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Part I — Conditional Expectations and Martingales

Chapter 1: A motivating example for martingales

A martingale is a mathematical model for a sequence of fair gambles which has found many

applications in both theoretical and applied probability. (In particular, martingales play an

important role in the mathematics of investing and other areas of mathematical finance —

so knowing about them can actually make you money!) One of the most important facts

about martingales is that under fairly mild assumptions they converge (almost surely, or

in L1 or according to some other notion of convergence). This is made precise in a family

of important results known as martingale convergence theorems. Our goal in the next few

chapters will be to develop the basic theory of martingales and its applications and prove

some of the martingale convergence theorems.

We start our study of martingales with a motivating example: a famous experiment

known as Pólya’s urn experiment. In this model, an urn originally contains a white balls

and b black balls. The experimenter samples a uniformly random ball from the urn, examines

its color, then puts the ball back and adds another ball of the same color; this is repeated

to infinity. Let Xn denote the number of white balls in the urn after the nth step. Clearly

X0 = a and the distribution of Xn+1 can be expressed most naturally by conditioning on

Xn, namely

Xn+1
∣∣Xn=m

=

m+ 1 with probability m
n+a+b

,

m with probability n+a+b−m
n+a+b

.
(1)

It turns out that it is not too difficult to find an unconditional formula for the proba-

bility distribution of Xn. Let In be the indicator random variable of the event that in

the nth sampling step a white ball was drawn. First, an amusing observation is that the

probability of observing a particular sequence of white/black samples in the first n sam-

pling steps is only dependent on the number of white and black balls. That is, for any

sequence (x1, x2, . . . , xn) ∈ {0, 1}n the probability P(I1 = x1, . . . , In = xn) only depends on

k =
∑n

j=1 xj. To see this, note that if at a given stage t of the experiment the urn contained

A white and B black balls, the probability to draw “white then black” in the next two steps
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would be
A

t+ a+ b
· B

t+ a+ b+ 1
,

which is clearly equal to the probability of drawing “black then white,” given by

B

t+ a+ b
· A

t+ a+ b+ 1
.

Thus, permuting the 1’s and 0’s in the sequence (x1, . . . , xn) has no effect on the probability1.

It follows that for any such (x1, . . . , xn) with
∑
xj = k we have

P(Ij = xj, j = 1, . . . , n) = P(I1 = . . . = Ik = 1, Ik+1 = . . . = In = 0)

=
a(a+ 1) . . . (a+ k − 1) · b(b+ 1) . . . (b+ n− k − 1)

(a+ b)(a+ b+ 1) . . . (a+ b+ n)
. (2)

Therefore the probability of having p white balls after n steps is

P(Xn = p) =

(
n

p− a

)
P(I1 = . . . = Ip−a = 1, Ip−a+1 = . . . = In = 0)

=

(
n

p− a

)
a(a+ 1) . . . (a+ p− a− 1) · b(b+ 1) . . . (b+ n− p+ a− 1)

(a+ b)(a+ b+ 1) . . . (a+ b+ n)

for a ≤ p ≤ n + a. This formula is so explicit that it is easy to analyze the distribution of

Xn and show for example the convergence in distribution

Xn

n+ a+ b
=⇒ Beta(a, b). (3)

That is, the proportion of white balls in the urn converges to a limiting beta distribution.

Exercise 1.1. Prove (3).

What about stronger notions of convergence such as convergence in probability or almost

sure convergence? This seems like a harder question that requires understanding more

about the joint distribution of different Xn’s. It turns out that we also have almost sure

convergence, that is, the limit

Y = lim
n→∞

Xn

n+ a+ b
(4)

1A sequence of r.v.’s with this property is called exchangeable. There is an important result about

such sequences (that we will not talk about here) called De-Finetti’s theorem, which you might want to

read about.
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exists almost surely, and that the main relevant fact that guarantees that this convergence

takes place is that the proportions Mn = Xn/(n + a + b) form a martingale! To see what

this means, note that (1) can be rewritten in the form

Mn+1
∣∣Mn=m/(n+a+b)

=

 m+1
n+a+b+1

with probability m
n+a+b

,

m
n+a+b+1

with probability n+a+b−m
n+a+b

.

Thus, the value of Mn+1 can be either greater or smaller than the value of Mn, but the

amounts by which it increases or decreases, weighted by the respective probabilities of each

of these events, balance out, so that on average, the value stays the same:

m

n+ a+ b
=

m

n+ a+ b
· m+ 1

n+ a+ b+ 1
+
n+ a+ b−m
n+ a+ b

· m

n+ a+ b+ 1

The martingale property, which will immediately imply the a.s. convergence (4) through the

use of one of the martingale convergence theorems, is a generalization of this statement for

arbitrary sequences (Mn)∞n=1. It is written in the more abstract form:

E (Mn+1 |M1, . . . ,Mn) = Mn.

In this equation, the quantity on the left represents a new kind of random variable that

we still haven’t discussed, a conditional expectation. So, before developing the theory of

martingales we need a good understanding of conditional expectations. This is the subject

of the next chapter.
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Chapter 2: Conditional expectations

2.1 Elementary conditional expectations

Let X and Y be random variables defined on the same probability space (Ω,F ,P). We

wish to generalize the expectation operator E that takes a random variable X and returns a

number, to include the possibility of having additional information, encoded by the random

variable Y . Thus, we want to define the conditional expectation E (X |Y ) (“the condi-

tional expectation of X given Y ”). This is tricky to do for general random variables, so let’s

start with the simple case in which X and Y are both discrete random variables taking on

finitely many values with positive probability. That is, assume there are numbers x1, . . . , xm

and y1, . . . , yn such that

P (X ∈ {x1, . . . , xm}, Y ∈ {y1, . . . , yn}) = 1.

In this case, if we know that Y = yj for some 1 ≤ j ≤ n, then the conditional distribution

of X becomes

P(X = xi | Y = yj) =
P(X = xi, Y = yj)

P(Y = yj)
, 1 ≤ i ≤ m.

The expected value of this distribution is

E (X |Y = yj) =
n∑
i=1

P(X = xi | Y = yj)xi.

For each j, this is a number. It makes sense to define a random variable, not a number,

to be the random variable Z = E (X |Y ) that is equal to E (X = xi |Y = yj) on the event

{Y = yj}:

Z =
n∑
j=1

E (X |Y = yj) 1{Y=yj}.

Let us try to think of a more conceptual way to look at this definition. First of all, note that

the actual values y1, . . . , yn that the random variable Y takes are not so important. Rather,

what is important is that Y partitions the probability space Ω into disjoint subsets, such

that knowing which of the subsets we end up in changes our view of the distribution of X.

Therefore in the definition of Z we could insert in place of Y an object that encodes this
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slightly lesser information (i.e., not including the values of Y ). It turns out that the correct

object to use is the σ-algebra σ(Y ) generated by Y . For a general r.v., this is defined by

σ(Y ) =
{
{Y ∈ B} : B ∈ B(R)

}
= {Y −1(B) : B ∈ B(R)}

and is a sub-σ-algebra of F . For our discrete Y , it is the σ-algebra generated by the events

{Y = yj}, j = 1, . . . , n. So, given a sub-σ-algebra G ⊂ F generated by a family of disjoint

subsets A1, . . . , An ∈ F that partitions Ω, we can rewrite the definition of the conditional

expectation as the random variable Z = E (X | G) (“the conditional expectation of X given

the σ-algebra G”) given by

Z =
n∑
j=1

E (X |Aj) 1Aj .

Here, for each 1 ≤ j ≤ n the quantity E (X |Aj) is a number, the expected value of the

conditional distribution of X on the event Aj.

The next observation is that Z satisfies two properties, which seem rather trivial and

uninteresting in this context, but will turn out to be crucial to generalizing the definition of

E (X |Y ) to arbitrary random variables:

(i) Z is measurable with respect to G. That is, for each Borel set B ∈ B(R), the event

{Z ∈ B} ∈ G. Equivalent ways of saying the same thing are that σ(Z) ⊂ G, or that Z

would remain a random variable even if we change the probability space to (Ω,G,P).

(ii) For any event E ∈ G, we have E(Z1E) = E(X1E).

Exercise 2.1. Prove the above two properties.

2.2 General conditional expectations

The above discussion brings us to the following important definition.

Definition 2.2. Let X be a random variable on (Ω,F ,P) with E|X| < ∞, and let G be

a sub-σ-algebra of F . If a random variable Z satisfies properties (i) and (ii) above, we

say that Z is the conditional expectation of X given G, and denote Z = E (X | G).

