Conversely, if

p > F (x), then, since F is right-continuous, we have p > F (x+ ε) for some ε > 0. It follows

that X(p) ≥ x+ ε > x (since x+ ε is in the set {y : F (y) < p}).

The function X defined in the proof above is sometimes referred to as the (lower) quantile

function of the distribution F . Note that if F is a strictly increasing function then X is simply

its ordinary (set-theoretic) inverse function.

3.3 Examples

Example 3.14. Indicator random variables If A is an event in a probability space

(Ω,F ,P), its indicator random variable is the r.v. 1A defined by

1A(ω) =

0 ω /∈ A,

1 ω ∈ A.

The above discussion shows that to specify the behavior of a random variable, it is enough

to specify its distribution function. Another useful concept is that of a density function.
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If F = FX is a distribution function such that for some nonnegative function f : R→ R we

have

F (x) =

∫ x

−∞
f(y) dy, (y ∈ R), (4)

then we say that X has a density function f . Note that f determines F but is itself only

determined by F up to “small” changes that do not affect the integral in (4) (in measure-

theoretic terminology we say that f is determined “up to a set of measure 0”). For example,

changing the valuef in a finite number of points results in a density function that is equally

valid for computing F .

Example 3.15. Uniform random variables. We say that X is a uniform random

variable on (0, 1) if it has the distribution function

F (x) =


0 x ≤ 0,

x 0 ≤ x ≤ 1,

1 x ≥ 1.

Such a r.v. has as its density function the function

f(x) =

1 0 ≤ x ≤ 1,

0 otherwise.

More generally, if a < b we say that X is a uniform random variable in the interval

(a, b) if it has the (respective) distribution and density functions

F (x) =


0 x ≤ a,

x−a
b−a a ≤ x ≤ b,

1 x ≥ b,

f(x) =

 1
b−a a ≤ x ≤ b,

0 otherwise.

Example 3.16. Exponential distribution.

F (x) =

0 x ≤ 0

1− e−x x ≥ 0,
f(x) =

0 x < 0

e−x x ≥ 0.
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Example 3.17. Standard normal distribution. The normal (or gaussian) distribution

is given in terms of its density function

f(x) =
1√
2π
e−x

2/2.

The cumulative distribution function is denoted by

Φ(x) =
1√
2π

∫ x

−∞
e−y

2/2dy.

This integral cannot be evaluated explicitly in terms of more familiar functions, but Φ is an

important special function of mathematics nonetheless.
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Chapter 4: Random vectors and independence

4.1 Random vectors

A random variable is a real-valued measurable function defined on a probability space

(Ω,F ,P) (when we talk of R as a measurable space, it will always be taken to mean with

the σ-algebra of Borel sets). Similarly, we now wish to talk about vector -valued measurable

functions on a probability space, i.e., functions taking values in Rd. First, we need to iden-

tify a good σ-algebra of subsets of Rd. Risking some confusion, we will still call it the Borel

σ-algebra and denote it by B, or sometimes by B(Rd).

Definition 4.1. The Borel σ-algebra on Rd is defined in one of the following equivalent

ways:

(i) It is the σ-algebra generated by boxes of the form

(a1, b1)× (a2, b2)× . . .× (ad, bd).

(ii) It is the σ-algebra generated by the balls in Rd.

(iii) It is the σ-algebra generated by the open sets in Rd.

(iv) It is the minimal σ-algebra of subsets of Rd such that the coordinate functions πi :

Rd → R defined by

πi(x) = xi, i = 1, 2, . . . , d

are all measurable (where measurability is respect to the Borel σ-algebra on the target

space R).

Exercise 4.2. Check that the definitions above are indeed all equivalent.

Definition 4.3. A random (d-dimensional) vector (or vector random variable)

X = (X1, X2, . . . , Xd) on a probability space (Ω,F ,P) is a function X : Ω → Rd that is

measurable (as a function between the measurable spaces (Ω,F) and (Rd,B).

Lemma 4.4. X = (X1, . . . , Xd) is a random vector if and only if Xi is a random variable

for each i = 1, . . . , d.
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Proof. If X is a random vector then each of its coordinates Xi = πi ◦X is a composition of

two measurable functions and therefore (check!) measurable. Conversely, if X1, . . . , Xd are

random variables then for any box E = (a1, b1)× (a2, b2)× . . .× (ad, bd) ⊂ Rd we have

X−1(E) = ∩dk=1X
−1
i ((ai, bi)) ∈ F .

Therefore by Definition 4.1 and Exercise 3.3, X is a random vector.

Exercise 4.5. (i) Prove that any continuous function f : Rm → Rn is measurable (when

each of the spaces is equipped with the respective Borel σ-algebra).

(ii) Prove that the composition g ◦ f of measurable functions f : (Ω1,F1) → (Ω2,F2) and

g : (Ω2,F2)→ (Ω3,F3) (where (Ωi,Fi) are measurable spaces for i = 1, 2, 3) is a measurable

function.

(iii) Deduce that the sum X1 + . . .+Xd of random variables is a random variable.

Exercise 4.6. Prove that if X1, X2, . . . is a sequence of random variables (all defined on the

same probability space, then the functions

inf
n
Xn, sup

n
Xn, lim sup

n
Xn, lim inf

n
Xn

are all random variables. Note: Part of the question is to generalize the notion of random

variable to a function taking values in R = R ∪ {−∞,+∞}, or you can solve it first with

the additional assumption that all the Xi’s are uniformly bounded by some constant M .

4.2 Multi-dimensional distribution functions

If X = (X1, . . . , Xd) is a d-dimensional random vector, we define its distribution to be the

probability measure

µX(A) = P(X−1(A)) = P(ω ∈ Ω : X(ω) ∈ A), A ∈ B(Rd),

similarly to the one-dimensional case. The measure µX is also called the joint distribution

(or joint law) of the random variables X1, . . . , Xd.

Once again, to avoid having to work with measures, we introduce the concept of a d-

dimensional distribution function.
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Definition 4.7. The d-dimensional distribution function of a d-dimensional random vector

X = (X1, . . . , Xd) (also called the joint distribution function of X1, . . . , Xd) is the function

FX : Rd → [0, 1] defined by

FX(x1, x2, . . . , xd) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd)

= µX

(
(−∞, x1]× (−∞, x2]× . . .× (−∞, xd]

)
Theorem 4.8 (Properties of distribution functions). If F = FX is a distribution function

of a d-dimensional random vector, then it has the following properties:

(i) F is nondecreasing in each coordinate.

(ii) For any 1 ≤ i ≤ d, limxi→−∞ F (x) = 0.

(iii) limx→(∞,...,∞) F (x) = 1.

(iv) F is right-continuous, i.e., F (x+) := limy↓x F (y) = F (x), where here y ↓ x means

that yi ↓ xi in each coordinate.

(v) For 1 ≤ i ≤ d and a < b, denote by ∆x
a,b the differencing operator in the variable x,

which takes a function f of the real variable x (and possibly also dependent on other

variables) and returns the value

∆x
a,bf = f(b)− f(a)

Then, for any real numbers a1 < b1, a2 < b2, . . . , ad < bd, we have

∆x1
a1,b1

∆x2
ad,bd

. . .∆xd
ad,bd

F ≥ 0.

Proof. See Chapter 1 in [Dur2010] or Appendix A.2 in [Dur2004].

Theorem 4.9. Any function F satisfying the properties in Theorem 4.8 above is a distribu-

tion function of some random vector X.

Proof. See Chapter 1 in [Dur2010] or Appendix A.2 in [Dur2004].
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4.3 Independence

Definition 4.10. Events A,B ∈ F in a probability space (Ω,F ,P) are called independent if

P(A ∩B) = P(A)P(B).

More generally, a family A = (Ai)i∈I of events in a probability space (Ω,F ,P) is called

an independent family if for any finite subset Ai1 , Ai1 , . . . , Aik ∈ A of distinct events in the

family we have that

P(Ai1 ∩ Ai2 ∩ . . . ∩ Aik) =
k∏
j=1

P(Aij).

Definition 4.11. Random variables X, Y on a probability space (Ω,F ,P) are called inde-

pendent if

P(X ∈ E, Y ∈ F ) = P(X ∈ E)P(Y ∈ F )

for any Borel sets E,F ⊂ R. In other words any two events representing possible statements

about the behaviors of X and Y are independent events.

Definition 4.12. If Ω is a set and X : Ω → R is a function, the family of subsets of Ω

defined by

σ(X) =
{
X−1(A) : A ∈ B(R)

}
is a σ-algebra (check!) called the σ-algebra generated by X. It is easy to check that it is

the minimal σ-algebra with which Ω can be equipped so as to make X into a random variable.

Definition 4.13. If (Ω,F ,P) is a probability space, two σ-algebras A,B ⊂ F are called

independent if any two events A ∈ A, B ∈ B are independent events.

It follows from the above definitions that r.v.’s X, Y are independent if and only if the

σ-algebras σ(X), σ(Y ) generated by them are independent σ-algebras.

Definition 4.14. If (Ω,F ,P) is a probability space(F and (Fi)i∈I is some family of sub-σ-

algebras of F (i.e., σ-algebras that are subsets of F , we say that (Fi)i∈I is an independent

family of σ-algebras if for any i1, i2, . . . ik ∈ I and events A1 ∈ Fi1 , A2 ∈ Fi2 , . . . , Ak ∈ Fik ,

the events A1, . . . , Ak are independent.
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Definition 4.15. A family (Xi)i∈I of random variables defined on some common probability

space (Ω,F ,P) is called an independent family of random variables if the σ-algebras

{σ(Xi)}i∈I form an independent family of σ-algebras.

Unraveling these somewhat abstract definitions, we see that (Xi)i∈I is an independent

family of r.v.’s if and only if we have

P(Xi1 ∈ A1, . . . Xik ∈ Ak) =
k∏
j=1

P(Xij ∈ Aj)

for all indices i1, . . . , ik ∈ I and Borel sets A1, . . . , Ak ∈ B(R).

Theorem 4.16. If (Fi)i∈I are a family of sub-σ-algebras of the σ-algebra of events F in

a probability space, and for each i ∈ I, the σ-algebra Fi is generated by a family Ai of

subsets of Ω, and each family Ai is closed under taking the intersection of two sets (such a

family is called a π-system), then the family (Fi)i∈I is independent if and only if for each

i1, . . . , ik ∈ I, any finite sequence of events A1 ∈ Ai1 , A2 ∈ Ai2 , . . . , Ak ∈ Aik is independent.

Proof. This uses Dynkin’s π − λ theorem from measure theory. See [Dur2010], Theorem

2.1.3, p. 39 or [Dur2004], Theorem (4.2), p. 24.

As a corollary, we get a convenient criterion for checking when the coordinates of a

random vector are independent.

Lemma 4.17. If X1, . . . , Xd are random variables defined on a common probability space,

then they are independent if and only if for all x1, . . . , xd ∈ R we have that

FX1,...,Xd(x1, . . . , xd) = FX1(x1)FX2(x2) . . . FXd(xd).

Exercise 4.18. (i) We say that a Riemann-integrable function f : Rd → [0,∞) is a (d-

dimensional, or joint) density function for a random vector X = (X1, . . . , Xd) if

FX(x1, . . . , xd) =

∫ x1

−∞

∫ x2

−∞
. . .

∫ xd

−∞
f(u1, . . . , ud) dxd . . . dx1 ∀x1, . . . , xd ∈ R.

Show that if f is a density for X and can be written in the form

f(x1, . . . , xd) = f1(x1)f2(x2) . . . fd(xd),
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then X1, . . . , Xd are independent.

(ii) Show that if X1, . . . , Xd are random variables taking values in a countable set S, then in

order for X1, . . . , Xd to be independent it is enough that for all x1, . . . , xd ∈ S we have

P(X1 = x1, . . . , Xd = xd) = P(X1 = x1) . . .P(Xd = xd).
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Chapter 5: The Borel-Cantelli lemmas

Let (Ω,F ,P) be a probability space, and let A1, A2, A3, . . . ∈ F be a sequence of events. We

define the following events derived from the sequence (An)n:

lim supAn =
∞⋂
N=1

∞⋃
n=N

An,

lim inf An =
∞⋃
N=1

∞⋂
n=N

An.

What is the meaning of these events? If we think of the sequence An as representing a

sequence of (not necessarily independent) probabilistic experiments, then we can translate

the first event into words as

lim supAn = “the event that for all N ≥ 1 there is an n ≥ N such

that An occurred”

= “the event that infinitely many of the An’s occurred”.

For this reason, the event lim supAn is often denoted by {An infinitely often} or {An i.o.}.
The definition of the event lim inf An can similarly be given meaning by writing

lim inf An = “the event that there exists an N ≥ 1 such that An

occurred for all n ≥ N”

= “the event that all but finitely many of the An’s occurred”.

Exercise 5.1. Prove that for any ω ∈ Ω we have

1lim supAn(ω) = lim sup
n→∞

1An(ω),

1lim inf An(ω) = lim inf
n→∞

1An(ω).

Theorem 5.2 (Borel-Cantelli lemmas).

(i) If
∑∞

n=1 P(An) <∞ then P(An i.o.) = 0.

(ii) If
∑∞

n=1 P(An) =∞ and (An)∞n=1 are independent then P(An i.o.) = 1.
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Proof. We essentially already proved part (i) in the first lecture, but here is a more general

repetition of the same argument.

P(An i.o.) = P

(
∞⋂
N=1

∞⋃
n=N

An

)
≤ inf

N≥1
P

(
∞⋃
n=N

An

)
≤ inf

N≥1

∞∑
n=N

P(An).

Since we assumed that
∑∞

n=1 P(An), converges, this last expression is equal to 0.

Proof of (ii): Consider the complementary event that the An’s did not occur for infinitely

many values of n. Using De-Morgan’s laws, we get

P({An i.o.}c) = P

((
∞⋂
N=1

∞⋃
n=N

An

)c)
= P

(
∞⋃
N=1

∞⋂
n=N

Acn

)

≤
∞∑
N=1

P

(
∞⋂
n=N

Acn

)
.

So, to show that this is 0 (under the assumptions that
∑∞

n=1 P(An) = ∞ and that the

events are independent), we show that P (∩∞n=NA
c
n) = 0 for all N ≥ 1. Since the events

are independent, the probability of the intersection is the product of the probabilities, so we

need to show that
∞∏
n=N

(1−P(An)) = 0,

or equivalently (taking minus the logarithm) that

−
∞∑
n=N

log(1−P(An)) =∞.

But − log(1 − x) ≥ x for all x > 0, so this follows from the assumption that the series of

probabilities diverges.
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Chapter 6: A brief excursion into measure theory

Here we briefly mention some of the basic definitions and results from measure theory, and

point out how we used them in the previous lectures. The relevant material is covered in

Appendix A.1 in [Dur2010] (Appendix A.1 and A.2 in [Dur2004]). It is not required reading,

but if you read it you are perhaps more likely to attain a good understanding of the material

that is required...

Definition 6.1. (i) A π-system is a collection P of subsets of a set Ω that is closed under

intersection of two sets, i.e., if A,B ∈ P then A ∩B ∈ P.

(ii) A λ-system is a collection L of subsets of a set Ω such that: 1. Ω ∈ L; 2. If A,B ∈ L
and A ⊂ B then B \ A ∈ L; 3. If (An)∞n=1 are all in L and An ↑ A then A ∈ L.

The following is a somewhat technical result that turns out to be quite useful:

Theorem 6.2 (Dynkin’s π − λ theorem). If P is a π-system and L is a λ-system that

contains P then σ(P) ⊂ L.

Lemma 6.3 (Uniqueness theorem). If the values of two probability measures µ1 and µ2

coincide on a collection P of sets, and P is a π-system (closed under finite intersection),

then µ1 and µ2 coincide on the generated σ-algebra σ(P).

The uniqueness theorem implies for example that to check if random variables X and Y

are equal in distribution, it is enough to check that they have the same distribution functions.

Both of the above results are used in the proof of the following important theorem in

measure theory:

Theorem 6.4 (Carathéodory’s extension theorem). Let µ be an almost-probability-measure

defined on an algebra A of subsets of a set Ω. That is, it satisfies all the axioms of a

probability measure except it is defined on an algebra and not a σ-algebra; σ-additivity is

satisfied whenever the countable union of disjoint sets in the algebra is also an element of

the algebra. Then µ has a unique extension to a probability measure on the σ-algebra σ(A)

generated by A.

Carathéodory’s extension theorem is the main tool used in measure theory for construct-

ing measures: one always starts out by defining the measure on some relatively small family of
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sets and then extending to the generated σ-algebra (after verifying σ-additivity, which often

requires using topological arguments, e.g., involving compactness). Applications include:

• Existence and uniqueness of Lebesgue measure in (0, 1), R and Rd.

• Existence and uniqueness of probability measures associated with a given distribu-

tion function in R (sometimes called “Lebesgue-Stieltjes measures in R”). We proved

existence instead by starting with Lebesgue measure and using quantile functions.

• Existence and uniqueness of Lebesgue-Stieltjes measures in Rd (i.e., measures associ-

ated with a d-dimensional joint distribution function). Here there is no good concept

analogous to quantile functions, although there are other ways to construct such mea-

sures explicitly using ordinary Lebesgue measures.

• Product measures – this corresponds to probabilistic experiments which consist of

several independent smaller experiments.

Note that Durrett’s book also talks about measures that are not probability measures,

i.e., the total measure of the space is not 1 and may even be infinite. In this setting, the

theorems above can be formulated in greater generality.

End of Part I
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Part II — Laws of Large Numbers

Chapter 7: Expected values

7.1 Construction of the expectation operator

We wish to define the notion of the expected value, or expectation, of a random variable

X, which will be denoted EX (or E(X)). In measure theory this is denoted
∫
XdP and is

called the “Lebesgue integral”. It is one of the most important concepts in all of mathematical

analysis! So time invested in understanding it is time well-spent.

The idea is simple. For bounded random variables, we want the expectation to satisfy

three properties: First, the expectation of an indicator variable 1A, where A is an event,

should be equal to P(A). Second, the expectation operator should be linear i.e., should

satisfy E(aX + bY ) = aEX + bEY for real numbers a, b and r.v.’s X, Y . Third, it should be

monotone, i.e., if X ≤ Y (meaning X(ω) ≤ Y (ω) for all ω ∈ Ω) then EX ≤ EY .

For unbounded random variables, we will also require some kind of continuity, but let’s

treat the case of bounded case first. It turns out that these properties determine the expec-

tation/Lebesgue integral operator uniquely. Different textbooks may have some variation in

how they construct it, but the existence and uniqueness are really the essential facts.

Theorem 7.1. Let (Ω,F ,P) be a probability space. Let BΩ denote the class of bounded

random variables. There exists a unique operator E that takes a r.v. X ∈ BΩ and returns a

number in R, and satisfies:

1. If A ∈ F then E(1A) = P(A).

2. If X, Y ∈ BΩ, a, b ∈ R then E(aX + bY ) = aE(X) + bE(Y ).

3. If X, Y ∈ BΩ and X ≥ Y then E(X) ≥ E(Y ).

Sketch of proof. Call X a simple function if it is of the form X =
∑n

i=1 ai1Bi , where

a1, . . . , an ∈ R and B1, . . . , Bn are disjoint events. For such r.v.’s define E(X) =
∑
aiP(Bi).

Show that the linearity and monotonicity properties hold, and so far uniqueness clearly holds

since we had no choice in how to define E(X) for such functions if we wanted the properties
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above to hold. Now for a general bounded r.v. X with |X| ≤ M , for any ε > 0 it is pos-

sible to approximate X from below and above by simple functions Y ≤ X ≤ Z such that

E(Z − Y ) < ε. This suggests defining

E(X) = sup{E(Y ) : Y is a simple function such that Y ≤ X}. (5)

By approximation, the construction is shown to still satisfy the properties in the Theorem

and to be unique, since E(X) is squeezed between E(Y ) and E(Z), and these can be made

arbitrarily close to each other.

We can now extend the definition of the expectation operator to non-negative random

variables. In that case we still define EX by eq. (5). This can be thought of as a kind

of “continuity from below” axiom that is added to the properties 1–3 above, although we

shall see that it can be reformulated in several equivalent ways. Note that now EX may

sometimes be infinite.