If Y is another random variable on (Ω,F ,P), then taking G = σ(Y ) we may denote Z =

E (X |Y ) = E (X |σ(Y )), and refer to Z as the conditional expectation of X given Y .
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The use of the notation Z = E (X | G) contains the implicit assumption that the con-

ditional expectation is unique. This is true with the convention that random variables are

defined only up to almost sure equivalence. That is, if Z = Z ′ a.s. we consider Z and Z ′

to be the same random variable (in particular, any event involving Z will have the same

probability as the corresponding event involving Z ′). In fact, we will prove the following

result which also answers the key questions regarding existence and integrability.

Theorem 2.3. The conditional expectation exists, is an integrable random variable, and is

unique up to almost sure equivalence.

Proof of integrability. Let A = {Z > 0}. By (i), A,Ac ∈ G. Therefore by (ii), we have

E(Z1A) = E(X1A) ≤ E (|X|1A) ,

E(Z1Ac) = E(X1Ac) ≥ −E (|X|1Ac) ,

Subtracting the two equations gives

E|Z| = E(Z1A − Z1Ac) ≤ E (|X|(1A + 1Ac)) = E|X| <∞.

Proof of uniqueness. Assume that Z and Z ′ both satisfy properties (i), (ii). It follows that

E(Z1A) = E(Z ′1A) for all A ∈ G.

For some ε > 0, take A = {Z − Z ′ ≥ ε} to get that

0 = E((Z − Z ′)1A) ≥ εP(A),

so P(A) = 0. Since ε was an arbitrary positive number, this implies that Z ≤ Z ′ a.s.

Reversing the roles of Z and Z ′ gives that also Z ′ ≤ Z a.s., so Z = Z ′ a.s., which proves the

uniqueness claim.

The most tricky part in defining conditional expectations is proving that they exist.

The usual proof involves an application of an important result from measure theory, the

Radon-Nikodym theorem, which we review in the next section.
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2.3 Absolute continuity and the Radon-Nikodym theorem

We will formulate a version of the Radon-Nikodym theorem for probability spaces. The

theorem involves the useful concept of absolute continuity of measures.

Definition 2.4. Let P and Q be two probability measures on a measurable space (Ω,F). We

say that P is absolutely continuous with respect to Q, and denote P << Q, if for any

A ∈ F , if Q(A) = 0 then P (A) = 0.

There is an interesting intuitive interpretation to the notion of absolute continuity. In

many real-life situations involving probability we know the measurable space (Ω,F) but do

not know which probability measure correctly describes the statistical distribution of the

outcome of the experiment (for example, someone hands us a die to roll but we are not sure

if it is a fair or loaded die). Say there are two possible measures, P and Q, which we are

considering. It makes sense to perform the experiment and try to guess which of P and Q

is the correct one based on the result. If we are lucky, the result might fall into an event

A ∈ F which has the property that Q(A) = 0 but P (A) > 0, in which case we will know

that we can safely rule out Q. The relation P << Q means that this cannot happen; i.e.,

based on a single experiment, or even a finite number of repeated experiments, we can never

rule out Q as the correct measure, although we may become increasingly convinced that P

is the correct one as the statistical evidence mounts2. If P << Q and Q << P , meaning

both measures are mutually absolutely continuous w.r.t. each other, we can also never rule

out P so we may never be entirely sure which measure correctly describes the experiment.

The following lemma sheds further light on the notion of absolute continuity. Its proof

is a nice application of the first Borel-Cantelli lemma.

Lemma 2.5. P is absolutely continuous with respect to Q if and only if for any ε > 0 there

exists a δ > 0 such that if Q(A) < δ then P (A) < ε.

Proof. The “if” direction is immediate. To prove the “only if,” assume the negation of the

condition “for any ε > 0, . . . ” That is, there must exist an ε > 0 such that for any δ > 0

2The question of precisely how fast can one become convinced of the correct answer leads to the concept

of relative entropy, which will be the subject of a future homework problem.
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there is an event Aδ such that Q(Aδ) < δ but P (Aδ) ≥ ε. Now consider the event

E = {A1/2n i.o.} =
∞⋂
N=1

∞⋃
n=N

A1/2n

Since
∑∞

n=1 2−n < ∞, by the Borel-Cantelli lemma we get that Q(E) = 0. On the other

hand,

P (E) = lim
N→∞

P

[
∞⋃
n=N

A1/2n

]
≥ lim sup

N→∞
P (A1/2n) ≥ ε > 0.

This shows that P is not absolutely continuous with respect to Q.

If Q is a probability measure on (Ω,F), one way to construct a probability measure P

for which P << Q is to let

P (E) = EQ(Z1E), (E ∈ F). (5)

where Z is some nonnegative random variable on the probability space (Ω,F , Q) satisfying

E(Z) = 1 (the notation EQ(·) emphasizes that the expectation operator is the one associated

with the probability measure Q). The Radon-Nikodym theorem says that this construction

is the most general one possible.

Theorem 2.6 (The Radon-Nikodym theorem). P << Q if and only if there exists a random

variable Z on (Ω,F ,P), unique up to Q-a.s.-equivalence, such that Z ≥ 0 a.s. and the

relation P (E) = EQ(Z1E) holds for any E ∈ F . The random variable Z is referred to as

the Radon-Nikodym derivative of P relative to Q and denoted

Z =
dP

dQ
.

As mentioned above, the “if” part of the theorem is immediate, so it is really the “only

if” part which is interesting. The Radon-Nikodym theorem has several classical proofs

which may be read in measure theory and analysis textbooks. We will assume it without

proof for now, and later sketch a probabilistic proof that uses martingale theory. (This is

almost circular logic, since we will use conditional expectations to develop martingales and

conditional expectations rely on the Radon-Nikodym theorem. However, with a bit of care

one can make sure to use only the “elementary” version of conditional expectations and thus

11



obtain a genuinely new proof that does not make use of circular reasoning — this is one of

the nice examples of probability theory “giving back” to the rest of mathematics.)

Note that the Radon-Nikodym derivative generalizes the ordinary derivative: if Q is

Lebesgue measure on the measure space ((0, 1),B) and P << Q, then the random variable Z

in (5) can be thought of as the density function of a random variable whose distribution

measure is P , and can be computed as an actual derivative of the cumulative distribution

function of this random variable, i.e.,

Z(x) =
d

dx
P ((0, x)) a.s.

Another reason why it makes sense to think of Z as a kind of “derivative” is that if one uses

the Lebesgue integral notation
∫
E
ZdQ instead of our more probabilistic notation EQ(Z1E),

the relation (5) can be rewritten as an intuitive “change of measures” formula∫
E

dP =

∫
E

dP

dQ
dQ. (6)

Exercise 2.7. Prove that if P << Q are two probability measures on a measurable space

(Ω,F) then (6) generalizes to the identity∫
E

XdP =

∫
E

X
dP

dQ
dQ

which holds for any random variable X for which EP |X| <∞.

Proof of existence in Theorem 2.3. We are now in a position to prove the existence of con-

ditional expectations. Assume first that X ≥ 0. Define the measure Q on the measurable

space (Ω,G) by

Q(E) = EP(X1E), E ∈ G.

Note that Q is not a probability measure; rather, it is a finite measure, which is like a

probability measure but takes values in [0,∞) and is not required to satisfy Q(Ω) = 1.

However, the Radon-Nikodym theorem remains true for such measures (even more generally

for so-called σ-finite measures), as can easily be seen by replacing Q(·) by its scalar multiple

Q(Ω)−1Q(·), which is a probability measure. Now, the original probability measure P on

(Ω,F) can also be thought of as a measure on the measurable space (Ω,G). Furthermore, it
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is easy to see that Q << P. Thus, we are exactly in the situation described in the Radon-

Nikodym theorem, and we conclude that there is a random variable Z = dQ/dP , measurable

with respect to the σ-algebra G, such that for any E ∈ G we have

EP(Z1E) = Q(E) = EP(X1E).

Thus, Z satisfies the two properties (i)–(ii) in the definition of the conditional expectation,

so the conditional expectation Z = E (X | G) exists.

Finally, for a general random variable X with E|X| < ∞, write X = X+ − X− where

X+, X− ≥ 0 are the non-negative and non-positive parts of X, respectively. It is immediate

to check that the random variable Z = E (X+ | G)−E (X− | G) satisfies the properties (i)–(ii)

required of the conditional expectation E (X | G), so again we have shown that the conditional

expectation exists.

2.4 Properties and examples of conditional expectations

1. If X is measurable with respect to G (i.e., σ(X) ⊂ G) then E (X | G) = X. The

intuition is that if the information given to us (encoded by the σ-algebra G) is enough

to tell the value of X (see the exercise below), then our best guess for the average value

of X is X itself.

Exercise 2.8. Let X and Y be random variables defined on the same probability space

(Ω,F ,P). Show that σ(X) ⊂ σ(Y ) (in this case we say that X is measurable with

respect to Y ) if and only if there exists a Borel-measurable function h : R→ R such

that X = h(Y ) a.s.

2. In particular, if G = F is the original σ-algebra of the probability space (Ω,F ,P), then

E (X | G) = X.

3. At the opposite extreme, if G = {∅,Ω}, then E (X | G) = E(X), the usual expectation

of X. Intuitively, the minimal σ-algebra {∅,Ω} represents zero information.

4. More generally, if X is independent of G then E (X | G) = E(X), since E(X) is a

G-measurable random variable and for any E ∈ G, since X is independent of 1E,

E(X1E) = E(X)E(1E) = E(E(X)1E).
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5. Conditional expectation is a linear operator: E (aX + bY | G) = aE (X | G)+bE (Y | G) .

Proof. The random variable Z = aE (X | G) + bE (Y | G) is G-measurable and for any

E ∈ G we have

E(Z1E) = aE(E (X | G) 1E) + bE(E (Y | G) 1E) = aE(X1E) + bE(Y 1E)

= E((aX + bY )1E),

so Z satisfies the requirements that qualify it to be the conditional expectation of

aX + bY .

6. Monotonicity: If X ≤ Y then E (X | G) ≤ E (Y | G) a.s.

Proof. For any E ∈ G, we have that

E(E (X | G) 1E) = E(X1E) ≤ E(Y 1E) ≤ E(E (Y | G) 1E).

Taking E = {E (X | G)− E (Y | G) ≥ ε} for some arbitrary ε > 0, we get that E must

have probability 0. Since this is true for any ε > 0, the result follows.

7. Conditional form of the monotone convergence theorem: If Xn ≥ 0 and Xn ↑ X a.s. as

n→∞, where E(X) <∞, then E (Xn | G)↗ E (X | G) a.s. as n→∞.

Proof. By the monotonicity proved above, the conditional expectations E (Xn | G) are

increasing to an a.s. limiting r.v. Z, which is G-measurable. Note that E (Xn | G) ≤
E (X | G), which is an integrable upper bound, so we can apply the dominated conver-

gence theorem and deduce that for every E ∈ G,

E(Z1E) = E( lim
n→∞

E (Xn | G) 1E) = lim
n→∞

E(E (Xn | G) 1E) = lim
n→∞

E(Xn1E) = E(X1E).

Thus Z, qualifies as the conditional expectation of X given G.

8. Conditional form of Jensen’s inequality: If ϕ : R → R is a convex function and

E|X|,E|ϕ(X)| <∞ then ϕ(E (X | G)) ≤ E (ϕ(X) | G) .

14



Proof. The proof is similar to the non-conditional case, with a small twist: we observe

that ϕ(x) is a supremum of a countable number of linear functions, namely

ϕ(x) = sup{ax+ b : a, b ∈ Q, ax+ b ≤ ϕ(x) for all x},

then continue as in the original proof. The restriction to a countable number of linear

functions is necessary since all statements pertaining to conditional expectations are

almost sure statements, which means that there is an exceptional 0-probability set

being discarded, and we can only allow a countable number of these.

9. For p ≥ 1, E (|E (X | G)|p) ≤ E|X|p (i.e., the conditional expectation operator is a

contraction in Lp(Ω,G,P).)

Proof. By Jensen’s inequality, |E (X | G) |p ≤ E (|X|p | G). Now take expectations and

use the fact that:

10. E(E (X | G)) = E(X). This is a special case of:

11. If G1 ⊆ G2 ⊆ F are sub-σ-algebras then we have

E (E (X | G2) | G1) = E (X | G1) ,

E (E (X | G1) | G2) = E (X | G1) , (no, there is no typo here. . . )

Exercise 2.9. Prove this.

12. If X is G-measurable, then for any random variable Y , if E|Y |,E|XY | <∞ then

E (XY | G) = XE (Y | G) .

The idea here is that if X is measurable with respect to G then it appears like a constant

from the point of view of conditional expectations given the information contained in

G and can therefore be “pulled outside” of the expectation.

Proof. The random variable Z = XE (Y | G) is G-measurable, so we need to check that

for any E ∈ G,

E(Z1E) = E(XY 1E). (7)
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First, if X = 1B for some B ∈ G then

E(Z1E) = E(E (Y | G) 1B∩E) = E(Y 1B∩E) = E(XY 1E)

so the claim is true. By linearity it follows that if X is a “simple” random variable (a

linear combination of finitely many indicator variables, i.e., a random variable taking

finitely many values) then (7) still holds. Now, assume that X, Y ≥ 0, then we can

take a sequence (Xn)∞n=1 of simple random variables that are G-measurable and such

that Xn ↑ X. By the monotone converegence theorem, it follows that (7) holds also

in this case. Finally, for general X, Y one proves (7) by splitting X and Y into their

positive and negative parts.

2.5 Conditional expectation as the least mean square error esti-

mator

In this section we show that the conditional expectation is actually the solution to a very

natural estimation problem. Let X be a random variable with finite variance. Assume

that we wish to give the best possible estimate for the value of X, but only have access

to the information encoded by the σ-algebra G (i.e., for each event E ∈ G we know if E

occurred or did not occur). Our estimate will therefore be some random variable Y which is

G-measurable. A natural measure for the quality of the estimate is the mean square error

MSEX(Y ) = E(X − Y )2.

The problem of finding the Y that minimizes this error is very natural and of great practical

importance. Its solution is given in the following theorem.

Theorem 2.10. If E(X2) <∞, then E (X | G) is the unique (up to a.s. equivalence) random

variable Y that minimizes the mean square error MSEX(Y ) among all G-measurable random

variables.

Proof. Denote Z = E (X | G). If Y is a G-measurable random variable with EY 2 <∞ (if Y

does not have finite variance then clearly the MSE will be infinite), then

E(X − Y )2 = E[((X − Z)− (Y − Z))2]

= E(X − Z)2 + E(Y − Z)2 + 2E[(X − Z)(Y − Z)]
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Denote W = Y − Z. This is a G-measurable random variable, so by one of the properties

proved in the previous section,

E(WX) = E(E (WX | G)) = E(WE (X | G)) = E(WZ)

(note that E|WX| ≤ (EW 2EX2)1/2 <∞ by the Cauchy-Schwartz inequality) and therefore

E[(X − Z)(Y − Z)] = E[(X − Z)W ] = 0. We get that

E(X − Y )2 = E(X − Z)2 + E(Y − Z)2,

which is clearly minimized when (and only when) Y = Z a.s.

The above result has an interesting geometric interpretation. The expression E(X −Y )2

is the square of the L2-distance between X and Y in the Hilbert space L2(Ω,F ,P). The

theorem says that the conditional expectation operator E (· | G) takes a random variable

X and returns the closest point to X in the linear subspace L2(Ω,G,P) ⊂ L2(Ω,F ,P)

consisting of square-integrable G-measurable random variables. By elementary properties of

Hilbert spaces, this is equivalent to the statement that E (· | G) is the orthogonal projection

operator onto the subspace L2(Ω,G,P).

One way in which this geometric interpretation is useful is that it suggests an alternative

approach to defining conditional expectations that does not rely on the Radon-Nikodym

Theorem: first construct the conditional expectation operator E (· | G) for square-integrable

random variables by defining it as an orthogonal projection operator; then extend the defini-

tion to the space L1(Ω,F ,P) of integrable random variables by approximating such variables

by square-integrable ones. The book Probability With Martingales by David Williams is one

textbook where such an approach is developed.
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Chapter 3: Martingales

3.1 Definition and examples

We are ready to start studying the processes known as martingales, which generalize the

“balancing” property exhibited by the fraction of white balls in the Polyá urn experiment.

Let (Ω,F ,P) be a probability space, equipped with an increasing family

G1 ⊂ G2 ⊂ G3 ⊂ . . .

of sub-σ-algebras of F . We refer to such a family (Gn)∞n=1 as a filtration. The nth σ-algebra

Gn represents the state of knowledge (of an experimenter) about the probabilistic world

(Ω,F ,P) at time n. A sequence of random variables (Xn)∞n=1 is said to be adapted to the

filtration (Gn)∞n=1 if Xn is Gn-measurable for any n; that is, if the nth value in the sequence

is known at time n.