Finally, for a general random variable X, we decompose X as a difference of two non-

negative r.v.’s by writing

X = X+ −X−,

where X+ = max(X, 0) is called the positive part of X and X− = max(−X, 0) is called

the negative part of X.

We say that X has an expectation if the two numbers EX−,EX+ are not both ∞. In

this case we define

EX = EX+ − EX−.

This is a number in R∪{−∞,∞}. If both EX−,EX+ are<∞, or in other words if E|X| <∞
(since |X| = X+ +X−), we say that X has finite expectation or is integrable.

Theorem 7.2. Suppose X, Y ≥ 0 or X, Y ≤ 0 or E|X|,E|Y | <∞. Then:

1. If X is a simple function then the definition (5) coincides with the original definition,

namely E(
∑

i ai1Bi) =
∑

i aiP(Bi).

2. E(aX+ bY + c) = aEX+ bEY + c for any real numbers a, b, c, where in the case where

E(X) = E(Y ) = ±∞, we require a, b to have the same sign in order for the right-hand

side of this identity to be well-defined.
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3. If X ≥ Y then EX ≥ EY .

Proof. See [Dur2010], section 1.4.

Remark. See

http://en.wikipedia.org/wiki/Lebesgue_integration#Intuitive_interpretation

for a nice description of the difference in approaches between the more familiar Riemann

integral and the Lebesgue integral.

7.2 Properties

1. Expectation is invariant under “almost-sure equivalence”: If X ≤ Y almost

surely, meaning P(X ≤ Y ) = 1, then by the definition we have EX ≤ EY , since any

simple function Z such that Z ≤ X can be replaced with another simple function Z ′ such

that Z ′ ≤ Y and Z = Z ′ almost surely. It follows also that if X = Y almost surely then

EX = EY .

2. Triangle inequality: |EX| ≤ E|X|.

Proof.

|EX| = |EX+ − EX−| ≤ EX+ + EX− = E|X|.

3. Markov’s inequality (Called Chebyshev’s inequality in [Dur2010]):

P(X ≥ t) ≤ EX

t
.

Proof. Use monotonicity twice to deduce:

P(X ≥ t) = E(1{X≥t}) ≤ E

[
1

t
X1{X≥t}

]
≤ EX

t
.
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4. Variance: If X has finite expectation, we define its variance to be

V(X) = E(X − EX)2.

If V(X) <∞, by expanding the square it is easy to rewrite the variance as

V(X) = E(X2)− (EX)2.

We denote σ(X) =
√

V(X) and call this quantity the standard deviation of X. Note

that if a ∈ R then V(aX) = a2V(X) and σ(aX) = |a|σ(X).

5. Chebyshev’s inequality:

P(|X − EX| ≥ t) ≤ V(X)

t2
.

Proof. Apply Markov’s inequality to Y = (X − EX)2.

6. Cauchy-Schwartz inequality:

E|XY | ≤
(
EX2EY 2

)1/2
.

Equality holds if and only if X and Y are linearly dependent, i.e. aX + bY ≡ 0 holds for

some a, b ∈ R.

Proof. Consider the function

p(t) = E(|X|+ t|Y |)2 = t2EY 2 + 2tE|XY |+ EX2.

Since p(t) = at2 + bt + c is a quadratic polynomial in t that satisfies p(t) ≥ 0 for all t, its

discriminant b2 − 4ac must be non-positive. This gives

(E|XY |)2 − EX2EY 2 ≤ 0,

as claimed. The condition for equality is left as an exercise.

7. Jensen’s inequality: A function ϕ : R→ R is called convex if it satisfies

ϕ(αx+ (1− α)y) ≤ αϕ(x) + (1− α)ϕ(y)

for all x, y ∈ R and α ∈ [0, 1]. If ϕ is convex then

ϕ(EX) ≤ E(ϕ(X)).

Proof. See homework.
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8. Lp-norm monotonicity: If 0 < r ≤ s then

(E|X|r)1/r ≤ (E|X|s)1/s. (6)

Proof. Apply Jensen’s inequality to the r.v. |X|r with the convex function ϕ(x) = xs/r.

7.3 Convergence theorems for expectations

We want to study notions of continuity for the expectation operator. If Xn → X as n→∞,

under what conditions do we have that E(Xn) → EX? First we have to decide what

“Xn → X” actually means. We define two notions of convergence of a sequence of random

variables to a limit.

Definition 7.3. Let X,X1, X2, . . . be random variables all defined on the same probability

space. We say that Xn converges in probability to X, and denote Xn
P−−−→

n→∞
X, if for

all ε > 0 we have that

P(|Xn −X| > ε) −−−→
n→∞

0.

Definition 7.4. With X,X1, X2, . . . as before, we say that Xn converges almost surely

to X (or converges to X with probability 1), and denote Xn
a.s.−−−→
n→∞

X, if

P(Xn → X) = P
({
ω ∈ Ω : X(ω) = lim

n→∞
Xn(ω)

})
= 1.

Exercise 7.5. Show that {ω ∈ Ω : X(ω) = limn→∞Xn(ω)} is an event and therefore has a

well-defined probability. In other words, represent it in terms of countable union, intersection

and complementation operations on simple sets that are known to be events. Hint: Use the

ε− δ definition of a limit.

Lemma 7.6. Almost sure convergence is a stronger notion of convergence than convergence

in probability. In other words, if Xn
a.s.−−−→
n→∞

X then Xn
P−−−→

n→∞
X, but the converse is not true.

Exercise 7.7. Prove Lemma 7.6. For the counterexample showing that convergence in prob-

ability does not imply almost sure convergence, consider the following sequence of random
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variables defined on the space ((0, 1),B,Lebesgue measure):

1(0,1),

1(0,1/2), 1(1/2,1),

1(0,1/4), 1(1/4,2/4), 1(2/4,3/4), 1(3/4,1),

1(0,1/8), 1(1/8,2/8), 1(2/8,3/8), 1(3/8,4/8), 1(4/8,5/8), 1(5/8,6/8), 1(6/8,7/8), 1(7/8,1),

. . .

We can now formulate the fundamental convergence theorems for Lebesgue integration.

Theorem 7.8 (Bounded convergence theorem). If Xn is a sequence of r.v.’s such that

|Xn| ≤M for all n, and Xn → X in probability, then EXn → EX.

Proof. Fix ε > 0. Then

|EXn − EX| ≤ E|Xn −X| = E|Xn −X|1{|Xn−X|>ε} + E|Xn −X|1{|Xn−X|≤ε}
≤ 2MP(|Xn −X| > ε) + ε −−−→

n→∞
ε.

Since ε was an arbitrary positive number, this implies that |EXn−EX| → 0, as claimed.

Theorem 7.9 (Fatou’s lemma). If Xn ≥ 0 then lim infn→∞EXn ≥ E(lim infn→∞Xn).

To see that the inequality in the lemma can fail to be an equality, let U ∼ U(0, 1), and

define Xn = n1{U≤1/n}. Clearly lim infn→∞Xn = limn→∞Xn ≡ 0, but E(Xn) = 1 for all n.

Proof. Let Y = lim infn→∞Xn. Note that Y can be written as

Y = sup
n≥1

inf
m≥n

Xm

(this is a general fact about the lim inf of a sequence of real numbers), or Y = supn Yn,

where we denote

Yn = inf
m≥n

Xm.

We have Yn ≤ Xn, and as n → ∞, Yn → Y (in fact Yn ↑ Y ) almost surely. Therefore

EYn ≤ EXn, so lim infn→∞EYn ≤ lim infn→∞EXn, and therefore it is enough to show that

lim inf
n→∞

EYn ≥ EY.
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But for any M we have that

Yn ∧M
a.s.−−−→
n→∞

Y ∧M,

and this is a sequence of uniformly bounded r.v.’s, therefore by the bounded convergence

theorem we get that

E(Yn) ≥ E(Yn ∧M) −−−→
n→∞

E(Y ∧M).

We therefore get that lim infn→∞E(Yn) ≥ E(Y ∧M) for any M > 0, which implies the result

because of the following exercise.

Exercise 7.10. Let Y ≥ 0 be a random variable. Prove that

E(Y ) = sup
M>0

E(Y ∧M).

Theorem 7.11 (Monotone convergence theorem). If 0 ≤ Xn ↑ X as n → ∞ then EXn ↑
EX.

Proof.

EX = E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

EXn ≤ lim sup
n→∞

EXn ≤ lim sup
n→∞

EX = EX.

Theorem 7.12 (Dominated convergence theorem). If Xn → X almost surely, |Xn| ≤ Y for

all n ≥ 1 and EY <∞, then EXn → EX.

Proof. Apply Fatou’s lemma separately to Y +Xn and to Y −Xn.

7.4 Computing expected values

Lemma 7.13. If X is a discrete r.v., that is, takes values in some countable set S, then

EX =
∑
s∈S

sP(X = s)

when the right-hand side is well-defined, i.e., when at least one of the numbers

E(X−) =
∑

s∈S,s<0

(−s) P(X = s), E(X+) =
∑

s∈S,s>0

sP(X = s)

is finite. It follows that for any function g : R→ R, we also have

E(g(X)) =
∑
s∈S

g(s)P(X = s).
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Proof. If S is finite then X is a simple function, and can be written X =
∑

s∈S s 1{X=s}, so

this follows from the definition of E(·) for simple functions. If S is infinite this follows (check!)

from the convergence theorems in the previous section by considering approximations to X

of the form
∑

s∈S,|s|<M s 1{X=s}.

Lemma 7.14. If X is a r.v. with a density function fX , then

E(X) =

∫ ∞
−∞

xfX(x) dx

when the right-hand side is well-defined, i.e., when at least one of the numbers

E(X−) = −
∫ 0

−∞
xfX(x) dx, E(X+) =

∫ ∞
0

xfX(x) dx

is finite. Similarly, for any “reasonable” function g we have

E(g(X)) =

∫ ∞
−∞

g(x)fX(x) dx.

Proof. Fix ε > 0, and approximate X by a discrete r.v. Y , e.g.,

Y =
∞∑

k=−∞

kε1{kε<X≤(k+1)ε}.

Then |E(X)− E(Y )| ≤ E|X − Y | ≤ ε. By the previous lemma we have

E(Y ) =
∞∑

k=−∞

kεP(kε < X < (k + 1)ε) =
∞∑

k=−∞

kε

∫ (k+1)ε

kε

fX(x) dx,

so the result for EX follows by letting ε → 0. For general functions g(X) repeat this

argument, and invoke the relevant convergence theorem to deduce that E(g(Y )) → Eg(Y )

as ε→ 0.

7.5 Expectation and independent random variables

Theorem 7.15. (i) If X, Y are independent r.v.’s then E(XY ) = EXEY .

(ii) X, Y are independent if and only if E[g(X)h(Y )] = Eg(X)Eh(Y ) for all bounded mea-

surable functions g, h : R→ R.
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Sketch of proof. Part (i) follows either by approximation of X, Y using simple functions, or

using Fubini’s theorem, which you can read about in section 1.7 of [Dur2010] (Note that

Fubini’s theorem in turn is proved by approximation using simple functions, so these two

seemingly different approaches are really equivalent).

For part (ii), the “only if” follows from part (i) together with the observation that if X, Y

are independent then so are g(X), h(Y ). For the “if” part, observe that the function 1(a,b) is

a bounded measurable function, so in particular the condition E[g(X)h(Y )] = Eg(X)Eh(Y )

includes the information that P(X ∈ I, Y ∈ J) = P(X ∈ I)P(Y ∈ J) for any two finite

intervals I, J , which we already know is enough to imply independence.

Theorem 7.16. (i) If X1, X2, . . . , Xn are independent r.v.’s then E(X1 . . . Xn) =
∏n

k=1 EXk.

(ii) X1, . . . , Xn are independent if and only if E (
∏n

k=1 gk(Xk)) =
∏n

k=1 Egk(Xk) for all

bounded measurable functions g1, . . . , gn : R→ R.

The fact that expectation is multiplicative for independent random variables implies an

important fact about the variance of a sum of independent r.v.’s. Let X, Y be independent

r.v.’s with finite variance. Then we get immediately that

V(X + Y ) = E [(X − EX) + (Y − EY )]2

= E(X − EX)2 + E(Y − EY )2 + 2E [(X − EX)(Y − EY )]

= V(X) + V(Y ) + 0 = V(X) + V(Y ).

More generally, if X, Y are not necessarily independent, then we can define the covariance

of X and Y by

Cov(X, Y ) = E [(X − EX)(Y − EY )] .

We then get the more general formula

V(X + Y ) = V(X) + V(Y ) + 2Cov(X, Y ).

Repeating this computation with a sum of n variables instead of just two, we get the following

formula for the variance of a sum of r.v.’s.

Lemma 7.17. If X1, . . . , Xn are r.v.’s with finite variance, then

V

(
n∑
k=1

Xk

)
=

n∑
k=1

V(Xk) + 2
∑

1≤i<j≤n

Cov(Xi, Xj).
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Lemma 7.18 (Properties of the covariance). If X, Y are r.v.’s with finite variance, then:

1. Cov(X, Y ) = Cov(Y,X) = E(XY )− E(X)E(Y ).

2. Cov(X,X) = V(X).

3. Cov(aX1 + bX2, Y ) = aCov(X1, Y ) + bCov(X2, Y )

4. Cov(X, aY1 + bY2) = aCov(X, Y1) + bCov(X, Y2)

5. If X, Y are independent then Cov(X, Y ) = 0.

6. |Cov(X, Y )| ≤ σ(X)σ(Y ), with equality if and only if X and Y are linearly dependent.

Proof. Properties 1–5 are obvious. Property 6 follows by applying the Cauchy-Schwartz

inequality to the r.v.’s X − EX and Y − EY .

If Cov(X, Y ) = 0 we say that X and Y are uncorrelated, or orthogonal. This is a

weaker condition than being independent, but because of the way the variance of a sum of

r.v.’s behaves, it is still often useful for deriving bounds, as we shall see.

Define the correlation coefficient of X and Y by

ρ(X, Y ) =
Cov(X, Y )

σ(X)σ(Y )
.

This measures the correlation in units of the standard deviation of X and Y so does not

depend on the choice of scale. From property 6 in the above lemma, we get that

−1 ≤ ρ(X, Y ) ≤ 1,

with equality on either side if and only if X and Y are linearly dependent.

7.6 Moments

For an integer k ≥ 0, the k-th moment of a random variable X is the number E(Xk). The

k-th moment around a point c ∈ R is the number E(X − c)k. If c is not mentioned it is

understood that the moment is around 0. The k-th central moment is the k-th moment

around EX (when it exists), i.e., E(X − EX)k. In this terminology, the variance is the

second central moment.
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The sequence of moments (usually around 0, or around EX) often contains important

information about the behavior of X and is an important computational and theoretical tool.

Important special distributions often turn out to have interesting sequences of moments. Also

note that by the monotonicity of the Lp norms (inequality (6) in Section 7.2), the set of values

r ≥ 0 such that E(Xr) exists (one can also talk about r-th moments for non-integer r, but

that is much less commonly discussed) is an interval containing 0.

A nice characterization of the variance is that it is the minimal second moment. To

compute the second moment around a point t, we can write

E(X − t)2 = E[(X − EX)− (t− EX)]2

= E(X − EX)2 + E(t− EX)2 + 2(t− EX)E(X − EX)

= V(X) + (t− EX)2 ≥ V(X).

So the function t→ E(X−t)2 is a quadratic polynomial that attains its minimum at t = EX,

and the value of the minimum is V(X). In words, the identity

E(X − t)2 = V(X) + (t− EX)2

says that “the second moment around t is equal to the second moment around the mean

EX plus the square of the distance between t and the mean”. Note that this is analogous

to (and mathematically equivalent to) the Huygens-Steiner theorem (also called the Parallel

Axis theorem, see Wikipedia) from mechanics, which says that “the moment of inertia of a

body with unit mass around a given axis L is equal to the moment of inertia around the

line parallel to L passing through the center of mass of the body, plus the square of the

distance between the two lines”. Indeed, the “moment” terminology seems to originate in

this physical context.
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Chapter 8: Laws of large numbers

LetX1, X2, X3, . . . be a sequence of independent and identically distributed random variables.

A common abbreviation for “independent and identically distributed” is i.i.d.. What this

can mean is that we are taking repeated independent samples from some distribution, for

example when doing a poll or an experiment in quantum mechanics (when doing a poll, it

might be better to have the samples not be independent – after all, does it really make sense

to call up the same person twice? But if the population is large the effect of having the

samples be independent is negligible, and can make the analysis of the results a bit simpler).

Assume that EX1, the mean of X1 (therefore of every Xn), is defined and finite, and

denote it by µ. In a real-life situation, we might not know what the mean is, and wish to

estimate it. So we look at the sum of the first n samples,

Sn =
n∑
k=1

Xk,

and use it to form the empirical average,

Xn =
1

n
Sn =

1

n

n∑
k=1

Xk.

The natural question is whether we can expect the empirical average to be close to the true

mean µ = EX1 as n → ∞, and in what sense of “close”. A theorem or statement to that

effect, making some assumptions, is called a law of large numbers. This can be generalized

to a large extent to cases when the Xn’s are not identically distributed, or not independent,

or both, etc. Thus, the “Law of Large Numbers” is not a single theorem in the normal sense

of the word but rather a class of theorems, or even a “principle” or “meta-theorem” that

you might hear a probabilist refer to in a somewhat vague, metaphorical way.

8.1 Weak laws of large numbers

Theorem 8.1 (Weak Law of Large Numbers (WLLN)). If E|X1| <∞ then

Sn
n

P−−−→
n→∞

µ.
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Proof in the case of finite variance. In the most general case, proving this requires some

work – we shall deduce it from its stronger cousin, the Strong Law of Large Numbers.

However, if we assume that σ2 = V(X1) < ∞, the proof is extremely easy! It suffices to

note that in this case V(Sn) = nσ2 (this is true even when the Xn’s are not independent but

only uncorrelated), or V(Sn/n) = σ2/n. From Chebyshev’s inequality we then have that for

any ε > 0,

P(|n−1Sn − µ| > ε) ≤ σ2

nε2
−−−→
n→∞

0. (7)

8.2 Strong laws of large numbers

Our goal in this section will be to prove:

Theorem 8.2 (Strong Law of Large Numbers (SLLN)). If E|X1| <∞ then

Sn
n

a.s.−−−→
n→∞

µ.

As in the case of the weak law, it turns out that this is easier to prove when making more

restrictive assumptions about the distribution of X, and specifically about the existence of

moments. So we will prove it several times, successively weakening our assumptions until we

get to the most general (but least easy to prove) result.

Proof in the case of a finite fourth moment. To prove that Sn/n→ µ, we want to prove that

P(|Sn/n− µ| > ε i.o.) = 0. Looking at the bound (7), we see that if the bound σ2/nε2 were

to form the n-th general term of a convergent series, then by the Borel-Cantelli lemma this

would be enough to get the desired consequence. This is not the case, but if we assume that

X1 has a finite fourth moment, then we could do a similar trick that will give a convergent

series. In that case, using Markov’s inequality we can get that

P(|Sn/n− µ| > ε) = P

( n∑
k=1

(Xk − µ)

)4

> n4ε4

 ≤ E(Sn − nµ)4

n4ε4
. (8)
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Denote X̂k = Xk − µ, and Tn = Sn − nµ =
∑n

k=1 X̂k. To bound E(T 4
n), note that we can

write

T 4
n =

n∑
k=1

X̂k
4

+

(
4

1

) ∑
1≤i 6=j≤n

X̂i
3
X̂j +

1

2

(
4

2

) ∑
1≤i 6=j≤n

X̂i
2
X̂j

2

+
1

2

(
4

2, 1, 1

) ∑
1≤i,j,k≤n distinct

X̂i
2
X̂jX̂k +

1

4!

(
4

1, 1, 1, 1

) ∑
1≤i,j,k,`≤n distinct

X̂iX̂jX̂kX̂`

(where
(

4
2,1,1

)
= 4!/2!1!1!,

(
4

1,1,1,1

)
= 4!/1!1!1!1! are multinomial coefficients). Now take

the expectations on both sides, and use the fact that E(X̂k) = 0 and that the X̂k’s are

independent, to get

E(T 4
n) = nm4 + 3n(n− 1)m2

2,

where we denote m2 = E(X̂2
k) = V(Xk), m4 = E(X̂4

k) < ∞. This gives us the bound we

wanted! In fact, all that matters is that E(T 4
n) ≤ Cn2 for some constant C > 0. Combining

this with (8), we get that

P(|Sn/n− µ| > ε) ≤ C

n2ε4
.