Definition 3.1. Given a filtration (Gn)∞n=1, a sequence (Xn)∞n=1 of random variables is called

a martingale with respect to the filtration if it satisfies:

M1. E|Xn| <∞ for all n ≥ 1.

M2. The sequence (Xn)∞n=1 is adapted to the filtration (Gn)∞n=1.

M3. E (Xn+1 | Gn) = Xn for all n ≥ 1.

If instead of property M3. the sequence satisfies the condition E (Xn+1 | Gn) ≥ Xn, it is called

a submartingale. If it satisfies E (Xn+1 | Gn) ≤ Xn, it is called a supermartingale

Example 3.2. (Simple random walk). Let X1, X2, . . . , be a sequence of i.i.d. random

variables with P(Xn = 1) = 1
2
, P(Xn = −1) = 1

2
. Denote Sn =

∑n
k=1Xn. Define the

filtration (Gn)n by Gn = σ(X1, . . . , Xn) (the σ-algebra generated by the first n random

signs). Then the sequence (Sn)∞n=1 (known as “simple symmetric random walk on Z”) is a

martingale with respect to (Gn)n, since

E (Sn | Gn−1) = E (Sn−1 +Xn | Gn−1) = Sn−1 + E (Xn | Gn−1) = Sn−1 + E(Xn) = Sn−1.

18



Example 3.3. (Random walk with balanced steps). More generally, the cumulative sums

Sn =
∑n

k=1 Sn of an i.i.d. sequence X1, X2, . . . where Xn ∼ F (the random walk with

i.i.d. steps distributed according to F ) is a martingale with respect to the filtration Gn =

σ(X1, . . . , Xn) if E(X1) = 0. Even more generally, the r.v.’s X1, X2, . . . can be assumed to

be independent but not identically distributed; if for any n we have that E|Xn| < ∞ and

EXn = 0, then (by the same computation as above) Sn is a martingale.

Example 3.4. (Revealing information). Let X be a random variable and let (Gn)∞n=1 be a

filtration. The sequence (Xn)∞n=1 defined by Xn = E (X | Gn) is a martingale. Intuitively, it

is the sequence of better and better estimates for the value of X that we can make as more

and more information (represented by the filtration) is revealed.

It is not difficult to check that if (Xn)∞n=1 is a martingale with respect to a filtration

(Gn)∞n=1 then (Xn)∞n=1 is also a martingale with respect to its “natural” filtration Hn =

σ(X1, . . . , Xn) ⊂ Gn. This illustrates the fact that the filtration (Gn) usually doesn’t play a

very major role, but is simply a convenient way to represent the information that is used to

compute the sequence.

Example 3.5. (Discrete harmonic functions on a graph). Let G = (V,E) be a graph

(assume V is finite or countable). A function h : V → R is called harmonic if it satisfies

the “mean value” property

h(x) =
1

deg(x)

∑
y∼x

h(y) (x ∈ V ),

where the notation y ∼ x means that x, y are neighbors and deg(x) is the number of neighbors

(the degree of x). Let X0, X1, X2, . . . be a simple random walk on G; that is, each Xn is

a V -valued random variable, and the distribution of Xn+1 is defined conditionally on Xn by

P(Xn+1 = y |Xn = x) =

 1
deg(x)

y ∼ x,

0 y � x.

The starting point X0 of the walk can be a deterministic vertex x or a distribution on V .

Let Gn = σ(X0, . . . , Xn). Define a sequence of real-valued random variables by Mn = h(Xn).

As an exercise, we leave to the reader to check that (Mn)∞n=0 is a martingale with respect to

the filtration (Gn)∞n=0
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Example 3.6. (“Double or nothing”). Let X1, X2, . . . be an i.i.d. sequence of random

variables satisfying P(Xn = 0) = 1
2
,P(Xn = 2) = 1

2
. Let Gn = σ(X1, . . . , Xn). Define

Mn =
∏n

k=1Xn. Then

E (Mn+1 | Gn) = E (MnXn+1 | Gn) = MnE (Xn+1 | Gn) = MnEXn+1 = Mn,

so (Mn)∞n=1 is a martingale with respect to the filtration (Gn)∞n=1. The meaning of the name

“double or nothing” should be obvious.

Example 3.7. (Multiplicative random walk). The previous example is a special case of

the following situation: let X1, X2, . . . be an i.i.d. sequence of nonnegative random variables

with E(X1) = 1. Then by the same computation as above, Mn =
∏n

k=1Xk is a martingale

with respect to the filtration Gn = σ(X1, . . . , Xn).

Example 3.8. (Alexander Calder mobile sculptures). The mobile sculptures pioneered by

the American sculptor Alexander Calder are a mechanical manifestation of a martingale

(Figure 1).

Figure 1: Some mobiles by Alexander Calder

The idea is that the nth random variable corresponds to the horizontal displacement of a

“node” in the mobile as one descends the tree of nodes starting from the upper support point

of the mobile. The fact that the tree is in static equilibrium corresponds to the statement

that the center of mass of the subtree supported below each node is at the same horizontal
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displacement as the node itself, which can be thought of as a version of the martingale

equation E (Xn+1 | Gn) = Xn.

Example 3.9. (Whippletrees). Another real-life example of the martingale idea is in the

mechanical device known as a whippletree, used to divide force evenly between several

draught animals towing a load (Figure 2).

Figure 2: An illustration of a whippletree (source: Wikipedia)

Theorem 3.10. 1. If (Xn)∞n=1 is a martingale w.r.t. a filtration (Gn)∞n=1, then for m < n,

E (Xn | Gm) = Xm.

2. If (Xn)∞n=1 is a supermartingale w.r.t. (Gn)∞n=1, then for m < n, E (Xn | Gm) ≤ Xm.

3. If (Xn)∞n=1 is a submartingale w.r.t. (Gn)∞n=1, then for m < n, E (Xn | Gm) ≥ Xm.

Proof. It is enough to prove claim 2., since 3. follows by applying 2. to −Xn, and 1. follows

by combining 2. and 3. Assume Xn is a supermartingale, then Xm ≥ E (Xm+1 | Gm) by the

definition, and by induction on k, Xm ≥ E (Xm+k | Gm), since if we showed this for k − 1

then we have that

Xm ≥ E (Xm+1 | Gm) ≥ E
(
E
(
Xm+1+(k−1) | Gm+1

)
| Gm

)
= E (Xm+k | Gm) .
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Theorem 3.11. 1. If (Xn)n is a martingale w.r.t. (Gn)n and ϕ : R → R is a convex

function such that E|ϕ(Xn)| <∞ for all n, then (ϕ(Xn))n is a submartingale.

2. If (Xn)n is a submartingale w.r.t. (Gn)n and ϕ : R → R is a weakly increasing convex

function such that E|ϕ(Xn)| <∞ for all n, then (ϕ(Xn))n is a submartingale.

Proof. By Jensen’s inequality, E (ϕ(Xn+1) | Gn) ≥ ϕ (E (Xn+1 | Gn)), and this is = ϕ(Xn) in

the case of the first claim, or ≥ ϕ(Xn) in the case of the second.

Corollary 3.12. Let p ≥ 1. If (Xn)n is a martingale w.r.t. (Gn)n and E|Xn|p < ∞ for all

n, then |Xn|p is a submartingale w.r.t. (Gn)n.

Corollary 3.13. 1. If (Xn)∞n=1 is a submartingale then
(
(Xn−a)+

)∞
n=1

is a submartingale

(where for a real number x, x+ = max(x, 0) is the positive part of x).

2. If (Xn)∞n=1 is a supermartingale then for any a ∈ R, (Xn ∧ a)∞n=1 is a supermartingale.

3.2 The martingale transform and investment strategies

Let (Gn)∞n=0 be a filtration. Assume that we are given a sequence (Xn)∞n=0 that is adapted to

the filtration. Each increment Xn −Xn−1 can be thought of as representing an investment

opportunity at time n. For example, Xn can represent the price of a stock or other financial

asset (which in the lingo of finance is referred to, somewhat ironically, as a “security”) on

day n, so that Xn − Xn−1 will be the gain or loss of an investor holding one unit of the

asset during day n. The martingale transform H •X is a new sequence of random vari-

ables representing the accumulated profits of an investor employing a predefined investment

strategy, represented by a sequence (Hn)∞n=1.
3

To make this more precise, we say that a sequence (Hn)∞n=1 is predictable with respect

to the filtration (Gn)∞n=0 if for any n ≥ 1, Hn is Gn−1-measurable. Think of Hn as representing

the number of investment units the investor holds during the nth trading day. An investment

strategy must have this property, since (unless the investor is equipped with a crystal ball)

the decision of how much to invest at time n must depend only on information available at

3The name “martingale transform” is a poor choice, as it seems to imply that H • X is defined only

when (Xn)n is a martingale. This is not the case, although it’s true that the most interesting cases are when

(Xn)n is a submartingale or supermartingale or both.
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time n − 1. Given a (Gn)n-adapted sequence (Xn)∞n=0 and a predictable sequence (Hn)∞n=1,

we define the sequence H •X by

(H •X)n =
n∑

m=1

Hm(Xm −Xm−1).

Theorem 3.14. 1. If (Xn)∞n=0 is a supermartingale and (Hn)∞n=1 is predictable, and for

any n, Hn is bounded and nonnegative, then H •X is a supermartingale.

2. If (Xn)∞n=0 is a submartingale and (Hn)∞n=1 is predictable, and for any n, Hn is bounded

and nonnegative, then H •X is a submartingale.

3. If (Xn)∞n=0 is a martingale and (Hn)∞n=1 is predictable, and for any n, Hn is bounded,

then H •X is a martingale.

Proof. We prove the first claim (the other ones are similar). It is obvious that (H •X)n is

adapted to (Gn)n, and furthermore, by the assumptions that Hn is bounded and nonnegative,

and the usual properties of conditional expectation, we get that

E ((H •X)n+1 | Gn) = E ((H •X)n | Gn) + E (Hn+1(Xn+1 −Xn) | Gn)

= (H •X)n +Hn+1E (Xn+1 −Xn | Gn) ≤ (H •X)n.

A random variable N taking values in {1, 2, . . .} ∪ {∞} is said to be a stopping time

with respect to the filtration (Gn)∞n=0 if for any n ≥ 0, the event {N = n} is in Gn. That

means that the decision to stop at time n depends only on information available at that

time. Given a stopping time N , one possible investment strategy (a version of the classic

“buy and hold”) is to buy one investment unit at time 0 and hold it until time N . In other

words, we may define a sequence (Hn)n by

Hn = 1{n≤N}, n ≥ 1.

Note that {n ≤ N} = {N ≤ n−1}c ∈ Gn−1, so (Hn)n is a predictable sequence, and we have

(H •X)n = XN∧n −X0.
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Theorem 3.15. If N is a stopping time and (Xn)∞n=0 is a supermartingale (respectively, sub-

martingale, martingale), then (Xn∧N)∞n=0 is a supermartingale (respectively, submartingale,

martingale).

Proof. By Theorem 3.14, XN∧n − X0 is a supermartingale. Adding the constant sequence

Yn = X0 to it (which is a martingale) gives a supermartingale.

3.3 The upcrossing inequality

An essential step on the way to the martingale convergence theorem is an inequality bounding

the expected number of times a submartingale may cross between two values a < b. Let

(Xn)n≥0 be a submartingale, and fix a < b. We define an increasing sequence of stopping

times

N0 < N1 < N2 < . . .

recursively by setting N0 = −1, and

N2k−1 = inf{m > N2k−2 : Xm ≤ a},

N2k = inf{m > N2k−1 : Xm ≥ b},

for each k ≥ 1. It is easy to check that the sequence

Hm =

1 if N2k−1 < m ≤ N2k for some k,

0 otherwise,

is a predictable sequence; it corresponds to the strategy of buying an investment unit as

soon as the price dips below a and selling the next time it goes above b. Let

Un = Un(a, b) = sup{k ≥ 0 : N2k ≤ n}.

We refer to Un as the number of upcrossings the sequence (Xn)n completed up to time n

(where an upcrossing represents a cycle of going from a value below a to a value above b).

Theorem 3.16. We have

EUn ≤
1

b− a
(E(Xn − a)+ − E(X0 − a)+) .
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Proof. Define Ym = a+ (Xm− a)+. By Corollary 3.13, (Ym)m is a submartingale. Note that

Ym ≤ a if and only if Xm ≤ a and Ym ≥ b if and only if Xm ≥ b, so the upcrossing number

associated with the sequence (Ym)m is Un, the same as for (Xm)m. Furthermore, we have

the inequality

(b− a)Un ≤ (H • Y )n,

since (H •Y ) would represent the profit made on using the investment strategy H to invest in

the sequence Ym; each of the Un upcrossings gives a profit of b−a, and there is possibly a last

incomplete stretch of investment when Ym dips to a (unlike Xm, Ym never goes strictly below

a) but has not yet increased above b, which gives additional nonnegative profit. Finally, by

Theorem 3.14, E((1−H) • Y )n ≥ 0, so we have

E(H • Y )n ≤ E(H • Y )n + E((1−H) • Y )n = E(1 • Y )n

= E(Yn − Y0) = E(Xn − a)+ − E(X0 − a)+.

Combining the two inequalities gives the result.

3.4 The martingale convergence theorem

With the help of the upcrossing inequality we can prove:

Theorem 3.17 (The martingale convergence theorem). If (Xn)∞n=0 is a submartingale with

supn≥0 E(Xn)+ <∞, then the limit

X = lim
n→∞

Xn

exists almost surely and satisfies E|X| <∞.

Proof. For each a < b, let

U(a, b) = sup
n≥0

Un(a, b)

denote the total number of (a, b)-upcrossings over the entire history of the sequence (which

may be infinite). Since

EUn(a, b) ≤ 1

b− a
E(Xn − a)+ ≤

1

b− a
[a+ E(Xn)+] ,
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by the assumption on supn E(Xn)+ and the monotone convergence theorem we also get that

EU(a, b) <∞, hence U(a, b) <∞ almost surely. It follows that the event

A =
⋃
a<b
a,b∈Q

{U(a, b) =∞}

has probability 0. On the almost sure complementary event Ac, the only way the sequence

Xn can diverge is by converging to ±∞. In other words, the limit

X = lim
n→∞

Xn

exists as a generalized r.v. taking values in R∪ {±∞}. But then by Fatou’s lemma we have

that

EX+ ≤ lim inf
n→∞

E(Xn)+ ≤ sup
n≥0

E(Xn)+ <∞,

which also implies that X <∞ a.s. Similarly, note that

E(Xn)− = E(Xn)+ − E(Xn) ≤ E(Xn)+ − EX0,

since Xn is a submartingale, so again by Fatou’s lemma we have

EX− ≤ lim inf
n→∞

E(Xn)− ≤ sup
n

E(Xn)+ − EX0 <∞,

which shows that X > −∞ a.s. We have shown that Xn converges a.s. to a finite limit both

of whose positive and negative parts are integrable, so the proof is complete.

Corollary 3.18. 1. If (Xn)n is a submartingale bounded from above, i.e., there is an

M ∈ R such that Xn ≤M for all n, then Xn → X a.s. where the limiting r.v. satisfies

EX ≥ EX0.

2. If (Xn)n is a supermartingale bounded from below, i.e., there is an M such that Xn ≥M

for all n, then Xn → X a.s. where the limiting r.v. satisfies EX ≤ EX0.

3.5 Lp spaces and modes of convergence

In this section we summarize some facts about the Lp spaces (which are function spaces that

play a central role in many parts of mathematical analysis and in particular in probability
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theory) and the different modes of convergence for random variables. Previously we discussed

the notions of convergence in probability, almost sure convergence and convergence

in distribution. Other useful senses in which random variables may be said to converge

to a limit are uniform convergence (equivalent to convergence in the space L∞) and

convergence in the Lp space.

Definition 3.19. Let (Ω,F ,P) be a probability space. For 1 ≤ p <∞, we associate with our

probability space a function space Lp(Ω,F ,P) (often denoted as Lp(Ω) or simply Lp when

the context is clear), defined by

Lp(Ω,F ,P) = {X : Ω→ C is a random variable : E|X|p <∞}.

Elements of Lp are considered only up to almost sure equivalence4. The p-norm of a random

variable X ∈ Lp is defined by

‖X‖p = (E|X|p)1/p .

For p =∞ one may also define the space L∞ with an associated ∞-norm ‖·‖∞ by

L∞(Ω,F ,P) = {X : Ω→ C is a random variable : X is essentially bounded},

where essentially bounded means that after modifying X on a set of P-measure 0 one gets

a bounded function. The ∞-norm ‖X‖∞ is defined as the infimum of all numbers M which

are essential bounds of X (i.e., all M such that P(|X| ≤M) = 1).