In particular, we have that
∑∞

n=1 P(|Sn/n − µ| > ε) < ∞, so by the Borel-Cantelli lemma,

the probability of the event

Aε := {|Sn/n− µ| > ε i.o.}

is 0. This is true for all ε > 0, therefore the probability of

{Sn/n9 µ} ⊂
⋃
ε>0

Aε =
∞⋃
n=1

A1/n

is also 0, since it is contained in a countable union of events of probability 0.

Proof in the case of finite variance. We are slowly refining our techniques to weaken the

assumptions required to prove the SLLN. The following nice proof manages to harness the

Chebyshev variance bound (7) after all to deduce the theorem in the case of r.v.’s with finite

variance. Observe that while the series of terms on the right-hand side of (7) diverges, if we

restrict it to a subsequence nk = k2, it will become a convergent series:
∑∞

k=1 σ
2/k2ε2 <∞.

This implies, again by the Borel-Cantelli lemma, that

P(|Snk/nk − µ| > ε i.o.) = 0
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for all ε > 0 (the “i.o.” here refers to the “running index” k, not n). This implies as before

that

P

(
Snk
nk

a.s.−−−→
k→∞

µ

)
= 1.

So, while we have not shown almost sure convergence of the empirical averages to the true

mean for all values of n, at least we have done so for the subsequence nk = k2. But

this subsequence is relatively dense. In particular, if we show that in between elements

of the subsequence nk = k2, the empirical average cannot fluctuate too wildly, then the

theorem would follow. This will again follow from a combination of variance-based (i.e.,

Chebyshev) bounds and the Borel-Cantelli lemma. Fix some k, and take an integer n

satisfying nk ≤ n < nk+1. How likely is the n-th empirical average to deviate significantly

from the nk-th empirical average? Using the notation Tn = Sn − nµ as before, we have

P

(∣∣∣∣Tnn − Tnk
nk

∣∣∣∣ > ε

)
= P

(∣∣∣∣nkTn − nTnkn · nk

∣∣∣∣ > ε

)
(by triangle ineq.) ≤ P

(∣∣∣∣Tn − Tnknk

∣∣∣∣ > ε/2

)
+ P

(
|Tn|

n− nk
n · nk

> ε/2

)
(by Chebyshev’s ineq.) ≤ 4Var(Tn − Tnk)

ε2n2
k

+
4Var(Tn)(n− nk)2

n2n2
k

≤ 10kσ2

ε2k4
+

20k4σ2

k8
<

20σ2

k3
,

where we have denoted σ2 = V(X1).

The estimate that we obtained is valid for a single n. We are actually interested in

the maximal fluctuation of the empirical averages Sn/n from Snk/nk, when n ranges in the

interval [nk, nk+1). By a simple subadditivity argument, usually referred to as a union

bound (i.e., bounding the probability of a union of events by the sum of the probabilities,

which is the most naive bound you can imagine), we get easily that

P

(
max

nk≤n<nk+1

∣∣∣∣Tnn − Tnk
nk

∣∣∣∣ > ε

)
= P

 ⋃
nk≤n<nk+1

{∣∣∣∣Tnn − Tnk
nk

∣∣∣∣ > ε

}
≤

nk+1−1∑
n=nk

P

(∣∣∣∣Tnn − Tnk
nk

∣∣∣∣ > ε

)
<

20σ2 · 2k
k3

=
40σ2

k2
.

Once again, we have obtained as our bound the general term of a convergent series! Denoting

Ak,ε =

{
max

nk≤n<nk+1

∣∣∣∣Tnn − Tnk
nk

∣∣∣∣ > ε

}
,
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by the Borel-Cantelli lemma this implies that for any ε > 0, P(Ak,ε i.o.) = 0 (with the

“i.o.” qualifier again referring to the running index k). What about the chance that this

will happen for some ε > 0? After all, there are so many ε’s out there... But no, we also get

that

P

(⋃
ε>0

{Ak,ε i.o.}

)
= P

(
∞⋃
m=1

{
Ak,1/m i.o. (w.r.t. k)

})
= 0,

by subadditivity for countable unions and the fact that Ak,ε ⊂ Ak,ε′ if ε > ε′.

Finally, combining our two main results, namely that the two events

E1 =

{
Snk
nk
−−−→
n→∞

µ

}
,

E2 =

(
∞⋃
m=1

{
max

nk≤n<nk+1

∣∣∣∣Tnn − Tnk
nk

∣∣∣∣ > 1

m
for inifinitely many k’s

})c

both have probability 1, we get that their intersection E1 ∩ E2 also has probability 1. But

we have the event inclusion

E1 ∩ E2 ⊂
{
Sn
n
−−−→
n→∞

µ

}
(if the conditions in both the events E1, E2 occur, then Sn/n must converge to µ), so this

latter event also has probability 1.

The above proof was a little involved, but is based on a few simple ideas: 1. Use

Chebyshev bounds together with the Borel-Cantelli lemma. 2. Break up the event {Sn/n→
µ} in a clever way into events which can be managed using this technique, namely (in this

case) the weaker convergence along the subsequence nk = k2, and separately the control of

the fluctuations of the empirical averages in each range [nk, nk+1) between successive elements

of the subsequence.

An extra benefit of the above proof is that it doesn’t use the full power of the assumption

that the Xn’s are independent. In fact, everything is based on variance computations of

sums of the Xk’s, so the proof works equally well for uncorrelated random variables!

Theorem 8.3 (SLLN for uncorrelated r.v.’s with finite variance). If X1, X2, . . . are a se-

quence of uncorrelated and identically distributed r.v.’s with finite variance, then

1

n

n∑
k=1

Xk
a.s.−−−→
n→∞

EX1.
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Finally, we turn to the proof of the full SLLN for an i.i.d. sequence (Theorem 8.2),

assuming only a finite first moment. Etemadi’s 1981 proof presented in [Dur2010] is based

on a similar idea of proving convergence first for a subsequence, and introduces another

useful technique, that of truncation.

Proof of Theorem 8.2. First, observe that it is enough to prove the theorem in the case where

X1 ≥ 0, since in the general case we may decompose each Xn into its positive and negative

parts, and this gives two i.i.d. sequences of nonnegative r.v.’s. The validity of the SLLN for

each of the two sequences implies the result for their difference.

Second, for each n ≥ 1 let Yn = Xn1{Xn≤n} (“Xn truncated at n”), and denote Tn = Y1 +

Y2 + . . .+Yn. Since EX1 <∞, by a homework exercise we know that
∑∞

n=1 P(Xn > n) <∞,

which by the Borel-Cantelli lemma implies that P(Xn > n i.o.) = P(Xn 6= Yn i.o.) = 0. It

follows that the event {
sup
n→∞

|Sn − Tn| =∞
}

has probability 0, and therefore the even smaller event{
lim sup
n→∞

∣∣∣∣Snn − Tn
n

∣∣∣∣ > 0

}
=

{
lim sup
n→∞

∣∣∣∣(Snn − µ
)
− Tn − E(Tn)

n

∣∣∣∣ > 0

}
,

has probability 0 (the equivalence between these last two events follows from the observa-

tion that E(Yn) ↑ µ by the monotone/dominated convergence theorems, and therefore also

E(Tn)/n → µ as n → ∞ since (E(Tn))∞n=1 is the sequence of arithmetic averages of the

E(Yn)’s). So we have shown that to prove the theorem, it is enough to prove that

P

(
Tn − ETn

n
→ 0

)
= 1.

Now, to prove this, as before we establish a.s. convergence first along a subsequence

nk, this time taking nk = bαkc where α > 1. (Here, bxc denotes the “floor” function,

namely the largest integer ≤ x). This is done by again combining the Borel-Cantelli lemma

with a Chebyshev variance bound, except that showing that the sum of the bounds gives a

convergent series requires more work than before. We have

P

(∣∣∣∣Tnknk − E(Tnk)

nk

∣∣∣∣ > ε

)
≤ V(Tnk)

ε2n2
k

=
1

ε2n2
k

nk∑
m=1

V(Ym).
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Therefore

∞∑
k=1

P

(∣∣∣∣Tnknk − E(Tnk)

nk

∣∣∣∣ > ε

)
≤

∞∑
k=1

1

ε2n2
k

nk∑
m=1

V(Ym) =
1

ε2

∞∑
m=1

V(Ym)
∑
nk≥m

1

n2
k

≤ 1

ε2

∞∑
m=1

V(Ym)
1

m2
(1 + α−2 + α−4 + α−6 + . . .)

=
1

ε2(1− α−2)

∞∑
m=1

V(Ym)

m2
(9)

Lemma 8.4. We have
∞∑
m=1

V(Ym)

m2
≤ 4EX1 <∞.

Exercise 8.5. Prove this. You can use the formula E(Z) =
∫∞

0
P(Z > x) dx that’s valid

for any nonnegative r.v. Z.

It follows that the infinite sum on the left-hand side of (9) converges, and therefore by

the Borel-Cantelli lemma, we have that

P

(∣∣∣∣Tnknk − E(Tnk)

nk

∣∣∣∣ > ε infinitely often (w.r.t. k)

)
= 0.

Since this is true for all ε > 0, using the standard trick we get that

P

(
Tnk
nk
− E(Tnk)

nk
−−−→
k→∞

0

)
= P

(
Tnk
nk
−−−→
k→∞

µ

)
= 1.

The last step is now to show that convergence along this subsequence forces (Tn − ETn)/n

to behave well between successive nk’s. Observe that if nk ≤ n < nk+1 then

Tnk
nk+1

≤ Tn
n
≤
Tnk+1

nk
.

Since nk = bαkc, in the limit this gives that almost surely the bounds

1

α
µ ≤ lim inf

n→∞

Tn
n
≤ lim sup

n→∞

Tn
n
≤ αµ

hold. Since α > 1 was arbitrary, the intersection of these events for α = 1+1/d, d = 1, 2, . . .,

implies that

P

(
Tn
n
→ µ

)
= 1,

which finishes the proof.
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Solution to Exercise 8.5.

∞∑
m=1

V(Ym)

m2
≤

∞∑
m=1

1

m2
E(Y 2

m) =
∞∑
m=1

1

m2
E
(
X2
m1{Xm≤m}

)
=

∞∑
m=1

1

m2

∫ ∞
0

P
(
X2
m1{Xm≤m} > t

)
dt

=
∞∑
m=1

1

m2

∫ ∞
0

P
(√

t ≤ Xm ≤ m
)
dt

=
∞∑
m=1

1

m2

∫ m2

0

P
(√

t ≤ X1 ≤ m
)
dt

≤
∞∑
m=1

1

m2

∫ m2

0

P
(
X1 ≥

√
t
)
dt

=

∫ ∞
0

∑
m≥
√
t

1

m2

P
(
X1 ≥

√
t
)
dt

≤
∫ ∞

0

2√
t
P
(
X1 ≥

√
t
)
dt = 4

∫ ∞
0

P(X1 ≥ u)du = 4E(X1)
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Chapter 9: Applications and further examples

9.1 The Weierstrass approximation theorem

As an application of WLLN (or, rather, of Chebyshev’s inequality), we prove the following

theorem in analysis, which seems to have no connection to probability whatsoever.

Theorem 9.1 (The Weierstrass approximation theorem). If f : [0, 1] → R is a continuous

function, then f can be uniformly approximated by polynomials. That is, for any ε > 0 there

exists a polynomial p such that ||f − p|| := maxx∈[0,1] |f(x)− p(x)| < ε.

Proof. Let f : [0, 1] → R be a continuous function. Define the sequence of Bernstein

polynomials of f by

Bn(x) = Bf
n(x) =

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k.

We claim that ||Bn − f || → 0 as n → ∞, which will prove the theorem. We will prove this

by giving a probabilistic interpretation to Bn. Indeed, fix x ∈ [0, 1], and let X1, X2, . . . be a

sequence of i.i.d. r.v.’s with the Bernoulli distribution Binom(1, x). Denote Sn =
∑∞

k=1Xk.

Then it is easy to see that

Bn(x) = Ex

[
f

(
Sn
n

)]
,

where the notation “Ex” just means taking the expectation, while at the same time high-

lighting the fact that the distribution of Sn depends on the parameter x.

Now the idea is that since the law of large numbers implies that Sn/n is with high

probability close to its mean x, and f is a continuous function, then f(Sn/n) should with

high probability be close to f(x), and therefore also the average value of f(Sn/n), namely

Bn(x), should be close to f(x), which is what we want. However, we want to make this claim

uniformly in x, so instead of invoking the WLLN (Theorem 8.1) we have to go back and

look “under the hood” at Chebyshev’s inequality which we used to prove it. We estimate

|Bn(x) − f(x)| as follows. Fix some arbitrary ε > 0. Let δ > 0 be such that for any

u, v ∈ [0, 1], if |u − v| < δ then |f(u) − f(v)| < ε (this is guaranteed to exist because f is
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uniformly continuous on [0, 1]). Then

|Bn(x)− f(x)| =

∣∣∣∣Exf

(
Sn
n

)
− f(x)

∣∣∣∣ ≤ Ex

∣∣∣∣f (Snn
)
− f(x)

∣∣∣∣
= Ex

[∣∣∣∣f (Snn
)
− f(x)

∣∣∣∣1{|Snn −x|>δ}
]

+ Ex

[∣∣∣∣f (Snn
)
− f(x)

∣∣∣∣1{|Snn −x|≤δ}
]

In this last expression, each of the two expectations is small for a different reason. The second

expectation is bounded by ε, since on the event that |Sn/n−x| ≤ δ, we have that |f(Sn/n)−
f(x)| < ε. To bound the first expectation, denote M = ||f || := maxx∈[0,1] |f(x)| <∞. Then,

by bounding the difference of f -values by 2M and then using Chebyshev’s inequality, we get

Ex

[∣∣∣∣f (Snn
)
− f(x)

∣∣∣∣1{|Snn −x|>ε}
]
≤ 2M ·Px

(∣∣∣∣Snn − x
∣∣∣∣ > ε

)
≤ 2Mσ2(X1)

nε2
=

2Mx(1− x)

nε2

This bound converges to 0, not just for a single x but (fortunately for us) uniformly in

x ∈ [0, 1], since it is bounded from above by M/(2nε2). So we have shown that

||Bn − f || = max
x∈[0,1]

|Bn(x)− f(x)| ≤ ε+
M

2nε2
.

It follows that lim supn→∞ ||Bn − f || ≤ ε, and since ε was an arbitrary positive number the

result follows.

9.2 Infinite expectations and triangular arrays

After treating the “classical” case of an i.i.d. sequence with finite expectations, let’s turn

to slightly more exotic situations. First, what happens if the expectation is infinite? For

the strong law, the following result shows that we have no hope of having convergence in a

meaningful sense.

Theorem 9.2 (Converse to SLLN). If X1, X2, . . . , is an i.i.d. sequence of r.v.’s with E|X1| =
∞, then

P

(
∃ lim
n→∞

1

n

n∑
k=1

)
= 0.

Proof. See homework.

What about the weak law? It turns out that a weak law can still hold in certain situations

with infinite expectations, although one has to consider a generalized empirical average where
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the sum of the first n samples is divided by a quantity growing faster than n. Rather than

develop a complete theory, we will consider the particular example of the St. Petersburg

Lottery. In this example, the winning in a single round of lottery is an integer-valued

random variable with the following distribution:

P(X = 2k) = 2−k, k = 1, 2, 3, . . .

Let X1, X2, . . . , be an i.i.d. sequence with the same distribution, and let Sn =
∑n

k=1Xk. How

much should you agree to pay to be allowed to play this lottery n times? (Even the seemingly

simple case n = 1 of this question has been a subject of quite some debate by economists!

See http://en.wikipedia.org/wiki/St._Petersburg_paradox). In other words, how big

should we expect Sn to be, with probability close to 1 ?

Theorem 9.3.
Sn

n log2 n

P−−−→
n→∞

1.

In other words, to be allowed to pay the game n times when n is large (and assuming the

payoff is in dollars), it may be considered reasonable to pay exactly (or even better, slightly

less than) log2 n dollars per round played. For example, if n = 1024 you would be paying

$10 per round.

Proof. The proof uses a truncation idea similar to the one we saw in the proof of SLLN,

except that for each n we will truncate the first n variables at a level which is a function of

n. Denote bn = n log2 n, Yn,k = Xk1{Xk<bn}, Tn =
∑n

k=1 Yn,k, and an = E(Tn). We will prove

that
Sn − an
bn

P−−−→
n→∞

0. (10)

First we check that this is enough, by estimating an:

an =
n∑
k=1

E(Yn,k) =
n∑
k=1

E(Xk1{Xk<bn}) =
n∑
k=1

(
1

2
· 2 +

1

4
· 4 +

1

8
· 8 + . . .+

1

2mn
· 2mn

)
where mn is the largest integer such that 2mn ≤ bn, or in other words mn = blog2 n +

log2 log2 nc, which gives

an =
n∑
k=1

blog2 n+ log2 log2 nc = n log2 n+O(n log2 log2 n),
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so an indeed behaves like n log2 n up to first-order asymptotics. Now to prove (10), note that

for any ε > 0,

P

(∣∣∣∣Sn − anbn

∣∣∣∣ > ε

)
≤ P(Tn 6= Sn) + P

(∣∣∣∣Tn − anbn

∣∣∣∣ > ε

)
. (11)

In this bound, the first term is bounded by
n∑
k=1

P(Yn,k 6= Xk) =
n∑
k=1

P(Xk > bn) ≤
n∑
k=1

2

bn
≤ 2

log2 n
−−−→
n→∞

0.

To bound the second term, use Chebyshev’s inequality and the fact that V(Yn,k) ≤ E(Y 2
n,k)

to write

P

(∣∣∣∣Tn − anbn

∣∣∣∣ > ε

)
≤ V(Tn)

ε2b2
n

≤ 1

ε2b2
n

n∑
k=1

E(Y 2
n,k)

≤ 1

ε2b2
n

n∑
k=1

(
1

2
· 22 +

1

4
· 42 +

1

8
· 82 + . . .+

1

2mn
· 22mn

)
≤ 1

ε2b2
n

n∑
k=1

2 · 2mn ≤ 2

ε2b2
n

n∑
k=1

bn =
2

ε2 log2 n
−−−→
n→∞

0.

We conclude that the left-hand side of (11) converges to 0, as n → ∞, which finishes the

proof.

Another twist on laws of large numbers comes when we replace the notion of an i.i.d.

sequence by a more general notion of a triangular array. In this case, for each n we have a

sequence Xn,1, Xn,2, . . . , Xn,n of independent, but not necessarily identically distributed, and

we denote Sn =
∑n

k=1Xn,k – this is the sum of the samples in the n-th experiment. Here,

for each n there could be a separate experiment involving n different r.v.’s, and the r.v.’s

Xn,k and Xm,j for n 6= m are not even assumed to be defined on the same probability space,

let alone to be independent of each other.

Again, instead of giving general conditions for a law of large numbers to hold, consider

the following example of the so-called coupon collector’s problem: A brand of breakfast

cereals comes with a small toy chosen uniformly at random from a set of n possible kinds of

toys. A collector will buy more boxes of cereals until she has collected all n different toys.

Denote by Tn the number of boxes she ends up buying. What can we say about the size of

Tn? Fortunately, we can represent it as a sum of independent r.v.’s, by writing

Tn = Xn,1 +Xn,2 +Xn,3 + . . .+Xn,n,
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where

Xn,1 = number of boxes purchased to get one kind of toy = 1,

Xn,2 = number of boxes purchased after having one toy to get a different kind,

Xn,3 = number of boxes purchased after having two kinds of toys to get a third kind,
...

Xn,n = number of boxes purchased after having n− 1 kinds of toys to get the last kind.

Clearly these r.v.’s are independent. Furthermore, Xn,k is a geometric r.v. with parameter

pn,k = (n− k + 1)/n. This gives us that

E(Tn) =
n∑
k=1

E(Xn,k) =
n∑
k=1

n

n− k + 1
= n

(
1

n
+

1

n− 1
+ . . .+

1

2
+

1

1

)
= nHn,

where Hn =
∑n

k=1 1/k is the n-th harmonic number, and

V(Tn) =
n∑
k=1

V(Xn,k) =
n∑
k=1

k − 1

n

(
n

n− k + 1

)2

≤ n2

n∑
k=1

1

k2
≤ 2n2

(in this example, we only need a bound for V(Tn), but it is possible also to get more precise

asymptotics for this quantity). It follows using Chebyshev’s inequality that for each ε > 0,

P

(∣∣∣∣Tn − nHn

n log n

∣∣∣∣ > ε

)
≤ V(Tn)

ε2n2(log n)2
≤ 2

ε2(log n)2
−−−→
n→∞

0,

so (Tn − nHn)/(n log n) converges in probability to 0, and therefore we get that

Tn
n log n

P−−−→
n→∞

1.

The lesson to be learned from the above examples is that some naturally-occurring problems

in real life lead to more complicated situations than can be modeled with an i.i.d. sequence

with finite mean; but often such problems can be analyzed anyway using the same ideas and

techniques that we developed. In probability textbooks you can find a general treatment of

various conditions under which a triangular array of independent random variables satisfies

a (strong or weak) law of large numbers.
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9.3 Random series of independent samples

We now look at the related topic of infinite series of independent r.v.’s. When can such a

series be said to converge? A key technical result that will help us answer this question in

some cases is the following beautiful inequality due to Kolmogorov.

Theorem 9.4 (Kolmogorov’s maximal inequality). Assume that X1, X2, . . . , Xn are inde-

pendent r.v.’s with finite variances, and let Sk =
∑k

j=1Xj. Then

P

(
max

1≤k≤n
|Sk − E(Sk)| > t

)
≤ V(Sn)

t2
=

∑n
k=1 σ

2(Xk)

t2
.

Before we start the proof, note that the bound on the right-hand side is the usual variance

bound that follows from Chebyshev’s inequality; except that the event on the left-hand side

whose probability this quantity bounds is a much bigger event than the usual deviation event

{|Sn − E(Sn)| > t} for which we know the Chebyshev bound holds!

Proof. We may assume without loss of generality that E(Xk) = 0 for all k. Denote

A =

{
max

1≤k≤n
|Sk| > t

}
,

and define events A1, A2, . . . , An by

Ak =

{
|Sk| ≥ t, max

1≤j<k
|Sk| < t

}
.

In words, Ak is the event that the sequence of cumulative sums (Sj)
n
j=1 exceeded t in absolute

value for the first time at time k. Note that these events are disjoint and their union is the

event A whose probability we are trying to bound. As a consequence, we can lower-bound

the variance V(Sn) = E(S2
n) of Sn, as follows:

E(S2
n) ≥ E(S2

n1A) =
n∑
k=1

E
(
S2
n1Ak

)
=

n∑
k=1

E
[
(Sk + (Sn − Sk))2 1Ak

]
=

n∑
k=1

[
E(S2

k1Ak) + E
[
(Sn − Sk)21Ak

]
+ 2E [(Sk1Ak)(Sn − S − k)]

]
.

In this last expression, the terms E [(Sk1Ak)(Sn − S − k)] are equal to 0, since Sk1Ak is a

random variable that depends only on X1, . . . , Xk and hence independent of Sn − Sk, which
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depends only on the values of Xk+1, . . . , Xn, which causes the expectation of their product

to be equal to the product of the expectations, which is 0. Furthermore, the middle terms

E [(Sn − Sk)21Ak ] are all nonnegative, and each of the first terms E(S2
k1Ak) satisfies

E(S2
k1Ak) ≥ E(t21Ak) = t2P(Ak),

since on the event Ak we know that S2
k is at least t2 (look again at the definition of Ak).

Combining these observations, we get that

V(Sn) ≥ t2
n∑
k=1

P(Ak) = t2P(A),

which is exactly the claim that was to be proved.

As a corollary, we get a result on convergence of random series.

Theorem 9.5. Let X1, X2, . . . be a sequence of independent r.v.’s such that E(Xn) = 0 for

all n, and assume that
∑∞

n=1 V(Xn) < ∞. Then the random series
∑∞

n=1 Xn converges

almost surely.

Proof. Denote as usual Sn =
∑n

k=1Xk. We have the following equality of events:{
∞∑
n=1

Xn converges

}
=

{(
N∑
n=1

Xn

)
N≥1

is a Cauchy sequence

}
=

⋂
ε>0

⋃
N≥1

⋂
n≥N

{
|Sn − SN | < ε

}
.

Or, put differently, we can look at the complement of this event and represent it as{
∞∑
n=1

Xn does not converge

}
=

⋃
ε>0

⋂
N≥1

⋃
n≥N

{
|Sn − SN | ≥ ε

}
=

⋃
ε>0

⋂
N≥1

{
sup
n≥N
|Sn − SN | ≥ ε

}
.

This form is exactly suitable for an application of the Kolmogorov’s maximal inequality,

except that here we have an infinite sequence of partial sums instead of a finite maximum.
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However, by the “continuity from below” property of probability measures, we see that it

does not matter. More precisely, for any ε > 0 and N ≥ 1, we have

P

(
sup
n≥N
|Sn − SN | ≥ ε

)
= lim

M→∞
P

(
sup

N≤n≤M
|Sn − SN | ≥ ε

)
≤ lim

M→∞

V(SM − SN)

ε2

=
1

ε2

∞∑
n=N

V(Xn).

Therefore also

P

(⋂
N≥1

{
sup
n≥N
|Sn − SN | ≥ ε

})
≤ inf

N≥1
P

(
sup
n≥N
|Sn − SN | ≥ ε

)

≤ inf
N≥1

1

ε2

∞∑
n=N

V(Xn) = 0,

because of our assumption that the sum of the variances converges. Finally, this is true

for all ε > 0, so by the usual trick of replacing an uncountably-infinite intersection by a

countable one (provided that the particular form of the event in question warrants this!), we

get the claim that

P

(
∞∑
n=1

Xn does not converge

)
= 0.

One could ask whether the sufficient condition given by the theorem above is also neces-

sary (it is). More generally, what happens for random variables with non-zero expectations?

What happens for r.v.’s with infinite expectations, or infinite variances? Kolmogorov for-

mulated a general theorem that gives a necessary and sufficient condition for a series of

independent random variables to converge almost surely.

Theorem 9.6 (The Kolmogorov three-series theorem). If X1, X2, . . . is a sequence of inde-

pendent random variables, then the random series
∑∞

n=1Xn converges almost surely if and

only if the following three conditions hold:

1.
∑∞

n=1 P(|Xn| > 1) <∞.

2. The series
∑∞

n=1 E(Xn1{|Xn|≤1}) converges.

3.
∑∞

n=1 V(Xn1{|Xn|≤1}) <∞.
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If one of the conditions does not hold, then series
∑
Xn diverges almost surely.

We postpone the proof of Theorem 9.6 until later; we will prove it in Section 14.2 as

an application of a generalized version of the central limit theorem. Note that since the

convergence of the series
∑
Xn is equivalent to the convergence of

∑
aXn for any constant

a, the value 1 chosen for the truncation of Xn in the theorem is arbitrary and can be replaced

by any other constant.

Example 9.7. Let (cn)∞n=1 be a sequence of real numbers. Consider the series with

random signs associated with the sequence (cn), which we denote
∑∞

n=1±cn, and which

more precisely represents the series
∞∑
n=1

cnXn,

where X1, X2, . . . is a sequence of i.i.d. r.v.’s taking the values −1,+1 with respective prob-

abilities 1/2, 1/2. By Theorem 9.5 it follows that if
∑∞

n=1 c
2
n <∞ then the series

∑∞
n=1±cn

converges almost surely. From Theorem 9.6, one can check easily that this condition is also

necessary, in other words that the series with random series converges a.s. if and only if the

series of squares
∑
c2
n converges. Thus, for example, the harmonic series with random

signs
∑
± 1
n

converges a.s., but the analogous series of square root reciprocals
∑

n±
1√
n

di-

verges a.s. Compare this to the series with alternating signs
∑

n
(−1)n

n
and

∑
n

(−1)n√
n

, both of

which are known to converge! Try to develop your intuition by thinking about the reasons

why the behavior for series with alternating signs and that for random signs is not the same.

End of Part II
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Part III — The Central Limit Theorem

Chapter 10: Stirling’s formula and the de Moivre-Laplace

theorem

We start with a motivating example that was also historically the first instance in which

the phenomenon that came to be known as the Central Limit Theorem was observed. Let

X1, X2, . . . be an i.i.d. of Binom(1, p) random variables, and let Sn =
∑n

k=1Xk, a r.v. with

distribution Binom(n, p).

Theorem 10.1 (The de Moivre-Laplace theorem). For any t ∈ R,

P

(
Sn − np√
np(1− p)

≤ t

)
−−−→
n→∞

Φ(t) =
1√
2π

∫ t

−∞
e−x

2/2 dx.

Since this is such a concrete example, the proof will simply require us to estimate a sum

of the form
∑

0≤k≤t
(
n
k

)
pk(1− p)n−k. Knowing how to estimate such sums is a useful skill in

its own right. Since the binomial coefficients are involved, we also need some preparation

related to Stirling’s formula.

Lemma 10.2. The limit C = limn→∞
n!√

n(n/e)n
exists.

Proof.

log n! =
n∑
k=1

log k =
n∑

=1

∫ k

1

dx

x
=

∫ n

1

n− bxc
x

dx

=

∫ n

1

n+ 1
2

+ ({x} − 1
2
)− x

x
dx = (n+ 1/2) log n− n+ 1 +

∫ n

1

{x} − 1
2

x
dx

= (n+ 1/2) log n− n+ 1 +

∫ ∞
1

{x} − 1
2

x
dx+ o(1),

where the last integral converges because
∫ t

1
({x} − 1

2
)dx is bounded and 1/x goes to 0 as

x→∞.

Note that an easy consequence of Lemma 10.2 is that
(

2n
n

)
= (1 + o(1))22n/C

√
n/2. We

shall now use this to find the value of C.
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Lemma 10.3. Let f : R→ R be an n + 1 times continuously-differentiable function. Then

for all x ∈ R, we have

f(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 + . . .+

f (n)(0)

n!
xn +Rn(x),

where

Rn(x) =
1

n!

∫ x

0

f (n+1)(t)(x− t)n dt.

Proof. This follows by induction on n, using integration by parts.

Lemma 10.4. C =
√

2π.

Proof. Apply Lemma 10.3 with f(x) = (1 + x)2n+1 to compute Rn(1):

1

22n+1
Rn(1) =

1

22n+1
· 1

n!

∫ 1

0

(2n+ 1)(2n) · · · (n+ 1)(1 + t)n(1− t)n dt

=
2
(

2n
n

)
22n+1

(n+
1

2
)

∫ 1

0

(1− t2)n dt =

(
2n
n

)√
n

22n
(1 +

1

2n
)

∫ √n
0

(
1− u2

n

)n
du

−−−→
n→∞

√
2

C

∫ ∞
0

e−u
2

du =

√
2

C
·
√
π

2
.

The convergence of the integrals is justified by the fact that (1 − u2/n)n ≤ e−u
2

for all

0 ≤ u ≤
√
n, and (1− u2/n)n → e−u

2
as n→∞, uniformly on compact intervals. To finish

the proof, note that
1

22n+1
Rn(1) =

∑
n<k≤2n+1

(
2n+1
k

)
22n+1

=
1

2

(this is the probability that a Binom(2n + 1, 1/2) random variable takes a value > n).

Therefore C =
√

2π, as claimed.

Corollary 10.5 (Stirling’s formula). limn→∞
n!√

2πn(n/e)n
= 1.

Note that the proof is based on computing P(S2n+1 > n) in two different ways, when

S2n+1 ∼ Binom(2n + 1, 1/2). This is just the special case p = 1/2, t = 0 of Theorem 10.1!

In this very special case, by symmetry the probability is equal to 1/2; on the other hand,

Lemma 10.3 enables us to relate this to the asymptotic behavior of n! and to (half of) the

gaussian integral
∫∞
−∞ e

−x2 dx. The evaluation of the constant C in Stirling’s formula is the
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part that is attributed to James Stirling. The form that appears in Lemma 10.2 is due to

Abraham de Moivre (1733).

With this preparation, it is now possible to apply the same technique to prove Theo-

rem 10.1. Instead of the function f(x) = (1+x)2n+1, take the function g(x) = ((1−p)+px)n =∑n
k=0

(
n
k

)
pk(1 − p)n−kxk, and compute the remainder Rk(1) of the Taylor expansion of g,

where k ≈ np + t
√
np(1− p). This should converge to 1 − Φ(t), and indeed, this follows

without too much difficulty from Lemma 10.3. The computation is left as an exercise. We

also sketch another way of proving Theorem 10.1 by directly approximating the probabilities(
n
k

)
pk(1− p)n−k by Gaussian densities.

Sketch of Proof of Theorem 10.1. Denote q = 1 − p. For a large n, let k be approximately

equal to np + t
√
npq, and use Stirling’s formula to estimate the probability P(Sn = k), as

follows:

P(Sn = k) =

(
n

k

)
pkqn−k = (1 + o(1))

√
2πn(n/e)npkqn−k√

2πk(k/e)k
√

2π(n− k)((n− k)/e)n−k

=
1 + o(1)√

2πnpq

(np
k

)k ( nq

n− k

)n−k
=

1 + o(1)√
2πnpq

(
1 +

t
√
q

√
np

)−k (
1−

t
√
p

√
nq

)−(n−k)

.

Taking the logarithm of the product of the last two factors, using the facts that k ≈ np +

t
√
npq, n − k ≈ nq − t√npq, and that log(1 + x) = x − x2/2 + O(x3) when x → 0, we see

that

log

[(
1 +

t
√
q

√
np

)−k (
1−

t
√
p

√
nq

)−(n−k)
]

= −(np+ t
√
npq) log

(
1 +

t
√
q

√
np

)
− (nq − t√npq) log

(
1−

t
√
p

nq

)
= −(np+ t

√
npq)

(
t
√
q

√
np
− t2q

2np

)
− (nq − t√npq)

(
−
t
√
p

√
nq
− t2p

2nq

)
+O

(
t3√
n

)
= −t√npq − t2q +

t2q

2
+ t
√
npq − t2p+

t2p

2
+O

(
t3√
n

)
= −t

2

2
+O

(
t3√
n

)
.
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It follows that

P(Sn = k) =
1 + o(1)√

2πnpq
e−t

2/2

In other words, the individual probabilities for Sn approximate a normal density! From here,

it is not too hard to show that the probability

P

(
a ≤ Sn − np√

npq
≤ b

)
=

∑
np+a

√
npq≤k≤np+b√npq

P(Sn = k)

is approximately a Riemann sum for the integral (2π)−1/2
∫ b
a
e−x

2/2 dx = Φ(b) − Φ(a). In

fact, this is true since for a, b fixed and k ranging between np + a
√
npq and np + b

√
npq,

the error concealed by the o(1) term is uniformly small (smaller than any ε > 0, say, when

n is sufficiently large), since this error term originates with three applications of Stirling’s

approximation formula (for n!, for k! and for (n− k)!) followed by the log function second-

order Taylor expansion above.

One lesson that can be learned from this proof is that doing computations for specific

distributions can be messy ! So we might be better off looking for more general, and therefore

more conceptual, techniques for proving convergence to the normal distribution, that require

less explicit computations; fortunately such techniques exist, and will lead us to the much

more general central limit theorem.
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Chapter 11: Convergence in distribution

11.1 Definition

Since we will be talking about convergence of the distribution of random variables to the nor-

mal distribution, it makes sense to develop the general theory of convergence of distributions

to a limiting distribution.

Definition 11.1. Let (Fn)∞n=1 be a sequence of distribution functions. We say that Fn

converges to a limiting distribution function F , and denote this by Fn =⇒ F , if

Fn(x)→ F (x) as n→∞ for any x ∈ R which is a continuity point of F . If X, (Xn)∞n=1 are

random variables, we say that Xn converges in distribution to X (or, interchangeably,

converges in distribution to FX) if FXn =⇒ FX .

This definition, which may seem unnatural at first sight, will become more reasonable

after we prove the following lemma.

Lemma 11.2. The following are equivalent:

1. Xn =⇒ X.

2. Ef(Xn) −−−→
n→∞

Ef(X) for any bounded continuous function f : R→ R.

3. There exists a r.v. Y and a sequence (Yn)∞n=1 of r.v.’s, all defined on some probability

space (Ω,F ,P) such that Yn → Y a.s., Y is equal in distribution to X, and each Yn is

equal in distribution to the respective Xn.

Proof. Proof that 2 =⇒ 1: Assume that Ef(Xn) −−−→
n→∞

Ef(X) for any bounded continuous

function f : R→ R, and fix x ∈ R. For any t ∈ R and ε > 0, define a function gt,ε : R→ R
by

gt,ε(u) =


1 u < t,

t−u+ε
ε

u ≤ t ≤ t+ ε,

0 u > t+ ε.

Then we have that

E(gx−ε,ε(Xn)) ≤ FXn(x) = E(1(−∞,x](Xn)) ≤ E(gx,ε(Xn))
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Letting n→∞ gives the chain of inequalities

FX(x− ε) ≤ E(gx−ε,x(X)) ≤ lim inf
n→∞

FXn(x) ≤ lim sup
n→∞

FXn(x) ≤ E(gx,ε(X)) ≤ FX(x+ ε).

Now if x is a point of continuity of FX , letting ε ↓ 0 gives that limn→∞ FXn(x) = FX(x).

Proof that 3 =⇒ 2: this follows immediately by applying the bounded convergence

theorem to the sequence g(Yn).

Proof that 1 =⇒ 3: Take (Ω,F ,P) = ((0, 1),B(0, 1),Leb). For each n ≥ 1, let

Yn(x) = sup{y : FXn(y) < x} be the lower quantile function of Xn, as discussed in a

previous lecture, and similarly let Y (x) = sup{y : FX(y) < x} be the lower quantile function

of X. Then as we previously showed, we have FY ≡ FX and FYn ≡ FXn for all n. It remains

to show that Yn(x) → Y (x) for almost all x ∈ (0, 1). In fact, we show that this is true for

all but a countable set of x’s. Denote Y ∗(x) = inf{y : FX(y) > x} (the upper quantile

function of X). As we have seen, we always have Y (x) ≤ Y ∗(x), and Y (x) = Y ∗(x) for all

x ∈ (0, 1) except on a countable set of x’s (the exceptional x’s correspond to intervals where

FX is constant; these intervals are disjoint and each one contains a rational point).

Let x ∈ (0, 1) be such that Y (x) = Y ∗(x). This means that for any y < Y (x) we have

FX(y) < x, and for any z > Y (x) we have FX(z) > x. Now, take a y < Y (x) which

is a continuity point of FX . Then FXn(y) → FX(y) as n → ∞, so also FXn(y) < x for

sufficiently large n, which means (by the definition of Yn) that Yn(x) ≥ y for such large n.

This establishes that lim infn→∞ Yn(x) ≥ Y (x), since we have continuity points y < Y (x)

that are arbitrarily close to Y (x).

Similarly, take a z > Y (x) which is a continuity point of FX . Then FXn(z) → Fx(z) as

n → ∞, so also FXn(z) > x for large n, which implies that Yn(x) ≤ z. Again, by taking

continuity points z > Y (x) that are arbitrarily close to Y (x) we get that lim supn→∞ Yn(x) ≤
Y (x). Combining these last two results shows that Yn(x) → Y (x) which was what we

wanted.

11.2 Examples

1. Normal convergence: We showed that if X1, X2, . . . are i.i.d. Binom(1, p) r.v.’s and

Sn =
∑n

k=1Xk, then
Sn − nE(X1)√

nσ(X1)
=⇒ N(0, 1).
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Similarly, using explicit computations (see the homework) it is not too difficult to

see that this is also true when X1 ∼ Poisson(1), X1 ∼ Exp(1), and in other specific

examples. The central limit theorem generalizes this claim to any i.i.d. sequence with

finite variance.

2. Waiting for rare events: If for each 0 < p < 1 we have a r.v. Xp ∼ Geom0(p), then

P(Xp ≥ n) = (1− p)n−1. It follows that

P(pXp > x) = (1− p)bx/pc −−→
p↓0

e−x, (x > 0),

so

pXp =⇒ Exp(1) as p ↓ 0.