The space Lp equipped with the norm ‖·‖p becomes a metric space. A fundamental fact

from analysis is:

Theorem 3.20. For 1 ≤ p ≤ ∞, Lp is a complete metric space. That is, every Cauchy

sequence in Lp is convergent.

Since Lp is actually a normed space, the theorem above means it is a Banach space (a

complete normed vector space). For p = 2 it is also a Hilbert space (a complete inner product

space), since it may be equipped with the inner product

〈X, Y 〉 = E(XY ).

4That is, formally, the elements of Lp are not random variables but equivalence classes of random variables

modulo almost sure equivalence, but in practice no one bothers to say things in this formal language.
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The elements of L2 are referred to as square-integrable random variables (equivalently,

random variables with finite variance). Note that the Cauchy-Schwartz inequality guarantees

that 〈X, Y 〉 is defined and finite when X, Y ∈ L2.

Definition 3.21. The modes of convergence of a sequence of random variables (Xn)∞n=1 to

a limiting random variable X are defined as follows:

1. Convergence in probability: Xn → X in probability if for any ε > 0, we have

limn→∞P(|Xn −X| > ε)→ 0 as n→∞.

2. Almost sure convergence: Xn → X almost surely if P(Xn → X as n→∞) = 1.

3. Convergence in Lp, 1 ≤ p <∞: Xn → X in Lp if E|Xn−X|p → 0 as n→∞. For

p = 1 this is also called convergence in the mean.

4. Convergence in L∞: Xn → X in L∞ in L∞ if ‖Xn −X‖∞ → 0 as n→∞.

5. Convergence in distribution: Xn → X in distribution if Eg(Xn) → Eg(X) for

any bounded continuous function g : R→ R.

It should be noted that the concept of convergence in distribution is qualitatively different

from the other modes of convergence, in that it does not require the random variables

X,X1, X2, . . . to be defined on the same probability space. The convergence in this case is of

the probabilities and other statistical measures of the distributions of the random variables

(i.e., expectations of functions applied to Xn, moments, characteristic functions, etc.), not of

the values of the random variables themselves in some experiment in which they are sampled.

The proof of the following theorem is left to the reader as an exercise in scholarly research

(meaning, for each of the claims either try to prove it by yourself, or track down the proofs

in a textbook — you will probably learn other useful things while searching!)

Theorem 3.22. The following relationships exist between the different modes of convergence:

1. If Xn → X almost surely then Xn → X in probability. The converse is not true.

2. If Xn → X in probability then Xn → X in distribution. The converse is not true, even

in the case when (Xn)∞n=1 and X are all defined on the same probability space.
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3. If Xn → X in distribution then there exists a sequence (Yn)∞n=1 and a random variable

Y , all defined on the same probability space, such that Yn
D
= Xn for all n, Y

D
= X, and

Yn → Y almost surely.

4. If Xn → X almost surely and the convergence is dominated (in the sense of the domi-

nated convergence theorem), then Xn → X in L1.

5. If Xn → X in probability then there exists a subsequence (Xnk)
∞
k=1 such that Xnk → X

almost surely.

6. If Xn → X in Lp for some 1 ≤ p ≤ ∞ then there exists a subsequence (Xnk)
∞
k=1 such

that Xnk → X almost surely.

7. If Xn → X in Lp for some 1 ≤ p ≤ ∞ then Xn → X in Lq for any 1 ≤ q ≤ p.

8. If Xn → X in L∞ then Xn → X almost surely.

9. If Xn → X in probability, then Xn → X in L1 if and only if (Xn)∞n=1 is uniformly

integrable (see the next section for the definition of uniform integrability).

3.6 Martingale convergence in Lp

In certain applications a martingale may not be bounded but can still be shown to con-

verge based on boundedness in Lp and similar conditions. The following results give such

conditions. Proofs can be found in [Dur2010], sections 5.4–5.5.

Theorem 3.23 (Martingale convergence theorem in Lp, p > 1). Let 1 < p ≤ ∞. If (Xn)∞n=1

is a martingale and supn E|Xn|p <∞, then Xn converges to a limit X almost surely and in

Lp.

Note that the above theorem is only valid for p > 1. For p = 1 it is not enough to require

that the martingale be bounded in L1. A stronger condition is needed, that of uniform

integrability. A family of random variables (Xi)i∈I is called uniformly integrable if for

any ε > 0 there exists an M > 0 such that

E(|Xi|1{|Xi|>M}) < ε for all i ∈ I.
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It is easy to see that a uniformly integrable family is bounded in L1. Some examples of

uniformly integrable families are:

1. A family of random variables that are all dominated by a single integrable r.v. Y , i.e.,

|Xi| ≤ Y for all i ∈ I. (Obvious.)

2. The family of conditional expectations E (X | G) where X is an integrable r.v. and G
ranges over all sub-σ-fields of F . (See Theorem 5.5.1 in [Dur2010].)

3. Let 1 < p ≤ ∞. Any bounded family of random variables in Lp (i.e., a family (Xi)i∈I

such that for some constant C > 0, ‖Xi‖p ≤ C for all i ∈ I) is uniformly integrable.

Exercise 3.24. Prove this statement, and give a counterexample that explains why the

claim is not true for p = 1.

Theorem 3.25 (Martingale convergence theorem in L1). Let (Xn)∞n=1 be a submartingale.

The following conditions are equivalent:

1. (Xn)∞n=1 is uniformly integrable.

2. (Xn)∞n=1 converges a.s. and in L1.

3. (Xn)∞n=1 converges in L1.

If (Xn)∞n=1 is a martingale and not just a submartingale, then the above conditions are also

equivalent to:

4. There exists an integrable random variable X such that Xn = E (X | Gn) for all n. (I.e.,

the martingale is an instance of the “revealing information” family of examples.)

Exercise 3.26. Prove directly from the definitions that if (Xn)∞n=1 is a martingale with

respect to a filtration (Gn)∞n=1 and Xn → X in L1, then Xn = E (X | Gn).

As a corollary we get:

Theorem 3.27 (Lévy’s martingale convergence theorem). If (Gn)∞n=1 is an increasing family

of sub-σ-algebras of F , and X ∈ L1(Ω) is a random variable, then

E (X | Gn)→ E (X | G∞) a.s. as n→∞,

30



where G∞ = ∨∞n=1Gn = σ (∪∞n=1Gn) is the σ-algebra generated by the Gn’s. Similarly, for any

event A ∈ F we have

P (A | Gn)→ P (A | G∞) a.s. as n→∞

In particular, if A ∈ G∞ then we have

P (A | Gn)→ 1A a.s. as n→∞. (8)

(This last fact is sometimes called Lévy’s 0-1 law.)

Exercise 3.28. Use (8) to give a new proof of Kolmogorov’s 0-1 law, which we learned about

in the previous quarter.
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Chapter 4: Applications of martingale theory

4.1 Pólya’s urn

We now revisit the Pólya urn experiment discussed in Chapter 1 in which we start with a

white balls and b black balls, and repeatedly sample balls at random from the urn, at each

step putting back the ball we sampled and adding another ball with the same color. We

showed in that discussion that the proportion

Mn =
Xn

n+ a+ b

of white balls in the urn is a martingale, which takes values in [0, 1]. By the martingale

convergence theorem we see that the limit M = limn→∞ exists almost surely. By an explicit

computation mentioned in Chapter 1, it follows that M is distributed according to a beta

distribution Beta(a, b).

4.2 Recurrence of simple random walk on Z

Let Sn =
∑n

k=1Xk denote the simple random walk on Z; i.e., S0 = 0 and (Xn)∞n=1 are i.i.d.

with P(Xn = −1) = P(Xn = 1) = 1
2
.

Theorem 4.1. The random walk is recurrent. That is, for any m ∈ Z we have

P(Sn = m i.o.) = 1.

Proof. Define a random variable N = inf{n > 0 : Sn = −1} (on the event that Sn never

visits −1, set N = ∞). Let Mn = SN∧n. By Theorem 3.15, the sequence (Mn)∞n=1 is a

martingale with respect to the filtration Gn = σ(X1, . . . , Xn). Furthermore, Mn ≥ −1 for all

n, so by Corollary 3.18, the limit M = limn→∞Mn exists almost surely. But then we must

have M ≡ −1 almost surely, since any other limit is impossible (until the sequence SN∧n

stops at −1, it fluctuates by ±1 at each step). This implies that N < ∞ almost surely, so

the random walk is guaranteed to visit −1 with probability 1.