3. Pólya’s urn: Let Xn be the number of white balls in the Pólya urn experiment after

starting with one white ball and one black ball and performing the experiment for n

steps (so that there are n + 2 balls). In a homework exercise we showed that Xn is a

discrete uniform r.v. on {1, 2, . . . , n+ 1}. It follows easily that the proportion of white

balls in the urn converges in distribution:

Xn

n+ 2
=⇒ U(0, 1).

4. Gumbel distribution: If X1, X2, . . . are i.i.d. Exp(1) random variables, and Mn =

max(X1, . . . , Xn), we showed in a homework exercise that

P(Mn − log n ≤ x) −−−→
n→∞

e−e
−x
, x→∞

It follows that

Mn − log n =⇒ F

where F (x) = exp (−e−x) is called the Gumbel distribution.

11.3 Compactness and tightness

Theorem 11.3 (Helly’s selection theorem). If (Fn)∞n=1 is a sequence of distribution functions,

then there is a subsequence Fnk and a right-continuous, nondecreasing function H : R→ [0, 1]

such that

Fnk(x) −−−→
n→∞

H(x)

holds for any x ∈ R which is a continuity point of H.
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Note. The subsequential limit H need not be a distribution function, since it may not

satisfy the properties limx→−∞H(x) = 0 or limx→∞H(x) = 1. For example, taking Fn =

FXn , where Xn ∼ U [−n, n], we see that Fn(x) → 1/2 for all x ∈ R. For a more interesting

example, take Gn = (Fn + FZn)/2 where Fn are as in the previous example, and Zn is some

sequence of r.v.’s that converges in distribution.

Proof. First, note that we can find a subsequence (nk)
∞
k=1 such that Fnk(r) converges to a

limit G(r) at least for any rational number r. This is done by combining the compactness of

the interval [0, 1] (which implies that for any specific a ∈ R we can always take a subsequence

to make the sequence of numbers Fn(a) converge to a limit) with a diagonal argument (for

some enumeration r1, r2, r3, . . . of the rationals, first take a subsequence to force convergence

at r1; then take a subsequence of that subsequence to force convergence at r2, etc.; now form

a subsequence whose k-th term is the k-th term of the k-th subsequence in this series).

Now, use G(·), which is defined only on the rationals and not necessarily right-continuous

(but is nondecreasing), to define a function H : R→ R by

H(x) = inf{G(r) : r ∈ Q, r > x}.

This function is clearly nondecreasing, and is also right-continuous, since we have

lim
xn↓x

H(xn) = inf{G(r) : r ∈ Q, r > xn for some n} = inf{G(r) : r ∈ Q, r > x} = H(x).

Finally, let x be a continuity point of H. To show that Fnk(x) → H(x), fix some ε > 0

and let r1, r2, s be rationals such that r1 < r2 < x < s and

H(x)− ε < H(r1) ≤ H(r2) ≤ H(x) ≤ H(s) < H(x) + ε.

Then since Fnk(r2) → G(r2) ≥ H(r1), and Fnk(s) → G(s) ≤ H(s), it follows that for

sufficiently large k we have

H(x)− ε < Fnk(r2) ≤ Fnk(x) ≤ Fnk(s) < H(x) + ε.

Therefore

H(x)− ε ≤ lim inf
n→∞

Fnk(x) ≤ lim sup
n→∞

Fnk(x) ≤ H(x) + ε,

and since ε was arbitrary this proves the claim.

68



Theorem 11.3 can be thought of as a kind of compactness property for probability dis-

tributions, except that the subsequential limit guaranteed to exist by the theorem is not

a distribution function. To ensure that we get a distribution function, it turns out that a

certain property called tightness has to hold.

Definition 11.4. A sequence (µn)∞n=1 of probability measures on (R,B) is called tight if for

any ε > 0 there exists an M > 0 such that

lim inf
n→∞

µn([−M,M ]) ≥ 1− ε.

A sequence of distribution functions (Fn)∞n=1 is called tight if the associated probability mea-

sures determined by Fn form a tight sequence, or, more explicitly, if for any ε > 0 there

exists an M > 0 such that

lim sup
n→∞

(1− Fn(M) + Fn(−M)) < ε.

A sequence of random variables is called tight if the sequence of their distribution functions

is tight.

Theorem 11.5. If (Fn)∞n=1 is a tight sequence of distribution functions, then there exists

a subsequence (Fnk)
∞
k=1 and a distribution function F such that Fnk =⇒ F . In fact, any

subsequential limit H as guaranteed to exist in the previous theorem is a distribution function.

Exercise 11.6. Prove that the converse is also true, i.e., if a sequence is not tight then it

must have at least one subsequential limit H (in the sense of the subsequence converging to

H at any continuity point of H) that is not a proper distribution function. In particular, it

is worth noting that a sequence that converges in distribution is tight.

Proof. Let H be a nondecreasing, right-continuous function that arises as a subsequential

limit-in-distribution of a subsequence Fnk , that we know exists by Theorem 11.3. To show

that H is a distribution function, fix ε > 0, and let M > 0 be the constant guaranteed to

exist in the definition of tightness. Let x < −M be a continuity point of H. We have

H(x) = lim
k→∞

Fnk(x) ≤ lim sup
k→∞

Fnk(−M) ≤ lim sup
k→∞

(Fnk(−M) + (1− Fnk(M))) < ε,

so this shows that limx→−∞H(x) = 0. Similarly, let x > M be a continuity point of H. Then

H(x) = lim
k→∞

Fnk(x) ≥ lim inf
k→∞

Fnk(M) ≥ lim inf
k→∞

(Fnk(M))− Fnk(−M)) > 1− ε,

which shows that limx→∞H(x) = 1.
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The condition of tightness is not very restrictive, and in practical situations it is usually

quite easy to verify. The following lemma gives an example that is relevant for our purposes.

Lemma 11.7. If X1, X2, . . . are r.v.’s such that EXn = 0 and V(Xn) < C for all n, then

(Xn)n is a tight sequence.

Proof. Use Chebyshev’s inequality:

P(|Xn| > M) ≤ V(Xn)

M2
≤ C

M2
,

so, if ε > 0 is given, taking M =
√
C/ε ensures that the left-hand side is bounded by ε.
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Chapter 12: Characteristic functions

12.1 Definition and basic properties

A main tool in our proof of the central limit theorem will be that of characteristic functions.

The basic idea will be to show that

E

[
g

(
Sn − nµ√

nσ

)]
−−−→
n→∞

Eg(N(0, 1))

for a sufficiently large family of functions g. It turns out that the family of functions of the

form

gt(x) = eitx, (t ∈ R),

is ideally suited for this purpose. (Here and throughout, i =
√
−1).

Definition 12.1. The characteristic function of a r.v. X, denoted ϕX , is defined by

ϕX(t) = E
(
eitX

)
= E(cos(tX)) + iE(sin(tX)), (t ∈ R).

Note that we are taking the expectation of a complex-valued random variable (which

is a kind of two-dimensional random vector, really). However, the main properties of the

expectation operator (linearity, the triangle inequality etc.) that hold for real-valued random

variables also hold for complex-valued ones, so this will not pose too much of a problem.

Here are some simple properties of characteristic functions. For simplicity we denote

ϕ = ϕX where there is no risk of confusion.

1. ϕ(0) = Eei·0·X = 1.

2. ϕ(−t) = Ee−itX = E
(
eitX

)
= ϕ(t) (where z denotes the complex conjugate of a

complex number z).

3. |ϕ(t)| ≤ E
∣∣eitX∣∣ = 1 by the triangle inequality.

4. |ϕ(t) − ϕ(s)| ≤ E
∣∣eitX − eisX∣∣ = E

∣∣eisX (ei(t−s)X − 1
)∣∣ = E

∣∣ei(t−s)X − 1
∣∣. Note also

that E
∣∣eiuX − 1

∣∣→ 0 as u ↓ 0 by the bounded convergence theorem. It follows that ϕ

is a uniformly continuous function on R.

5. ϕaX(t) = EeiatX = ϕX(at), (a ∈ R).

71



6. ϕX+b(t) = Eeit(X+b) = eibtϕX(t), (b ∈ R).

7. Important: If X, Y are independent then

ϕX+Y (t) = E
(
eit(X+Y )

)
= E

(
eitXeitY

)
= E

(
eitX

)
E
(
eitY
)

= ϕX(t)ϕY (t).

Note that this is the main reason why characteristic functions are such a useful tool

for studying the distribution of a sum of independent random variables.

A note on terminology. If X has a density function f , then the characteristic function

can be computed as

ϕX(t) =

∫ ∞
−∞

fX(x)eitx dx.

In all other branches of mathematics, this would be called the Fourier transform1 of f .

So the concept of a characteristic function generalizes the Fourier transform. If µ is the

distribution measure of X, some authors write

ϕX(t) =

∫ ∞
−∞

eitxdµ(x)

(which is an example of a Lebesgue-Stieltjes integral) and call this the Fourier-Stieltjes

transform (or just the Fourier transform) of the measure µ.

12.2 Examples

No study of characteristic functions is complete without “dirtying your hands” a little to

compute the characteristic function for some important cases. The following exercise is

highly recommended

Exercise 12.2. Compute the characteristic functions for the following distributions.

1. Coin flips: Compute ϕX when P(X = −1) = P(X = 1) = 1/2 (this comes out

slightly more symmetrical than the usual Bernoulli r.v. for which P(X = 0) = P(X =

1) = 1/2).

1Well, more or less – it is really the inverse Fourier transform; but it will be the Fourier transform if we

replace t by −t, so that is almost the same thing
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2. Symmetric random walk: Compute ϕSn where Sn =
∑n

k=1 Xk is the sum of n i.i.d.

copies of the coin flip distribution above.

3. Poisson distribution: X ∼ Poisson(λ).

4. Uniform distribution: X ∼ U [a, b], and in particular X ∼ [−1, 1] which is espe-

cially symmetric and useful in applications.

5. Exponential distribution: X ∼ Exp(λ).

6. Symmetrized exponential: A r.v. Z with density function fZ(x) = e−|x|. Note

that this is the distribution of the exponential distribution after being “symmetrized” in

either of two ways: (i) We showed that if X, Y ∼ Exp(1) are independent then X − Y
has density e−|x|; (ii) alternatively, it is the distribution of an “exponential variable

with random sign”, namely ε ·X where X ∼ Exp(1) and ε is a random sign (same as

the coin flip distribution mentioned above) that is independent of X.

The normal distribution has the nice property that its characteristic function is equal,

up to a constant, to its density function.

Lemma 12.3. If Z ∼ N(0, 1) then

ϕZ(t) = e−t
2/2.

Proof.

ϕZ(t) =
1√
2π

∫ ∞
−∞

eitxe−x
2/2 dx =

1√
2π

∫ ∞
−∞

e−t
2/2e(x−it)2/2 dx

= e−t
2/2

(
1√
2π

∫ ∞
−∞

e(x−it)2/2 dx

)
.

As Durrett suggests in his “physics proof” (p. 92 in [Dur2010], 91 in [Dur2004]), the expres-

sion in parentheses is 1, since it is the integral of a normal density with mean it and variance

1. This is a nonsensical argument, of course (it being an imaginary number), but the claim

is true, easy and is proved in any complex analysis course using contour integration.

Alternatively, let Sn =
∑n

k=1 Xk where X1, X2, . . . are i.i.d. coin flips with P(Xk) = −1 =

P(Xk) = 1 = 1/2. We know from the de Moivre-Laplace theorem (Theorem 10.1) that

Sn/
√
n =⇒ N(0, 1),
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so that

ϕSn/
√
n(t) = E

(
eitSn/

√
n
)
−−−→
n→∞

ϕZ(t), (t ∈ R),

since the function x→ eitx is bounded and continuous. On the other hand, from the exercise

above it is easy to compute that ϕSn(t) = cosn(t), which implies that

ϕSn/
√
n(t) = cosn

(
t√
n

)
=

(
1− t2

2n
+O

(
t4

n2

))n
−−−→
n→∞

e−t
2/2.

As a consequence, letX ∼ N(0, σ2
1) and Y ∼ N(0, σ2

2) be independent, and let Z = X+Y .

Then

ϕX(t) = e−σ
2
1t

2/2, ϕY (t) = e−σ
2
2t

2/2,

so ϕZ(t) = e−(σ2
1+σ2)/2. This is the same as ϕW (t), where W ∼ N(0, σ2

1 + σ2
2). It would

be nice if we could deduce from this that Z ∼ N(0, σ2
1 + σ2

2) (we already proved this fact

in a homework exercise, but it’s always nice to have several proofs of a result, especially

an important one like this one). This naturally leads us to an important question about

characteristic functions, which we consider in the next section.

12.3 The inversion formula

A fundamental question about characteristic functions is whether they contain all the infor-

mation about a distribution, or in other words whether knowing the characteristic function

determines the distribution uniquely. This question is answered (affirmatively) by the fol-

lowing theorem, which is a close cousin of the standard inversion formula from analysis for

the Fourier transform.

Theorem 12.4 (The inversion formula). If X is a r.v. with distribution µX , then for any

a < b we have

lim
T→∞

1

2π

∫ T

−T

e−iat − e−ibt

it
ϕX(t) dt = µX((a, b)) +

1

2
µX({a, b})

= P(a < X < b) +
1

2
P(X = a) +

1

2
P(X = b).
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Proof. Throughout the proof, denote ϕ(t) = ϕX(t) and µ = µX . For convenience, we use

the notation of Lebesgue-Stieltjes integration with respect to the measure µ, remembering

that this really means taking the expectation of some function of the r.v. X. Denote

IT =

∫ T

−T

e−iat − e−ibt

it
ϕ(t) dt =

∫ T

−T

∫ ∞
−∞

e−iat − e−ibt

it
eitxdµ(x) dt. (12)

Since e−iat−e−ibt
it

=
∫ b
a
e−ity dy is a bounded function of t (it is bounded in absolute value by

b− a), it follows by Fubini’s theorem that we can change the order of integration, so

IT =

∫ ∞
−∞

∫ T

−T

e−iat − e−ibt

it
eitxdt dµ(x)

=

∫ ∞
−∞

[∫ T

−T

sin(t(x− a))

t
dt−

∫ T

−T

sin(t(x− b))
t

dt

]
dµ(x)

=

∫ ∞
−∞

(R(x− a, T )−R(x− b, T )) dµ(x),

where we denote R(θ, T ) =
∫ T
−T sin(θt)/t dt. Note that in the notation of expectations this

can be written as IT = E (R(X − a, T )−R(X − b, T ) ). This can be simplified somewhat;

in fact, observe also that

R(θ, T ) = 2sgn(θ)

∫ |θ|T
0

sinx

x
dx = 2sgn(θ)S(|θ|T ),

where we denote S(x) =
∫ x

0
sin(u)
u

du and sgn(θ) is 1 if θ > 0, −1 if θ < 0 and 0 if θ = 0. By

a standard convergence test for integrals, the improper integral
∫∞

0
sinu
u
du = limx→∞ S(x)

converges; denote its value by C/4. Thus, we have shown that R(θ, T ) → 2sgn(θ)C as

T →∞, hence that

R(x− a, T )−R(x− b, T ) −−−→
T→∞


C a < x < b,

C/2 x = a or x = b,

0 x < a or x > b.

Furthermore, the functionR(x−a, T )−R(x−b, T ) is bounded in absolute value by 2 supx≥0 S(x).

It follows that we can apply the bounded convergence theorem in (12) to get that

IT −−−→
T→∞

CE(1a<X<b) + (C/2)E(1{X=a} + 1{X=b}) = Cµ((a, b)) + (C/2)µ({a, b}). (13)
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This is just what we claimed, minus the fact that C = 2π. This fact is a well-known integral

evaluation from complex analysis. We can also deduce it in a self-contained manner, by

applying what we proved to a specific measure µ and specific values of a and b for which we

can evaluate the limit in (12) directly. This is not entirely easy to do, but one possibility,

involving an additional limiting argument, is outlined in the next exercise; see also Exercise

1.7.5 on p. 35 in [Dur2010], (Exercise 6.6, p. 470 in Appendix A.6 of [Dur2004]) for a different

approach to finding the value of C.

Exercise 12.5. (Recommended for aspiring analysts...) For each σ > 0, let Xσ be

a r.v. with distribution N(0, σ2) and therefore with density fX(x) = (
√

2πσ)−1e−x
2/2σ2

and

characteristic function ϕX(t) = e−σ
2t2/2. For fixed σ, apply Theorem 12.4 in its weak form

given by (13) (that is, without the knowledge of the value of C), with parameters X = Xσ,

a = −1 and b = 1, to deduce the identity

C√
2πσ

∫ 1

−1

e−x
2/2σ2

dx =

∫ ∞
−∞

2 sin t

t
e−σ

2t2/2 dt.

Now multiply both sides by σ and take the limit as σ →∞. For the left-hand side this should

give in the limit (why?) the value (2C)/
√

2π. For the right-hand side this should give 2
√

2π.

Justify these claims and compare the two numbers to deduce that C = 2π.

The following theorem shows that the inversion formula can be written as a simpler

connection between the characteristic function and the density function of a random variable,

in the case when the characteristic function is integrable.

Theorem 12.6. If
∫∞
−∞ |ϕX(t)| dt < ∞, then X has a bounded and continuous density

function fX , and the density and characteristic function are related by

ϕX(t) =

∫ ∞
−∞

fX(x)eitx dx,

fX(x) =
1

2π

∫ ∞
−∞

ϕX(t)e−itx dt.

In the lingo of Fourier analysis, this is known as the inversion formula for Fourier

transforms.

Proof. This is a straightforward corollary of Theorem 12.4. See p. 95 in either [Dur2010] or

[Dur2004].
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12.4 The continuity theorem

Theorem 12.7. Let (Xn)∞n=1 be r.v.’s. Then:

(i) If Xn =⇒ X for some r.v. X, then ϕXn(t)→ ϕX(t) for all t ∈ R.

(ii) If the limit ϕ(t) = limn→∞ ϕXn(t) exists for all t ∈ R, and ϕ is continuous at 0, then

ϕ ≡ ϕX for some r.v. X, and Xn =⇒ X.

Proof. Part (i) follows immediately from the fact that convergence in distribution implies

that Eg(Xn) → Eg(X) for any bounded continuous function. It remains to prove the less

trivial claim in part (ii). Assume that ϕXn(t)→ ϕ(t) for all t ∈ R and that ϕ is continuous

at 0. First, we show that the sequence (Xn)∞n=1 is tight. Fixing an M > 0, we can bound

the probability P(|Xn| > M), as follows:

P(|Xn| > M) = E
(
1{|Xn|>M}

)
≤ E

[
2

(
1− M

2|Xn|

)
1{|Xn|>M}

]
≤ E

[
2

(
1− sin(2Xn/M)

2Xn/M

)
1{|Xn|>M}

]
.

But this last expression can be related to the behavior of the characteristic function near 0.

Denote δ = 2/M . Reverting again to the Lebesgue-Stieltjes integral notation, we have

E

[
2

(
1− sin(2Xn/M)

2Xn/M

)
1{|Xn|>M}

]
= 2

∫
|x|>2/δ

(
1− sin(δx)

δx

)
dµXn(x)

≤ 2

∫ ∞
−∞

(
1− sin(δx)

δx

)
dµXn(x) =

∫ ∞
−∞

1

δ

(∫ δ

−δ
(1− eitx) dt

)
dµXn(x).

Now use Fubini’s theorem to get that this bound can be written as

1

δ

∫ δ

−δ

∫ ∞
−∞

(1− eitx) dµXn(x) dt =
1

δ

∫ δ

−δ
(1− ϕXn(t)) dt −−−→

n→∞

1

δ

∫ δ

−δ
(1− ϕ(t)) dt

(the convergence follows from the bounded convergence theorem). So we have shown that

lim sup
n→∞

P(|Xn| > M) ≤ 1

δ

∫ δ

−δ
(1− ϕ(t)) dt.

But, because of the assumption that ϕ(t) → ϕ(0) = 1 as t → 0, it follows that if δ is

sufficiently small then δ−1
∫ δ
−δ(1 − ϕ(t)) dt < ε, where ε > 0 is arbitrary; so this establishes

the tightness claim.
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Finally, to finish the proof, let (nk)
∞
k=1 be a subsequence (guaranteed to exist by tightness)

such that Xnk =⇒ Y for some r.v. Y . Then ϕXnk (t)→ ϕY (t) = ϕ(t) as k →∞ for all t ∈ R,

so ϕ ≡ ϕY . This determines the distribution of Y , which means that the limit in distribution

is the same no matter what convergent in distribution subsequence of the sequence (Xn)n

we take. But this implies that Xn =⇒ Y (why? The reader is invited to verify this last

claim; it is best to use the definition of convergence in distribution in terms of expectations

of bounded continuous functions).

12.5 Moments

The final step in our lengthy preparation for the proof of the central limit theorem will be to

tie the behavior of the characteristic function ϕX(t) near t = 0 to the moments of X. Note

that, computing formally without regards to rigor, we can write

ϕX(t) = E(eitX) = E

[
∞∑
n=0

intnXn

n!

]
=
∞∑
n=0

inEXn

n!
tn.

So it appears that the moments of X appear as (roughly) the coefficients in the Taylor

expansion of ϕX around t = 0. However, for CLT we don’t want to assume anything beyond

the existence of the second moment, so a (slightly) more delicate estimate is required.

Lemma 12.8.
∣∣∣eix −∑n

m=0
(ix)m

m!

∣∣∣ ≤ min
(
|x|n+1

(n+1)!
, 2|x|n

n!

)
.

Proof. Start with the identity

Rn(x) := eix −
n∑

m=0

(ix)m

m!
=
in+1

n!

∫ x

0

(x− s)neis ds,

which follows from Lemma 10.3 that we used in the proof of Stirling’s formula. Taking the

absolute value and using the fact that |eis| = 1 gives

|Rn(x)| ≤ 1

n!

∣∣∣∣∫ x

0

|x− s|n ds
∣∣∣∣ =
|x|n+1

n!
. (14)

To get a bound that is better-behaved for large x, note that

Rn(x) = Rn−1(x)− (ix)n

n!
= Rn−1(x)− in

(n− 1)!

∫ x

0

(x− s)n−1 ds

=
in

(n− 1)!

∫ x

0

(x− s)n−1(eis − 1) ds.
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So, since |eis − 1| ≤ 2, we get that

|Rn(x)| ≤ 2

(n− 1)!

∣∣∣∣∫ x

0

|x− s|n−1 ds

∣∣∣∣ =
2|x|n

(n− 1)!
. (15)

Combining (14) and (15) gives the claim.

Now let X be a r.v. with E|X|n <∞. Letting x = tX in Lemma 12.8, taking expectations

and using the triangle inequality, we get that∣∣∣∣∣ϕX(t)−
n∑

m=0

imEXm

m!
tm

∣∣∣∣∣ ≤ E

[
min

(
|t|n+1|X|n+1

(n+ 1)!
,
2|t|n|X|n

n!

)]
. (16)

Note that in this minimum of two terms, when t is very small the first term gives a better

bound, but when taking expectations we need the second term to ensure that the expectation

is finite if X is only assumed to have a finite n-th moment.

Theorem 12.9. If X is a r.v. with mean µ = EX and V(X) <∞ then

ϕX(t) = 1 + iµt− EX2

2
t2 + o(t2) as t→ 0.

Proof. By (16) above, we have

1

t2

∣∣∣∣ϕX(t)−
(

1 + iµt− EX2

2
t2
)∣∣∣∣ ≤ E

[
min

(
|t| · |X|3/6, X2

)]
.

As t→ 0, the right-hand side converges to 0 by the dominated convergence theorem.
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Chapter 13: Central limit theorems

13.1 The case of i.i.d. r.v.’s

We are now ready to prove:

Theorem 13.1 (The central limit theorem). Let X1, X2, . . . be an i.i.d. sequence of r.v.’s

with finite variance. Denote µ = EX1, σ = σ(X1) and Sn =
∑n

k=0 Xk. Then as n→∞ we

have the convergence in distribution

Sn − nµ√
nσ

=⇒ N(0, 1).

Proof. For convenience, denote X̂k = (Xk − µ)/σ and Ŝn =
∑n

k=0 X̂k. Then

ϕŜn/
√
n(t) = ϕŜn(t/

√
n) =

n∏
k=1

ϕX̂k(t/
√
n) =

(
ϕX̂1

(t/
√
n)
)n
.

Note that EX̂1 = 0 and V(X̂1) = EX̂2
1 = 1. Therefore by Theorem 12.9, ϕX̂1

satisfies

ϕX̂1
(u) = 1− u2

2
+ o(u2)

as u→ 0. It follows that

ϕŜn/
√
n(t) =

(
1− t2

2n
+ o

(
t2

n

))n
−−−→
n→∞

e−t
2/2

for any t ∈ R. Using the continuity theorem (Theorem 12.7) and our previous computations,

it follows that Ŝn =⇒ N(0, 1), as claimed.

13.2 Generalizations

The CLT can be generalized in many ways. None of the assumptions (independence, identical

distributions, even finite variance) are entirely necessary. A central paradigm of probability

theory is that any random quantity that arises as a sum of many small contributions that are

either independent or not too strongly dependent, will converge to the normal distribution in

some asymptotic limit. Thousands of examples exist, but there is no single all-encompassing

theorem that includes all of them as a special case. Rather, probabilists have a toolbox of
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tricks and techniques that they try to apply in order to prove normal convergence in any

given situation. characteristic functions are among the more useful techniques. Another

important technique, the so-called moment method, involves the direct use of moments:

If we can show that E(W k
n ) → E(Zk), where (Wn)∞n=1 is the (normalized) sequence being

studied, and Z ∼ N(0, 1), then by Theorem 3.3.12 in [Dur2010] (p. 105) or Theorem (3.12)

in [Dur2004] (p. 109), that implies that Wn =⇒ N(0, 1).

We now discuss several examples of interesting generalizations of CLT.

13.2.1 Triangular arrays

Theorem 13.2 (Lindeberg-Feller CLT for triangular arrays). Let (Xn,k)1≤k≤n<∞ be a tri-

angular array of r.v.’s. Denote Sn =
∑n

k=1Xn,k (the sum of the n-th row). Assume that:

1. For each n, the r.v.’s (Xn,k)
n
k=1 are independent.

2. EXn,k = 0 for all n, k.

3. V(Sn) = σ2
n → σ2 <∞ as n→∞.

4. For all ε > 0, lim
n→∞

∑n
k=1 E

(
X2
n,k1{|Xn,k|>ε}

)
= 0.

Then Sn =⇒ N(0, σ2) as n→∞.

Proof. See [Dur2010], p. 110–111 or [Dur2004], p. 115–116. The proof uses the characteristic

function technique and is a straightforward extension of the proof for the i.i.d. case.

Example 13.3. (Record times and cycles in permutations). Let X1, X2, . . . be i.i.d. U(0, 1)

r.v.’s. Let An be the event that {Xn = max(X1, . . . , Xn)} (in this case, we say that n is a

record time). Let Sn =
∑n

k=1 1Ak be the number of record times up to time n. We saw in

a homework exercise that the Ak’s are independent events and P(Ak) = 1/k. This implies

that E(Sn) =
∑n

k=1
1
k

= Hn (the n-th harmonic number) and V(Sn) =
∑n

k=1
k−1
k2

. Note

that both E(Sn) and V(Sn) are approximately equal to log n, with an error term that is

O(1). Now taking Xn,k = (1Ak −k−1)/
√

V(Sn) in Theorem 13.2, it is easy to check that the

assumptions of the theorem hold. It follows that

Sn −Hn

σ(Sn)
=⇒ N(0, 1).
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Equivalently, because of the asymptotic behavior of E(Sn) and V(Sn) it is also true that

Sn − log n√
log n

=⇒ N(0, 1).

Note: Sn describes the distribution of another interesting statistic on random permutations.

It is not too difficult to show by induction (using an amusing construction often referred to

as the Chinese restaurant process) that if σ ∈ Sn is a uniformly random permutation on

n elements, then the number of cycles in σ is a random variable which is equal in distribution

to Sn.

13.2.2 Erdös-Kac theorem

Theorem 13.4 (Erdös-Kac theorem (1940)). Let g(m) denote the number of prime divisors

of an integer k (for example, g(28) = 2). For each n ≥ 1, let Xn be a uniformly random

integer chosen in {1, 2, . . . , n}, and let Yn = g(Xn) be the number of prime divisors of Xn.

Then we have
Yn − log log n√

log log n
=⇒ N(0, 1).

In other words, for any x ∈ R we have

1

n
#
{

1 ≤ k ≤ n : g(k) ≤ log log n+ k
√

log log n
}
−−−→
n→∞

Φ(x).

Proof. See [Dur2010], p. 114–117 or [Dur2004], p. 119–124. The proof uses the moment

method.

Note that Yn can be written in the form
∑

p≤n 1{p|Xn}, namely the sum over all primes

p ≤ n of the indicator of the event that Xn is divisible by p. The probability that Xn is

divisible by p is roughly 1/p, at least if p is significantly smaller than n. Therefore we can

expect Yn to be on the average around ∑
prime p≤n

1

p
,

a sum that is known (thanks to Euler) to behave roughly like log log n. The Erdös-Kac

theorem is intuitively related to the observation that these indicators 1{p|Xn} for different p’s

are also close to being independent (a fact which follows from the Chinese remainder theo-

rem). Of course, they are only approximately independent, and making these observations
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precise is the challenge to proving the theorem. In fact, many famous open problems in

number theory (even the Riemann Hypothesis, widely considered to be the most important

open problem in mathematics) can be formulated in terms of a statement about approxi-

mate independence (in some loose sense) of some arithmetic sequence relating to the prime

numbers.

13.2.3 The Euclidean algorithm

As a final example from number theory, consider the following problem: For some n ≥ 1,

choose Xn and Yn independently and uniformly at random in {1, 2, . . . , n}, and compute their

greatest common divisor (g.c.d.) using the Euclidean algorithm. Let Nn be the number of

division (with remainder) steps that were required. For example, if X = 58 and Y = 24

then the application of the Euclidean algorithm would result in the sequence of steps

(58, 24)→ (24, 10)→ (10, 4)→ (4, 2)→ (2, 0),

so 4 division operations were required (and the g.c.d. is 2).

Theorem 13.5 (CLT for the number of steps in the Euclidean algorithm; D. Hensley (1992)).

There exists a constant σ∞ (which has a very complicated definition) such that

Nn − 12 log 2
π2 log n

σ∞
√

log n
=⇒ N(0, 1).

Hensley’s theorem was in recent years significantly generalized and the techniques ex-

tended by Brigitte Vallée, a French mathematician. The fact that the average value of Nn is

approximately (12 log 2/π2) log n was previously known from work of Heilbronn and Dixon

in 1969–1970, using ideas dating back to Gauss, who discovered the probability distribution

now called the “Gauss measure”. This is the probability distribution on (0, 1) with den-

sity 1
log 2(1+x)

, which Gauss found (but did not prove!) describes the limiting distribution

of the ratio of a pair of independent U(0, 1) random variables after many iterations of the

division-with-remainder step in the Euclidean algorithm.
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Chapter 14: Additional topics

14.1 The Kolmogorov 0-1 law

In this section we prove a well-known and easy result due to Kolmogorov, the Kolmogorov

0-1 law. This will be useful in the next section.

Theorem 14.1 (Kolmogorov 0-1 law). Let X1, X2, . . . be a sequence of independent random

variables in some probability space (Ω,F ,P). An event A ∈ F is called a tail event if

A ∈ σ(Xn, Xn+1, . . .)

for all n. That is, one can tell whether A occurred or not by looking at the sequence

X1, X2, . . ., and the occurrence of A is unaffected by changing a finite number of Xk’s. (Note

that the set of tail events is a σ-algebra, called the tail σ-algebra of the sequence, and

denoted T ; formally, T = ∩n≥1σ(Xn, Xn+1, . . .)). Then for any tail event A we have that

P(A) = 0 or P(A) = 1.

Proof. It will be enough to prove the somewhat strange statement that the tail event A is

independent of itself, since in that case we’ll have

P(A) = P(A ∩ A) = P(A)P(A) = P(A)2,

which would imply the claim, since the only solutions to the equation x2 = x are x = 0

and x = 1. The fact that a tail event is independent of itself is a consequence of the

following two claims: 1. If A ∈ σ(X1, . . . , Xn) and B ∈ σ(Xn+1, Xn+2, . . .) then A and

B are independent. This follows by observing that ∪k≥1σ(Xn+1, Xn+2, . . . , Xn+k) is a π-

system generating σ(Xn+1, Xn+2, . . .), and for B in the π-system the claim is trivial. 2. If

A ∈ σ(X1, X2, . . .) and B ∈ T then A and B are independent. The fact that is true when

A ∈ σ(X1, . . . , Xn) for some n follows from claim 1. But ∪n≥1σ(X1, . . . , Xn) is a π-system

generating σ(X1, X2, . . .), so the same is true also for A in the generated σ-algebra.

Example 14.2. The events { lim
n→∞

Xn exist} and {
∑∞

n=1 Xn converges} are tail events.
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14.2 The Kolmogorov three-series theorem

As a further application of the Lindeberg-Feller central limit theorem, we prove the Kol-

mogorov three-series theorem (Theorem 9.6).

Proof of Theorem 9.6. Denote Yn = Xn1{|Xn|≤1}. Assume that the eponymous three series

∞∑
n=1

P(|Xn| > 1) =
∞∑
n=1

P(Xn 6= Yn), (17)

∞∑
n=1

E(Yn), (18)

∞∑
n=1

V(Yn) (19)

all converge. Applying Theorem 9.5 to the random variables Yn−E(Yn), from the assumption

that (19) converges we infer that the series
∑∞

n=1

(
Yn−E(Yn)

)
converges almost surely. Since

(18) converges, this also means that
∑

n Yn converges almost surely. Since (17) converges

we get using the first Borel-Cantelli lemma that the event {Xn 6= Yn i.o.} has probability 0.

Outside this event, the series
∑

nXn converges if and only if
∑

n Yn converges, so
∑

nXn

also converges almost surely.

Next, for the converse claim, assume that
∑

nXn converges with positive probability. By

the Kolmogorov 0-1 law, it therefore converges a.s. We need to show that the series (17),

(18), (19) converge.

First, note that (17) must converge, since if it doesn’t, the second Borel-Cantelli lemma

implies that the event {|Xn| > 1 i.o.} has probability one,which would imply that
∑
Xn

diverges almost surely.

Second, assume by contradiction that (19) diverges, or equivalently that

vn :=
n∑
k=1

V(Yn)→∞ as n→∞.

We apply Theorem 13.2 to the triangular array

Xn,k = v−1/2
n (Yk − EYk) .

Assumptions 1, 2 and 3 of the theorem are trivially satisfied (with σ2 =
∑n

k=1 V(Xn,k) = 1

for all n). For assumption 4, note that |Xn,k| ≤ 2v
−1/2
n , so X2

n,k1{|Xn,k|>ε} = 0 for all k if
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vn > 4/ε2, which holds for n large enough. Thus, the assumptions of the theorem are valid

and hence we obtain the conclusion that Sn =
∑n

k=1Xn,k =⇒ N(0, 1) as n→∞. Define a

sequence (of numbers, not random variables)

tn = v−1/2
n

n∑
k=1

EYk = Sn − v−1/2
n

n∑
k=1

Yk,

and note that on the event {
∑

nXn converges} (in which case clearly
∑

n Yn also converges),

which we assumed has probability 1, Sn − tn = v
−1/2
n

∑n
k=1 Yk → 0 as n→∞. This is easily

seen to be in contradiction to the convergence in distribution of Sn to a limiting distribution

of a non-constant random variable. So we have shown that (19) converges.

Finally, having shown that (19) converges, we conclude from Theorem 9.5 that the se-

ries
∑

n (Yn − E(Yn)) converges almost surely. We already saw that on the event where

{
∑

nXn converges}, which we assumed has positive probability, also
∑

n Yn converges, and

therefore the series
∑

n E(Yn) =
∑(

Yn − (Yn − E(Yn))
)

also converges.

14.3 The Poisson limit law

The Poisson distribution is the one-parameter family of distributions Poisson(λ), λ > 0,

where X ∼ Poisson(λ) is a discrete random variable satisfying

P(X = k) = e−λ
λk

k!
, k = 0, 1, 2, . . .

This distribution arises naturally as measuring the number of successful coin tossing exper-

iments when one performs a large number of independent coin tosses with equal bias, as

long as the expected number of successes remains bounded away from 0 and ∞. That is,

if X1, X2, . . . , Xn denote i.i.d. Bernoulli random variables with bias p = p(n) (which is a

function of n0, and Sn =
∑n

k=1, then if n · p(n) → λ as n → ∞, it is a simple exercise to

check that

Sn =⇒ Poisson(λ). (20)

As in the case of the Central Limit Theorem, it turns out that the i.i.d. condition can

be significantly weakened, so in fact the Poisson distribution arises almost universally as the

limit law for counting numbers of “rare events,”, i.e., sums of indicator functions of many
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independent or weakly correlated events each of which has a small chance of success, in

the asymptotic regime in which the expected number of successes converges to a constant.

For this reason, the Poisson distribution is considered an excellent model for many real-life

phenomena, e.g.:

• The number of typographical errors in a web page or book chapter.

• The number of radioactive particles emitted from a chunk of radioactive material in a

unit of time.

• The number of cars passing a point on a remote desert road in an hour.

• The number of incandescent light-bulbs burning out in your house each month.

• Etc. (try to think of more examples from science or your daily life...)

Our goal is to prove the following generalization of (20), analogous to the Lindeberg-Feller

extension of the Central Limit Theorem. The technique used in the proof is also similar and

uses characteristic functions.

Theorem 14.3. Let (Xn,m)1≤m≤n be a triangular array of random variables such that for

each n ≥ 1, the random variables Xn,1, . . . , Xn,n are independent, and each Xn,m satisfies

P(Xn,m = 1) = pn,m,P(Xn,m = 0) = 1 − pn,m. Denote Sn =
∑n

m=1Xm. Assume that the

biases (pn,m)n,m satisfy the following conditions:

(i) ESn =
∑n

m=1 pn,m → λ ∈ (0,∞) as n→∞.

(ii) max1≤m≤n pn,m → 0 as n→∞.

Then Sn =⇒ Poisson(λ).

Proof. Let ϕn,m(t) = ϕXn,m(t) = E(exp(itXn,m)) = (1 − pn,m) + pn,me
it denote the charac-

teristic function of Xn,m. The ch. f. of Sn is then

ϕSn =
n∏
k=1

ϕn,m(t) =
n∏
k=1

(
(1− pn,m) + pn,me

it
)
.
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Our goal is to show that ϕSn(t) → ϕZ(t) where Z ∼ Poisson(λ). From a past homework

computation we know that

ϕZ(t) =
∞∑
k=0

e−λ
λk

k!
eikt = exp(λ(eit − 1)) = lim

n→∞

n∏
m=1

exp(pn,m(eit − 1)) (by assumption (i)),

so let us investigate how closely
∏n

m=1 ϕn,m(t) is approximated by
∏n

m=1 exp(pn,m(eit − 1)).

Note that for any 0 ≤ p ≤ 1, we have

| exp(p(eit − 1))| = exp(pRe(eit − 1)) ≤ exp(0) = 1,

|1− p+ peit| = |1 + p(eit − 1)| ≤ 1 (a convex combination of 1 and eit).

We therefore get using the exercise below that∣∣∣∣∣
n∏

m=1

exp
(
pn,m(eit − 1)

)
−

n∏
m=1

(1 + pn,m(eit − 1))

∣∣∣∣∣
≤

n∑
m=1

| exp
(
pn,m(eit − 1)

)
− (1 + pn,m(eit − 1))|

≤ 10
n∑

m=1

p2
n,m|eit − 1|2

≤ 40

(
max

1≤m≤n
pn,m

) n∑
m=1

pn,m −−−→
n→∞

0.

This is exactly what was needed to finish the proof.

Exercise 14.4. (i) Let z1, . . . , zn, w1, . . . , wn be complex numbers such that |zm|, |wm| ≤ 1

for all 1 ≤ m ≤ n. Prove that∣∣∣∣∣
n∏

m=1

zm −
n∏

m=1

wm

∣∣∣∣∣ ≤
n∑

m=1

|zm − wm|.

(ii) Prove that if z is a complex number with |z| ≤ 2 then

| exp(z)− (1 + z)| ≤ 10|z|2.