Exercise 4.2. Complete the proof by explaining why if the random walk almost surely vis-

its −1 when starting from 0 then it almost surely visits every lattice point m ∈ Z, and

therefore also almost surely visits every m ∈ Z infinitely often.
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Note that the almost sure martingale limit M = limn→∞ SN∧n in the proof above satisfies

EM = −1, whereas E(SN∧n) = 0 for all n. This is therefore an example of a martingale

that converges almost surely, but not in L1.

4.3 Branching processes and the Galton-Watson tree

The Galton-Watson tree, or Galton-Watson process, (named after the 19th century

statistics pioneers Francis Galton and Henry William Watson) is a mathematical model

for a genealogical tree, or for the population statistics of a unisexual animal species. It

is the simplest in a family of models known as branching processes. The model was

originally conceived at a time when family names were only passed on by male descendants

and hence takes only male offspring into account, leading to a somewhat simpler (though

socially anachronistic) mathematical model than some later more realistic variants. (The

original model is still used however to model various biological and physical phenomena.)

Let p0, p1, . . . be nonnegative numbers such that
∑

k pk = 1, and let X be a random

variable with P(X = k) = pk, n = 0, 1, 2, . . .. We think of pk as the probability for a specimen

to have k offspring, and refer to the distribution of X as the offspring distribution. Let

(Xn,m)n,m≥0 be a family of i.i.d. copies of X. The Galton-Watson process is a sequence of

random variables Z0, Z1, Z2, . . ., where for each n, Zn represents the number of nth-generation

descendants of the original species patriarch at time 0. Zn is defined by the initial condition

Z0 = 1 together with the recurrence relation

Zn =

Zn−1∑
m=1

Xn−1,m,

corresponding to the assumption that each of the Zn−1 (n−1)th-generation specimens bear a

number of offspring with the distribution of X, with all offspring numbers being independent

of each other.

Let µ = EX =
∑

k kpk be the expected number of offspring. We will prove:

Theorem 4.3. Let E be the “extinction event”

E = {Zn = 0 for all large enough n} = {the species eventually becomes extinct}.

Then
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1. If µ < 1 then P(E) = 1.

2. If µ = 1 and P(X = 1) < 1 then P(E) = 1.

3. If µ > 1 then P(E) < 1.

The reason martingale theory is relevant to the problem is the following simple lemma.

Lemma 4.4. The sequence (Zn/µ
n)∞n=0 is a martingale with respect to the filtration Gn =

σ(X`,m : 0 ≤ ` < n,m ≥ 0).

Proof. Compute E (Zn+1 | Gn), using the standard properties of conditional expectation:

E (Zn+1 | Gn) = E

(
Zn∑
m=1

Xn,m | Gn

)
= E

(
∞∑
k=0

1{Zn=k}

Zn∑
m=1

Xn,m | Gn

)

=
∞∑
k=0

E

(
1{Zn=k}

k∑
m=1

Xn,m | Gn

)
=
∞∑
k=0

1{Zn=k}E

(
k∑

m=1

Xn,m | Gn

)

=
∞∑
k=0

1{Zn=k}kE(Xn,1) = µ
∞∑
k=0

k1{Zn=k} = µZn.

Dividing by µn+1 gives the result.

Proof of parts 1 and 2 of Theorem 4.3. By the lemma we have E(Zn) = µn. If µ < 1 then

P(Zn > 0) = P(Zn ≥ 1) ≤ E(Zn) = µn → 0.

Since Ec = ∩∞n=1{Zn > 0}, an intersection of a decreasing sequence of sets, we therefore get

that P(Ec) = lim
n→∞

P(Zn > 0) = 0, which proves part 1.

To prove part 2, let

Z∞ = lim
n→∞

µ−nZn

be the limit of the nonnegative martingale µ−nZn, guaranteed to exist almost surely by

Corollary 3.18. In the case when µ = 1, Z∞ is the limit of the sequence Zn itself. Under

the assumption that P(X = 1) < 1, this limit can only be 0, since on the event that

{Zn = k > 0}, |Zn+1 − k| ≥ 1 with positive probability.
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To prove the final claim regarding the behavior when µ > 1, associate with the random

variable X (which takes nonnegative integer values) a function

ϕ(z) = E(zX) =
∞∑
k=0

pkz
k, (0 ≤ z ≤ 1).

The function ϕ(z) is called the generating function of X. It turns out that the way it

encodes information about the distribution of X is especially suited to the problem at hand,

because of the following lemma.

Lemma 4.5. The probability for the Galton-Watson process to become extinct by the nth

generation is given by

P(Zn = 0) = ϕ(n)(0) = (

n times︷ ︸︸ ︷
ϕ ◦ ϕ ◦ . . . ◦ ϕ)(0),

(in words: the nth functional iterate of ϕ evaluated at z = 0.)

Proof. For n = 0 the claim is true, with the natural convention that ϕ(0)(z) = z. For

general n, we have that

P(Zn = 0) = E [P (Zn = 0 |Z1)] =
∞∑
k=0

P(Z1 = k)P (Zn = 0 |Z1 = k)

=
∞∑
k=0

pkP (Zn = 0 |Z1 = k) .

Now note that P (Zn = 0 |Z1 = k) = P(Zn−1 = 0)k, since that is the probability for k initial

patriarchial specimens to become extinct within n− 1 generations. So, by induction we get

that

P(Zn = 0) =
∞∑
k=0

pkP(Zn−1 = 0)k = ϕ(P(Zn−1 = 0)) = ϕ(ϕ(n−1)(0)) = ϕ(n)(0).

Using the lemma we see that if we are able to prove that

P

(
∞⋃
n=1

{Zn = 0}

)
= lim

n→∞
P(Zn = 0) = lim

n→∞
ϕ(n)(0) < 1,
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the final part of Theorem 4.3 will follow. The question therefore reduces to studying the

functional iterates ϕ(n)(0). Note that ϕ is continuously differentiable on (0, 1) and satisfies

ϕ(0) = p0 ≥ 0,

ϕ(1) = 1,

ϕ′(z) =
∞∑
k=1

kpkz
k−1 ≥ 0 (so ϕ is nondecreasing),

ϕ′′(z) =
∞∑
k=2

k(k − 1)pkz
k−2 ≥ 0 (so ϕ is convex),

lim
z↑1

ϕ′(z) =
∞∑
k=1

kpk = µ > 1.

In fact, since µ > 1 there must be some k ≥ 2 such that pk > 0, so ϕ is strictly increasing

and strictly convex.

Exercise 4.6. Show that from the properties above it follows that ϕ has a unique fixed point

0 ≤ ρ < 1, i.e., a point where ϕ(ρ) = ρ (drawing a rough sketch of the graph of ϕ is very

helpful to explain why this is true).

Proof of part 3 of Theorem 4.3. The sequence an = ϕ(n)(0) is increasing, so converges to a

limit L. Since ϕ is increasing, by induction an ≤ ρ for all n. So also L = limn→∞ an =

P(E) ≤ ρ < 1, which was the claim. (In fact, it is easy to see that L = ρ exactly, since we

have

ϕ(L) = ϕ( lim
n→∞

an) = lim
n→∞

ϕ(an) = lim
n→∞

an+1 = L,

so L is a fixed point of ϕ.)

4.4 The Black-Scholes formula 5

In the financial markets, an option is a contract giving its holder the right to buy or sell

an asset from the issuer of the option for a specified price at some future date. Options

are useful financial instruments that allow market participants to calibrate the amount of

risk they want to be exposed to; effectively, risk-averse players can use options to insure

themselves against unexpected events, paying a premium to other investors willing to bear

5This section is based on sections 15.1–15.2 in the book Probability with Martingales by David Williams.
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the risk (either because they have a higher tolerance for risk or because their perception of

the amount of risk is different). In theory, this makes the financial markets more efficient

and helps the economy.

Options have been used in one form or another since ancient times. However, a good

quantitative model allowing the computation of the monetary value of an option was not

known until two economists, Fischer Black and Myron Scholes, proposed such a model in

1973 using the mathematics of Brownian motion. Their formula for the valuation of options,

known as the Black-Scholes formula, was the basis for awarding the 1997 Nobel prize

in economics to Scholes and Robert Merton, another economist who played a part in the

development of the Black-Scholes model (Black died in 1995 so the prize could not be awarded

to him).