End of Part III
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Exercises

1. (a) If (Ω,F ,P) is a probability space and A,B ∈ F are events such that P(B) 6= 0,

the conditional probability of A given B is denoted P(A|B) and defined by

P(A|B) =
P(A ∩B)

P(B)
.

Prove the total probability formula: if A,B1, B2, . . . , Bk ∈ F such that Ω is the

disjoint union of B1, . . . , Bk and P(Bi) 6= 0 for 1 ≤ i ≤ k, then

P(A) =
k∑
i=1

P(Bi)P(A|Bi). (TPF)

(b) An urn initially contains one white ball and one black ball. At each step of the

experiment, a ball is drawn at random from the urn, then put back and another ball

of the same color is added. Prove that the number of white balls that are in the urn

after N steps is a uniform random number in {1, 2, . . . , N + 1}. That is, the event

that the number of white balls after step N is equal to k has probability 1/(N + 1)

for each 1 ≤ k ≤ N + 1. (Note: The idea is to use (TPF), but there is no need to

be too formal about constructing the relevant probability space — you can assume an

intuitive notion of probabilities.)

2. If Ω = {1, 2, 3}, list all the possible σ-algebras of subsets of Ω.

3. Let (Ω,F) be a measurable space. A pre-probability measure is a function P :

F → [0, 1] that satisfies

P(∅) = 0, P(Ω) = 1. (P1)

If a pre-probability measure P satisfies

A1, A2, . . . ∈ F are pairwise disjoint =⇒ P(∪∞n=1An) =
∞∑
n=1

P(An). (P2)

then we say that it is σ-additive. If it satisfies

A1, . . . , An ∈ F are pairwise disjoint =⇒ P(∪nk=1Ak) =
n∑
k=1

P(Ak). (P3)
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then we say that it is additive. Recall that we defined a probability measure to be

a pre-probability measure that is σ-additive.

We say that a pre-probability measure satisfies the continuity properties if it satisfies

(An)∞n=1 ⊂ F , An ⊂ An+1 ∀n =⇒ P(∪∞n=1An) = lim
n→∞

P(An), (CONT1)

(An)∞n=1 ⊂ F , An ⊃ An+1 ∀n =⇒ P(∩∞n=1An) = lim
n→∞

P(An). (CONT2)

Prove that a probability measure satisfies the continuity properties, and that an ad-

ditive pre-probability measure that satisfies the first continuity property (CONT1)

(“continuity from below”) is σ-additive, and is therefore a probability measure.

4. (a) A coin has some bias p ∈ (0, 1), so when tossed it comes up Heads with probability

p, or Tails with probability 1 − p. Suppose the coin is tossed N times independently,

and let AN,k denote the event that the result came up Heads exactly k times. Refresh

your memory concerning why the Binomial Distribution Formula, which says that

P(AN,k) =

(
N

k

)
pk(1− p)N−k, (BINOM)

is true. You may submit a short written explanation to test your understanding, but

it is not required.

(b) A group of N prisoners is locked up in a prison, each in a separate cell with no

ability to communicate with the other prisoners. Each cell contains a mysterious on/off

electrical switch. One evening the warden visits each of the prisoners and presents them

with the following dilemma: During the night each prisoner must choose whether to

leave his switch in the on or off position. If at midnight exactly one of the switches is

in the on position, all the prisoners will be set free in the morning; otherwise they will

all be executed!

The prisoners cannot coordinate their actions, but they are all rational, know calculus

and probability theory, and each is equipped with a random number generator. Find

the strategy that the prisoners will take to maximize their chance of survival, and

compute what that chance is, as a function of N and in the limit when N is very

large. For extra fun, try to guess in advance how big or small you expect the survival

likelihood to be, and see how your guess measures up to the actual result.
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5. (a) Let Ω be a set, and let S = {Fi}i∈I be some collection of σ-algebras of subsets of

Ω, indexed by some index set I (note that S is a set of subsets of subsets of Ω - try

to avoid dizziness!). Prove that the intersection of all the Fi’s (i.e., the collection of

subsets of Ω that are elements of all the Fi’s) is also a σ-algebra.

(b) Let Ω be a set, and let A be a collection of subsets of Ω. Prove that there exists a

unique σ-algebra σ(A) of subsets of Ω that satisfies the following two properties:

(i) A ⊂ σ(A) (in words, σ(A) contains all the elements of A).

(ii) σ(A) is the minimal σ-algebra satisfying property 1 above, in the sense that if F
is any other σ-algebra that contains all the elements of A, then σ(A) ⊂ F .

The σ-algebra σ(A) is called the σ-algebra generated by A.

Hint for (b). Let (Fi)i∈I be the collection of all σ-algebras of subsets of Ω that contain

A. This is a non-empty collection, since it contains for example P(Ω), the set of all

subsets of Ω. Any σ-algebra σ(A) that satisfies the two properties above is necessarily

a subset of any of the Fi’s, hence it is also contained in the intersection of all the Fi’s,
which is a σ-algebra by part (a) of the question.

6. (a) Let X be a random variable with distribution function FX and piecewise continuous

density function fX . Let [a, b] ⊂ R be an interval (possibly infinite) such that

P(X ∈ [a, b]) = 1,

and let g : [a, b] → R be a monotone (strictly) increasing and differentiable function.

Prove that the random variable Y = g(X) (this is the function on Ω defined by

Y (ω) = g(X(ω)), in other words the composition of the two functions g and X) has

density function

fY (x) =


fX(g−1(x))
g′(g−1(x))

x ∈ (g(a), g(b)),

0 otherwise.

(b) If λ > 0, we say that a random variable has the exponential distribution with

parameter λ if

FX(x) =

0 x < 0,

1− e−λx x ≥ 0,
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and denote this X ∼ Exp(λ). Find an algorithm to produce a random variable with

Exp(λ) distribution using a random number generator that produces uniform random

numbers in (0, 1). In other words, if U ∼ U(0, 1), find a function g : (0, 1) → R such

that the random variable X = g(U) has distribution Exp(λ).

(c) We say that a non-negative random variable X ≥ 0 has the lack of memory

property if it satisfies that

P(X ≥ t | X ≥ s) = P(X ≥ t− s) for all 0 < s < t.

Prove that exponential random variables have the lack of memory property.

(d) Prove that any non-negative random variable that has the lack of memory property

has the exponential distribution with some parameter λ > 0. (This is easier if one

assumes that the function G(x) = P(X ≥ x) is differentiable on [0,∞), so you can

make this assumption if you fail to find a more general argument).

7. (a) Prove the inclusion-exclusion principle: If A1, . . . , An are events in a probability

space (Ω,F ,P), then

P

(
n⋃
k=1

Ak

)
= s1 − s2 + s3 − s4 + s5 − . . .+ (−1)n−1sn,

where

s1 = P(A1) + P(A2) + . . .+ P(An) =
n∑
k=1

P(Ak),

s2 =
∑

1≤k1<k2≤n

P(Ak1 ∩ Ak2),

s3 =
∑

1≤k1<k2<k3≤n

P(Ak1 ∩ Ak2 ∩ Ak3),

...

sd =
∑

1≤k1<...<kd≤n

P(Ak1 ∩ Ak2 ∩ . . . ∩ Akd),

...

sn = P(A1 ∩ A2 ∩ . . . ∩ An).
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(b) N letters addressed to different people are inserted at random into N envelopes

that are labelled with the names and addresses of the N recipients, such that all N !

possible matchings between the letters and envelopes are equally likely. What is the

probability of the event that no letter will arrive at its intended destination? Compute

this probability for any N , and in the limit when N →∞.

8. Let F be the distribution function

F (x) =



0 x < 0,

1
3

+ 1
6
x 0 ≤ x < 1,

1
2

1 ≤ x < 2,

1− 1
4
e2−x x ≥ 2.

Compute the lower and upper quantile functions of F , defined by

X∗(p) = sup{x : F (x) < p},
X∗(p) = inf{x : F (x) > p},

(0 < p < 1).

A recommended way is to plot F on paper and then figure out the quantiles by “eye-

balling”. Of course, the answer should be spelled out in precise formulas.

9. A drunken archer shoots at a target hanging on a wall 1 unit of distance away. Since he

is drunk, his arrow ends up going in a random direction at an angle chosen uniformly

in (−π/2, π/2) (an angle of 0 means he will hit the target precisely) until it hits the

wall. Ignoring gravity and the third dimension, compute the distribution function (and

density function if it exists) of the random distance from the hitting point of the arrow

to the target.

10. (a) Let (Ω1,F1,P1) be a probability space, let (Ω2,F2) be a measurable space, and

let f : Ω1 → Ω2 be a measurable function. Verify that the function P2 : F2 → [0, 1]

defined by

P2(A) = P1(f−1(A))

is a probability measure. This probability measure is called the push-forward mea-

sure of P1 under f .
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(b) For a real number x, denote the integer part of x by

bxc = sup{n ∈ Z : n ≤ x},

and denote the fractional part of x by

{x} = x− bxc.

Let ((0, 1),B,P) be the unit interval with the σ-algebra of Borel subsets and the

Lebesgue probability measure, corresponding to the experiment of choosing a uniform

random number in (0, 1). Define a sequence of functions R1, R2, . . . : (0, 1)→ R by

Rn(x) =

0 0 ≤ {2n−1x} < 1/2,

1 1/2 ≤ {2n−1x} < 1.

For any n ∈ N and a1, a2, . . . , an ∈ {0, 1}, denote by Bn(a1, . . . , an) the set

Bn(a1, . . . , an) = {x ∈ (0, 1) : R1(x) = a1, R2(x) = a2, . . . , Rn(x) = an}.

Find a good explicit description for this set (“the set of all x’s such that ...”), and

deduce from it that

P(Bn(a1, . . . , an)) =
1

2n
.

(c) Define a function f : (0, 1)→ {0, 1}N by

f(x) = (R1(x), R2(x), R3(x), . . .).

Prove that f is a measurable function when the space {0, 1}N is equipped with the

σ-algebra generated by the sets

An(1) = {(x1, x2, . . .) ∈ {0, 1}N : xn = 1}.

(d) Prove that the push-forward of Lebesgue measure under f is the probability mea-

sure corresponding to the random experiment of an infinite sequence of fair coin tosses.
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11. Let X be an exponential r.v. with parameter λ, i.e., FX(x) = (1−e−λx)1[0,∞)(x). Define

random variables

Y = bXc := sup{n ∈ Z : n ≤ x} (“the integer part of X”),

Z = {X} := X − bXc (“the fractional part of X”).

(a) Compute the (1-dimensional) distributions of Y and Z (in the case of Y , since it’s

a discrete random variable it is most convenient to describe the distribution by giving

the individual probabilities P(Y = n), n = 0, 1, 2, . . .; for Z one should compute either

the distribution function or density function).

(b) Show that Y and Z are independent. (Hint: check that P(Y = n, Z ≤ t) =

P(Y = n)P(Z ≤ t) for all n and t.)

12. (a) Let X, Y be independent r.v.’s. Define U = min(X, Y ), V = max(X, Y ). Find ex-

pressions for the distribution functions FU and FV in terms of the distribution functions

of X and Y .

(b) Assume that X ∼ Exp(λ), Y ∼ Exp(µ) (and are independent as before). Prove

that min(X, Y ) has distribution Exp(λ + µ). Try to give an intuitive explanation in

terms of the kind of real-life phenomena that the exponential distribution is intended

to model (e.g., measuring the time for a light-bulb to burn out, or for a radioactive

particle to be emitted from a chunk of radioactive material).

(c) Let X1, X2, . . . be a sequence of independent r.v.’s, all of them having distribution

Exp(1). For each n ≥ 1 denote

Mn = max(X1, X2, . . . , Xn)− log n.

Compute for each n the distribution function of Mn, and find the limit (if it exists)

F (x) = lim
n→∞

FMn(x).

13. If X, Y are r.v.’s with a joint density fX,Y , the identity

P((X, Y ) ∈ A) =

∫∫
A

fX,Y (x, y) dx dy
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holds for all “reasonable” sets A ⊂ R2 (in fact, for all Borel-measurable sets, but that

requires knowing what that integral means for a set such as R2 \Q2...). In particular,

if X, Y are independent and have respective densities fX and fY , so fX,Y (x, y) =

fX(x)fY (y), then

FX+Y (t) = P(X + Y ≤ t) =

∫ ∞
−∞

∫ t−x

−∞
fX(x)fY (y) dy dx.

Differentiating with respect to t gives (assuming without justification that it is allowed

to differentiate under the integral):

fX+Y (t) =

∫ ∞
−∞

fX(x)fY (t− x) dx.

Use this formula to compute the distribution of X+Y when X and Y are independent

r.v.’s with the following (pairs of) distributions:

(a) X ∼ U [0, 1], Y ∼ U [0, 2].

(b) X ∼ Exp(1), Y ∼ Exp(1).

(c) X ∼ Exp(1), −Y ∼ Exp(1).

14. (a) Let (An)∞n=1 be a sequence of events in a probability space. Show that

1lim supAn = lim sup
n

1An .

(The lim-sup on the left refers to the lim-sup operation on events; on the right it refers

to the lim-sup of a sequence of functions; the identity is an identity of real-valued

functions on Ω, i.e., should be satisfied for each individual point ω ∈ Ω in the sample

space). Similarly, show (either separately or by relying on the first claim) that

1lim inf An = lim inf
n

1An .

(b) Let U be a uniform random variable in (0, 1). For each n ≥ 1 define an event An

by

An = {U < 1/n}.

Note that
∑∞

n=1 P(An) =∞. However, compute P(An i.o.) and show that the conclu-

sion of the second Borel-Cantelli lemma does not hold (of course, one of the assumptions

of the lemma also doesn’t hold, so there’s no contradiction).
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15. If P,Q are two probability measures on a measurable space (Ω,F), we say that P is

absolutely continuous with respect to Q, and denote this P << Q, if for any

A ∈ F , if Q(A) = 0 then P (A) = 0.

Prove that P << Q if and only if for any ε > 0 there exists a δ > 0 such that if A ∈ F
and Q(A) < δ then P (A) < ε.

Hint. Apply a certain famous lemma.

Note. The intuitive meaning of the relation P << Q is as follows: suppose there is a

probabilistic experiment, and we are told that one of the measures P or Q governs the

statistical behavior of the outcome, but we don’t know which one. (This is a situation

that arises frequently in real-life applications of probability and statistics.) All we can

do is perform the experiment, observe the result, and make a guess. If P << Q, any

event which is observable with positive probability according to P also has positive

Q-probability, so we can never rule out Q as the correct measure, although we may get

an event with Q(A) > 0 and P (A) = 0 that enables us to rule out P . If we also have

the symmetric relation Q << P , then we can’t rule out either of the measures.

16. A function ϕ : (a, b) → R is called convex if for any x, y ∈ (a, b) and α ∈ [0, 1] we

have

ϕ(αx+ (1− α)y) ≤ αϕ(x) + (1− α)ϕ(y).

(a) Prove that an equivalent condition for ϕ to be convex is that for any x < z < y in

(a, b) we have
ϕ(z)− ϕ(x)

z − x
≤ ϕ(y)− ϕ(z)

y − z
.

Deduce using the mean value theorem that if ϕ is twice continuously differentiable and

satisfies ϕ′′ ≥ 0 then it is convex.

(b) Prove Jensen’s inequality, which says that if X is a random variable such that

P(X ∈ (a, b)) = 1 and ϕ : (a, b)→ R is convex, then

ϕ(EX) ≤ E(ϕ(X)).

Hint. Start by proving the following property of a convex function: If ϕ is convex

then at any point x0 ∈ (a, b), ϕ has a supporting line, that is, a linear function
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y(x) = ax+ b such that y(x0) = ϕ(x0) and such that ϕ(x) ≥ y(x) for all x ∈ (a, b) (to

prove its existence, use the characterization of convexity from part (a) to show that

the left-sided derivative of ϕ at x0 is less than or equal to the right-sided derivative at

x0; the supporting line is a line passing through the point (x0, ϕ(x0)) whose slope lies

between these two numbers). Now take the supporting line function at x0 = EX and

see what happens.

17. If X is a random variable satisfying a ≤ X ≤ b, prove that

V(X) ≤ (b− a)2

4
,

and identify when equality holds.

18. Let X1, X2, . . . be a sequence of i.i.d. (independent and identically distributed) random

variables with distribution U(0, 1). Define events A1, A2, . . . by

An = {Xn = max(X1, X2, . . . , Xn)}

(if An occurred, we say that n is a record time).

(a) Prove that A1, A2, . . . are independent events.

Hint. for each n ≥ 1, let πn be the random permutation of (1, 2, . . . , n) obtained by

forgetting the values of (X1, . . . , Xn) and only retaining their respective order. In other

words, define

πn(k) = #{1 ≤ j ≤ n : Xj ≤ Xk}.

By considering the joint density fX1,...,Xn (a uniform density on the n-dimensional unit

cube), show that πn is a uniformly random permutation of n elements, i.e. P(πn =

σ) = 1/n! for any permutation σ ∈ Sn. Deduce that the event An = {πn(n) = n} is

independent of πn−1 and therefore is independent of the previous events (A1, . . . , An−1),

which are all determined by πn−1.

(b) Define

Rn =
n∑
k=1

1Ak = #{1 ≤ k ≤ n : k is a record time}, (n = 1, 2, . . .).
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Compute E(Rn) and V(Rn). Deduce that if (mn)∞n=1 is a sequence of positive numbers

such that mn ↑ ∞, however slowly, then the number Rn of record times up to time n

satisfies

P
(
|Rn − log n| > mn

√
log n

)
−−−→
n→∞

0.

19. Compute E(X) and V(X) when X is a random variable having each of the following

distributions:

(a) X ∼ Binomial(n, p).

(b) X ∼ Poisson(λ), i.e., P(X = k) = e−λ λ
k

k!
, (k = 0, 1, 2, . . .).

(c) X ∼ Geom(p), i.e,. P(X = k) = p(1− p)k−1, (k = 1, 2, . . .).

(d) X ∼ U{1, 2, . . . , n} (the discrete uniform distribution on {1, 2, . . . , n}).

(e) X ∼ U(a, b) (the uniform distribution on the interval (a, b)).

(f) X ∼ Exp(λ)

20. (a) If X, Y are independent r.v.’s taking values in Z, show that

P(X + Y = n) =
∞∑

k=−∞

P(X = k)P(Y = n− k) (n ∈ Z)

(compare this formula with the convolution formula in the case of r.v.’s with density).

(b) Use this to show that if X ∼ Poisson(λ) and Y ∼ Poisson(µ) are independent

then X + Y ∼ Poisson(λ + µ). (Recall that for a parameter λ > 0, we say that

X ∼ Poisson(λ) if P(X = k) = e−λλk/k! for k = 0, 1, 2, . . .).

(c) Use the same “discrete convolution” formula to prove directly that if X ∼ Bin(n, p)

and Y ∼ Bin(m, p) are independent then X+Y ∼ Bin(n+m, p). You may make use of

the combinatorial identity (known as the Vandermonde identity or Chu-Vandermonde

identity)

k∑
j=0

(
n

j

)(
m

k − j

)
=

(
n+m

k

)
, (n,m ≥ 0, 0 ≤ k ≤ n+m).

As a bonus, try to find a direct combinatorial proof for this identity. An amusing

version of the answer can be found at:
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http://en.wikipedia.org/wiki/Vandermonde’s identity.

21. Prove that if X is a random variable that is independent of itself, then X is a.s.

constant, i.e., there is a constant c ∈ R such that P(X = c) = 1.

22. (a) If X ≥ 0 is a nonnegative r.v. with distribution function F , show that

E(X) =

∫ ∞
0

P(X ≥ x) dx.

(b) Prove that if X1, X2, . . . , is a sequence of independent and identically distributed

(“i.i.d.”) r.v.’s, then

P(|Xn| ≥ n i.o.) =

0 if E|X1| <∞,

1 if E|X1| =∞.

(c) Deduce the following converse to the Strong Law of Large Numbers in the case of

undefined expectations: If X1, X2, . . . are i.i.d. and EX1 is undefined (meaning that

EX1+ = EX1− =∞) then

P

(
lim
n→∞

1

n

n∑
k=1

Xk does not exist

)
= 1.

23. Let X be a r.v. with finite variance, and define a function M(t) = E|X− t|, the “mean

absolute deviation of X from t”. The goal of this question is to show that the function

M(t), like its easier to understand and better-behaved cousin, E(X−t)2 (the “moment

of inertia” around t, which by the Huygens-Steiner theorem is simply a parabola in

t, taking its minimum value of V(X) at t = EX), also has some unexpectedly nice

propreties.

(a) Prove that M(t) ≥ |t− EX|.

(b) Prove that M(t) is a convex function.

(c) Prove that ∫ ∞
−∞

(
M(t)− |t− EX|

)
dt = V(X)
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(see hints below). Deduce in particular that M(t) − |t − EX| −−−−→
t→±∞

0 (again under

the assumption that V(X) < ∞). If it helps, you may assume that X has a density

fX .

(d) Prove that if t0 is a (not necessarily unique) minimum point of M(t), then t0 is a

median (that is, a 0.5-quantile) of X.

(e) Optionally, draw (or, at least, imagine) a diagram showing the graphs of the two

functions M(t) and |t− EX| illustrating schematically the facts (a)–(d) above.

Hints. For (c), assume first (without loss of generality - why?) that EX = 0. Divide

the integral into two integrals, on the positive real axis and the negative real axis. For

each of the two integrals, by decomposing |X−t| into a sum of its positive and negative

parts and using the fact that EX = 0 in a clever way, show that one may replace the

integrand (E|X − t| − |t|) by a constant multiple of either E(X − t)+ or E(X − t)−,

and proceed from there.

For (d), first, develop your intuition by plotting the function M(t) in a couple of

cases, for example when X ∼ Binom(1, 1/2) and when X ∼ Binom(2, 1/2). Second, if

t0 < t1, plot the graph of the function x→ |x−t1|−|x−t0|
t1−t0 , and deduce from this a formula

for M ′(t0+) and (by considering t1 < t0 instead) a similar formula for M ′(t0−), the

right- and left-sided derivatives of M at t0, respectively. On the other hand, think how

the condition that t0 is a minimum point of M(t) can be expressed in terms of these

one-sided derivatives.

24. (a) Let Γ(t) denote the Euler gamma function, defined by

Γ(t) =

∫ ∞
0

e−xxt−1 dx, (t > 0).

Show that the special value Γ(1/2) =
√
π of the gamma function is equivalent to the

integral evaluation
√

2π =
∫∞
−∞ e

−x2/2 dx (which is equivalent to the standard normal

density being a density function).

(b) Prove that the Euler gamma function satisfies for all t > 0 the identity

Γ(t+ 1) = tΓ(t).
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(This identity immediately implies the fact that Γ(n+ 1) = n! for integer n ≥ 0.)

(c) Find a formula for the values of Γ(·) at half-integers, that is,

Γ
(
n+ 1

2

)
= ?, (n ≥ 0).

25. Compute EXn when n ≥ 0 is an integer and X has each of the following distributions:

(a) X ∼ U(a, b)

(b) X ∼ Exp(λ)

(c) X ∼ Gamma(α, λ), i.e. fX(x) = λα

Γ(α)
e−λxxα−1, (x > 0).

(d) X ∼ Beta(a, b), i.e. fX(x) = 1
B(a,b)

xa−1(1− x)b−1, (0 < x < 1), where

B(a, b) =

∫ 1

0

ua−1(1− u)b−1 du =
Γ(a)Γ(b)

Γ(a+ b)

is the Euler beta function.

(e) X ∼ N(0, 1). In this case, identify EXn combinatorially as the number of match-

ings of a set of size n into pairs (for example, if a university dorm has only 2-person

housing units, then when n is even this is the number of ways to divide n students

into pairs of roommates; no importance is given to the ordering of the pairs).

(f) X ∼ N(1, 1). In this case, identify EXn combinatorially as the number of invo-

lutions (permutations which are self-inverse) of a set of n elements. To count the

involutions, it is a good idea to divide them into classes according to how many

fixed points they have. (Note: the expression for E(Xn) may not have a very

simple form.)

26. Let f : [0, 1]→ R be a continuous function. Prove that∫ 1

0

∫ 1

0

. . .

∫ 1

0

f

(
x1 + x2 + . . .+ xn

n

)
dx1 dx2 . . . dxn −−−→

n→∞
f(1/2).

Hint. Interpret the left-hand side as an expected value; use the laws of large numbers.

27. A bowl contains n spaghetti noodles arranged in a chaotic fashion. Bob performs the

following experiment: he picks two random ends of noodles from the bowl (chosen
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uniformly from the 2n possible ends), ties them together, and places them back in the

bowl. Then he picks at random two more ends (from the remaining 2n− 2), ties them

together and puts them back, and so on until no more loose ends are left.

Let Ln denote the number of spaghetti loops at the end of this process (a loop is

a chain of one or more spaghettis whose ends are tied to each other to form a cycle).

Compute E(Ln) and V(Ln). Find a sequence of numbers (bn)∞n=1 such that

Ln
bn

P−−−→
n→∞

1,

if such a sequence exists.

28. Martians communicate in a binary language with two symbols, 0 and 1. A text of

length n symbols written in the Martian language looks like a sequence X1, X2, . . . , Xn

of i.i.d. random symbols, each of which is 1 with probability p and 0 with probability

1− p. Here, p ∈ (0, 1) is a parameter (the “Martian bias”).

Define the entropy function H(p) by

H(p) = −p log2 p− (1− p) log2(1− p).

Prove the following result that effectively says that if n is large, then with high proba-

bility a Martian text of length n can be encoded into an ordinary (man-made) computer

file of length approximately n · H(p) computer bits (note that if p 6= 1/2 then this is

smaller than n, meaning that the text can be compressed by a linear factor):

Theorem. Let X1, X2, X3, . . . be a sequence of i.i.d. Martian symbols (i.e., Bernoulli

variables with bias p). Denote by Tn = (X1, . . . , Xn) the Martian text comprising the

first n symbols. For any ε > 0, if n is sufficiently large, the set {0, 1}n of possible texts

of length n can be partitioned into two disjoint sets,

{0, 1}n = An ∪Bn,

such that the following statements hold:

(a) P(Tn ∈ Bn) < ε

(b) 2n(H(p)−ε) ≤ |An| ≤ 2n(H(p)+ε).
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Notes: The texts in Bn can be thought of as the “exceptional sequences” – they

are the Martian texts of length n that are rarely observed. The texts in An are

called “typical sequences”. Because of the two-sided bounds the theorem gives on

the number of typical sequences, it follows that we can encode them in a computer

file of size approximately nH(p) bits, provided we prepare in advance a “code” that

translates the typical sequences to computer files of the appropriate size (this can

be done algorithmically, for example by making a list of all the typical sequences

sorted in lexicographic order, and matching them to successive binary strings of length

(H(p) + ε)n).

Hint. To prove the theorem, let Pn be the random variable given by

Pn =
n∏
k=1

(
pXk(1− p)1−Xk

)
.

Note that Pn measures the probability of the sequence that was observed up to time n.

(Somewhat unusually, in this problem the probability itself is thought of as a random

variable). Try to represent Pn in terms of cumulative sums of a sequence of i.i.d.

random variables. Apply the Weak Law of Large Numbers to that sequence, and see

where that gets you.

29. Prove the following one-sided version of Chebyshev’s inequality: For any r.v. X and

t ≥ 0,

P(X − EX ≥ t) ≤ σ2(X)

t2 + σ2(X)
.

Hint. Assume without loss of generality that EX = 0. For any a > 0, we have that

P(X ≥ t) ≤ P((X + a)2 ≥ (a+ t)2). Bound this using known methods and then look

for the value of a that gives the best bound.

30. Let X1, X2, . . . be a sequence of i.i.d. r.v.’s with distribution Exp(1). Prove that

P

(
lim sup
n→∞

Xn

log n
= 1

)
= 1.

31. Let A = (Xi,j)
n
i,j=1 be a random n × n matrix of i.i.d. random signs (i.e., random

variables such that P(Xi,j = −1) = P(Xi,j = 1) = 1/2). Compute Var(det(A)).
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32. (a) Read, in Durrett’s book (p. 63 in the 3rd edition) or on Wikipedia, the statement

and proof of Kronecker’s lemma.

(b) Deduce from this lemma, using results we learned in class, the following rate of

convergence result for the Strong Law of Large Numbers in the case of a finite variance:

If X1, X2, . . . is an i.i.d. sequence such that EX1 = 0, V(X1) <∞, and Sn =
∑n

k=1Xk,

then for any ε > 0,
Sn

n1/2+ε

a.s.−−−→
n→∞

0.

Notes. When X1 is a “random sign”, i.e., a random variable that takes the values

−1,+1 with respective probabilities 1/2, 1/2, the sequence of cumulative sums (Sn)∞n=1

is often called a (symmetric) random walk on Z, since it represents the trajectory

of a walker starting from 0 and taking a sequence of independent jumps in a random

(positive or negative) direction. An interesting question concerns the rate at which

the random walk can drift away from its starting point. By the SLLN, it follows that

almost surely, Sn = o(n), so the distance of the random walk from the origin almost

surely has sub-linear growth. By the exercise above, the stronger result Sn = o(n1/2+ε)

also holds for all ε. This is close to optimal, since by the Central Limit Theorem which

we will discuss soon, one cannot hope to show that Sn = o(n1/2). In fact, the “true”

rate of growth is given by the following famous theorem, whose proof is a (somewhat

complicated) elaboration on the techniques we have discussed.

Theorem (The Law of the Iterated Logarithm (A. Y. Khinchin, 1924)).

P

(
lim sup
n→∞

Sn√
2n log log n

= 1

)
= 1.

Therefore, by symmetry, also

P

(
lim inf
n→∞

Sn√
2n log log n

= −1

)
= 1.

It follows in particular that, almost surely, the random walk will cross the origin in-

finitely many times.

33. Prove that if F and (Fn)∞n=1 are distribution functions, F is continuous, and for any

t ∈ R we have Fn(t)→ F (t) as n→∞, then the convergence is uniform in t.

105



34. Let ϕ(x) = (2π)−1/2e−x
2/2 be the standard normal density function.

(a) If X1, X2, . . . are i.i.d. Poisson(1) random variables and Sn =
∑n

k=1Xk (so Sn ∼
Poisson(n)), show that if n is large and k is an integer such that k ≈ n+ x

√
n then

P(Sn = k) ≈ 1√
n
ϕ(x).

Hint. Use the fact that log(1 + u) = u− u2/2 +O(u3) as u→ 0.

(b) Find limn→∞ e
−n∑n

k=0
nk

k!
.

(c) If X1, X2, . . . are i.i.d. Exp(1) random variables and denote Sn =
∑n

k=1Xk (so

Sn ∼ Gamma(n, 1)), Ŝn = (Sn − n)/
√
n. Show that if n is large and x ∈ R is fixed

then the density of Ŝn satisfies

fŜn(x) ≈ ϕ(x).

4. Prove that if X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) are independent r.v.’s, then

X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

Hint. First, show why it is enough to prove the following statement: If U, V ∼ N(0, 1)

are independent and a2 + b2 = 1, then W = aU + bV ∼ N(0, 1). Then, to prove this,

introduce another auxiliary variable Z = −bU +aV , and consider the two-dimensional

transformation (U, V )→ (W,Z). Apply the formula

fφ(U,V )(w, z) =
1

|Jφ(φ−1(w, z))|
fU,V (φ−1(w, z))

for the density of a transformed random 2-d vector to get the joint density of W,Z.

35. (a) Prove that if X, (Xn)∞n=1 are random variables such that Xn → X in probability

then Xn =⇒ X.

(b) Prove that if Xn =⇒ c where c ∈ R is a constant, then Xn → c in probability.

(c) Prove that if Z, (Xn)∞n=1, (Yn)∞n=1 are random variables such that Xn =⇒ Z and

Xn − Yn → 0 in probability, then Yn =⇒ Z.
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36. (a) Let X, (Xn)∞n=1 be integer-valued r.v.’s. Show that Xn =⇒ X if and only if

P(Xn = k)→ P(X = k) for any k ∈ Z.

(b) If λ > 0 is a fixed number, and for each n, Zn is a r.v. with distribution

Binomial(n, λ/n), show that

Zn =⇒ Poisson(λ).

37. Let f(x) = (2π)−1/2e−x
2/2 be the density function of the standard normal distribution,

and let Φ(x) =
∫ x
−∞ f(u) du be its c.d.f. Prove the inequalities

1

x+ x−1
f(x) ≤ 1− Φ(x) ≤ 1

x
f(x), (x > 0). (21)

Note that for large x this gives a very accurate two-sided bound for the tail of the

normal distribution. In fact, it can be shown that

1− Φ(x) = f(x) · 1

x+ 1
x+ 2

x+ 3

x+ 4
x+...

which gives a relatively efficient method of estimating Φ(x).

Hint. To prove the upper bound in (21), use the fact that for t > x we have e−t
2/2 ≤

(t/x)e−t
2/2. For the lower bound, use the identity

d

dx

(
e−x

2/2

x

)
= −

(
1 +

1

x2

)
e−x

2/2

to compute
∫∞
x

(1+u−2)e−u
2/2 du. On the other hand, show that this integral is bounded

from above by (1 + x−2)
∫∞
x
e−u

2/2 du.

38. (a) Let X1, X2, . . . be a sequence of independent r.v.’s that are uniformly distributed

on {1, . . . , n}. Define

Tn = min{k : Xk = Xm for some m < k}.

If the Xj’s represent the birthdays of some sequence of people on a planet in which

the calendar year has n days, then Tn represents the number of people in the list who
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have to declare their birthdays before two people are found to have the same birthday.

Show that

P(Tn > k) =
k−1∏
m=1

(
1− m

n

)
, (k ≥ 2),

and use this to prove that
Tn√
n

=⇒ Fbirthday,

where Fbirthday is the distribution function defined by

Fbirthday(x) =

0 x < 0,

1− e−x2/2 x ≥ 0

(note: this is not the same as the normal distribution!)

(b) Take n = 365. Assuming that the approximation FTn/
√
n ≈ Fbirthday is good for such

a value of n, estimate what is the minimal number of students that have to be put into a

classroom so that the probability that two of them have the same birthday exceeds 50%.

(Ignore leap years, and assume for simplicity that birthdays are distributed uniformly

throughout the year; in practice this is not entirely true.)

39. Consider the following two-step experiment: First, we choose a uniform random vari-

able U ∼ U(0, 1). Then, conditioned on the event U = u, we perform a sequence of n

coin tosses with bias u, i.e., we have a sequence X1, X2, . . . , Xn such that conditioned

on the event U = u, the Xk’s are independent and have distribution Binom(1, u).

(Note: without this conditioning, the Xk’s are not independent!)

Let Sn =
∑n

k=1Xk. Assume that we know that Sn = k, but don’t know the value

of U . What is our subjective estimate of the probability distribution of U given this

information? Show that the conditional distribution of U given that Sn = k is the beta

distribution Beta(k + 1, n− k + 1). In other words, show that

P(U ≤ x | Sn = k) =
1

B(k, n− k)

∫ x

0

uk(1− u)n−k du, (0 ≤ x ≤ 1).

Note: This problem has been whimsically suggested by Laplace in the 18th century as

a way to estimate the probability that the sun will rise tomorrow, given the knowledge
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that it has risen in the last n days. (Of course, this assumes the unlikely theological sce-

nario whereby at the dawn of history, a U(0, 1) random number U was drawn, and that

subsequently, every day an independent experiment was performed with probability U

of success, such that if the experiment is successful then the sun rises.)

Hint. Use the following density version of the total probability formula: If A is an

event and X is a random variable with density fX , then

P(A) =

∫
R
fX(u)P(A | X = u) du.

Note that we have not defined what it means to condition on a 0-probability event

(this is a somewhat delicate subject that we will not discuss in this quarter) — but

don’t worry about it, it is possible to use the formula in computations anyway and get

results.

40. Let Z1, Z2, . . . be a sequence of i.i.d. random variables with the standard normal N(0, 1)

distribution. For each n, define the random vector

Xn = (Xn,1, . . . , Xn,n) =
1

(
∑n

i=1 Z
2
i )

1/2
(Z1, . . . , Zn)

(a) The distribution of the random vector Xn is called the uniform distribution on the

(n − 1)-dimensional sphere Sn−1 = {x ∈ Rn : ||x|| = 1}. Explain why this makes

intuitive sense, and if possible explain rigorously what conditions this distribution

satisfies that justifies describing it by this name.

(b) Show that
√
nXn,1 =⇒ N(0, 1) as n→∞.

Hint. Use the law of large numbers.

(c) For each n ≥ 1, find the density function of the coordinate Xn,1. Optionally, use

this to give an alternative solution to part (b) above.

Hint. Do it first for n = 2 and n = 3, and generalize using ideas from multivariate

calculus. For n = 3, you should find that X3,1 ∼ U [−1, 1], a geometric fact which was

known to Archimedes.

41. Compute the characteristic functions for the following distributions.

109



(a) Poisson distribution: X ∼ Poisson(λ).

(b) Geometric distribution: X ∼ Geom(p) (assume a geometric that starts at 1).

(c) Uniform distribution: X ∼ U [a, b], and in particular X ∼ [−1, 1] which is

especially symmetric and useful in applications.

(d) Exponential distribution: X ∼ Exp(λ).

(e) Symmetrized exponential: A r.v. Z with density function fZ(x) = 1
2
e−|x|.

Note that this is the distribution of the exponential distribution after being “sym-

metrized” in either of two ways: (i) We showed that if X, Y ∼ Exp(1) are inde-

pendent then X − Y has density 1
2
e−|x|; (ii) alternatively, it is the distribution of

an “exponential variable with random sign”, namely ε ·X where X ∼ Exp(1) and

ε is a random sign (same as the coin flip distribution mentioned above) that is

independent of X.

42. (a) If X is a r.v., show that Re(ϕX) (the real part of ϕX) and |ϕX |2 = ϕXϕX are also

characteristic functions (i.e., construct r.v.’s Y and Z such that ϕY (t) = Re(ϕX(t)),

ϕZ(t) = |ϕX(t)|2).

(b) Show that X is equal in distribution to −X if and only if ϕX is a real-valued

function.

43. (a) Let Z1, Z2, . . . be a sequence of independent r.v.’s such that the random series

X =
∑∞

n=1 Zn converges a.s. Prove that

ϕX(t) =
∞∏
n=1

ϕZn(t), (t ∈ R).

(b) Let X be a uniform r.v. in (0, 1), and let Y1, Y2, . . . be the (random) bits in its

binary expansion, i.e. each Yn is either 0 or 1, and the equation

X =
∞∑
n=1

Yn
2n

(22)

holds. Show that Y1, Y2, . . . are i.i.d. unbiased coin tosses (i.e., taking values 0, 1 with

probabilities 1/2, 1/2).
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(c) Compute the characteristic function ϕZ of Z = 2X−1 (which is uniform in (−1, 1)).

Use (22) to represent this in terms of the characteristic functions of the Yn’s (note that

the series (22) converges absolutely, so here there is no need to worry about almost

sure convergence). Deduce the infinite product identity

sin(t)

t
=
∞∏
n=1

cos

(
t

2n

)
, (t ∈ R). (23)

(d) Substitute t = π/2 in (23) to get the identity

2

π
=

√
2

2
·
√

2 +
√

2

2
·

√
2 +

√
2 +
√

2

2
· . . .

44. Let X be a r.v. From the inversion formula, it follows without much difficulty (see

p. 95 in Durrett’s book, 3rd or 4th eds.), that if ϕX is integrable, then X has a density

fX , and the density and characteristic function are related by

ϕX(t) =

∫ ∞
−∞

fX(x)eitx dx,

fX(x) =
1

2π

∫ ∞
−∞

ϕX(t)e−itx dt

(this shows the duality between the Fourier transform and its inverse). Use this and

the answer to a previous exercise to conclude that if X is a r.v. with the Cauchy

distribution (i.e., X has density fX(x) = 1/π(1 + x2)) then its characteristic function

is given by

ϕX(t) = e−|t|.

Deduce from this that if X, Y are independent Cauchy r.v.’s then any weighted average

λX + (1−λ)Y , where 0 ≤ λ ≤ 1, is also a Cauchy r.v. (As a special case, it follows by

induction that ifX1, . . . , Xn are i.i.d. Cauchy r.v.’s, then their average (X1+. . .+Xn)/n

is also a Cauchy r.v., which was a claim we made without proof earlier in the course.)
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