We will discuss here a simplified variant of the Black-Scholes option pricing model in

which time progresses in discrete steps, so that we do not need to know about continuous-

time processes such as Brownian motion. Assume that in our simplified economy, an investor

has the option of investing her money in one of two ways. The first way is to lend the money;

technically, she does this by buying risk-free bonds (issued by a reliable entity such as the

U.S. government), which are loan contracts guaranteeing a fixed interest rate of r. Thus, V

units of currency invested in bonds at time 0 will be worth (1 + r)nV after n time units. (Of

course, this is the result of compounded interest : in this formula we are assuming that after

each time unit our investor takes the interest payment from the last time unit and reinvests

it by buying more bonds.)

The second type of investment opportunity is to buy stocks. These are assumed to be

risky investments whose value fluctuates randomly. We make the assumption that the price

of stocks is a multiplicative random walk with an initial (possibly random) value S0 such

that

Sn = (1 +Rn)Sn−1 (n ≥ 1),

where Rn represents the “random rate of interest” in the nth time period. We further assume

that R1, R2, . . . are an i.i.d. sequence of random variables satisfying

P(Rn = a) = 1− p, P(Rn = b) = p,

where a, b are two values in (−1,∞) satisfying a < r < b, and p is taken to be p = r−a
b−a . This

choice of p ensures that E(R1) = r, so that on average the random interest rate is equal to
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the risk-free interest rate. (Any other choice of p would cause an investor to always prefer

one of the two asset classes to the other, making the model essentially uninteresting.)

Our investor starts with an amount x of money and invests it over time, allocating the

available funds to either stocks or bonds as she wishes. Formally, let Gn = σ(S0, R1, . . . , Rn).

Denote B0 = 1, Bn = (1+r)n (in analogy with the multiplicative random walk Sn, this is the

value of an investment account concentrated in bonds and started from an initial investment

of 1 unit of currency). An investment strategy is a pair (An, Vn)Nn=0 of processes (where

N may be finite, or infinite) which are predictable with respect to the filtration (Gn)n, and

such that the following relations are satisfied:

x = A0S0 + V0B0, (9)

AnSn + VnBn = An+1Sn + Vn+1Bn, (1 ≤ n < N). (10)

Here, An denotes the number of stock investment units held between time n and n+1, and Vn

denotes the number of bond investment units held between time n and n+ 1. Denote Xn =

AnSn + VnBn. This represents the value of the investment account at time n. The relation

(9) means that the initial value X0 of the investment account is x units of currency, and

(10) represents the fact that immediately after time n the investor rebalances the investment

portfolio, changing the mixture of bonds and stocks but keeping the same amount invested.

In a slight simplification of real life, the model assumes that the act of rebalancing the

portfolio does not involve paying a fee to a brokerage or account management company, an

assumption technically referred to as zero transaction costs.

In our model, we now add a third type of investment opportunity. A European option

is a contract that gives an investor the right (but not the obligation) to buy 1 unit of stocks

at some fixed time N for a price of K units of currency. The act of taking advantage of

this right is referred to as exercising the option6. The time N is called the expiration

time, and K is called the strike price. The question we wish to address is: what is the

“fair value” vfair such that an investor would consider paying an amount vfair (or better yet,

slightly less than vfair) for such an option offered to him at time 0? Note that at time N the

option is worth SN −K if Sn ≥ K, or 0 otherwise (i.e., if the market price of stocks at time

N is below the strike price at expiration time, the option gives a pointless right to buy stocks

6A common variant is the American option, in which the right to exercise the option exists at any

time up to and including time N .
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at a higher price than the one for which they are being offered for sale on the free market.

This is a right which no rational investor would want to exercise; in this case the option is

said to have expired worthless). In other words, the value of the option at its expiration

time is exactly the (random) amount (SN −K)+, the positive part of the random variable

SN −K. An investor considering an investment in options at time 0 would be reasonable to

consider the expected value of this quantity,

E(SN −K)+,

as her expected return after N time units of investment. Comparing this to the return on

investing the same amount vfair in risk-free bonds, which is equal to

(1 + r)Nvfair,

the investor may conclude that vfair is exactly the value that equalizes both quantities (thus

making her indifferent to the choice of which type of investment to make), namely

vfair = (1 + r)−NE(SN −K)+. (11)

In finance, it is typical to think of this type of expression as the quantity E(SN − K)+

“discounted” N units of time into the future. The idea is that the promise of future money

is worth less than actual money in the present. The “rate of discounting,” which is the

factor by which it becomes worth less and less with every time unit it recedes further into

the future, is exactly the risk-free interest rate 1+ r. (Think of a situation in which someone

offers you a choice between $100 today or $150 in a month’s time. Which would you prefer?

What would be your criterion for deciding if the number 150 were replaced with any other

number higher than 100?)

Equation (11) is our discrete version of the Black-Scholes formula, but the reasoning that

lead us to it is a bit shaky, and can be strengthened in the following way. Assume that

a market for options hasn’t developed yet, so none are being offered for sale. An investor

may come up with a clever way of replicating the outcome of investing in an option using a

particular way of managing a portfolio of stocks and bonds. Formally, a hedging strategy

with initial value x is a pair of processes (An, Vn)Nn=0 which is an investment strategy in

the sense defined above, with an initial value x as in (9), and such that in addition we have
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the properties

Xn ≥ 0, (0 ≤ n ≤ N),

XN = (SN −K)+,

(where as before Xn = AnSn +VnBn denotes the value of the portfolio at time n). Note that

a hedging strategy behaves for all intents and purposes like an option with strike price K

and expiration time N ; any investor who possesses such a strategy could issue actual options

with these parameters and sell them to other investors, charging slightly more than x units

of currency, investing x of them in the hedging scheme (which precisely offsets the options

he sold) and making an instant and risk-free profit. (Note that the condition Xn ≥ 0 is

required to ensure that the manager of the hedging strategy will not have to inject new cash

at any point in time to keep the investment going; she will never be “underwater.”) Thus,

we have a rather convincing argument that any value of x for which one is able to find such

a hedging strategy is, by definition, the fair value of the option.

Theorem 4.7. A hedging strategy with initial value x exists if and only if

x = (1 + r)−NE(SN −K)+, (12)

and in this case it is unique.

Proof. Assume that there is a hedging strategy with initial value x. Let Yn = (1 + r)−nXn

(the discounted value of Xn at time 0). The proof will depend on showing that (Yn)n is a

martingale. To see this, note that from (10) we have that

Xn −Xn−1 = (AnSn + VnBn)− (AnSn−1 + VnBn−1) = An(Sn − Sn−1) + Vn(Bn −Bn−1)

= AnRnSn−1 + rVnBn−1 = AnSn−1(Rn − r) + r(AnSn−1 + VnBn−1)

= AnSn−1(Rn − r) + rXn−1.

It follows that

Yn − Yn−1 = (1 + r)−n(Xn − (1 + r)Xn−1) = (1 + r)−nAnSn−1(Rn − r).
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Thus, Yn can be expressed as

Yn = Y0 +
n∑
k=1

(Yk − Yk−1) = x+
n∑
k=1

(1 + r)−kAkSk−1(Rk − r)

= x+
n∑
k=1

Fk(Zk − Zk−1),

where Fn = (1 + r)−nAnSn−1 and Zn =
∑n

k=1(Rk − r). In other words, we have shown

that Yn can be represented as

Yn = x+ (F • Z)n.

Here, the sequence (Fn)n is predictable with respect to the filtration (Gn)n, and Zn is a

martingale, so this is a genuine martingale transform, and (Yn)n is a martingale, as claimed

above. In particular we get (using the definition of a hedging strategy) that

x = Y0 = E(Y0) = E(YN) = (1 + r)−NE(XN) = (1 + r)−NE(SN −K)+,

proving (12). This completes the “only if” part of the proof.

Conversely, assume that x = (1 + r)−NE(SN − K)+. We need to construct a hedging

strategy with this initial value, and show that it is uniquely determined. Inspired by the

insights gained by the computation above, we define a martingale

Yn = E
(
(1 + r)−N(SN −K)+ | Gn

)
, (0 ≤ n ≤ N)

so that Y0 = x and YN = (1 + r)−N(SN − K)+, and look for a predictable sequence (Fn)n

such that Yn = x + (F • Z)n. The fact that a unique such process exists is the result of a

simple computation which can be distilled into the following lemma.

Lemma 4.8. If (Mn)Nn=0 is a martingale w.r.t. the filtration (Gn)n satisfying M0 = 0, then

there is a unique predictable process (Fn)Nn=1 such that M = F •Z, with Zn =
∑n

k=1(Rk − r)
as above.

Exercise 4.9. Prove Lemma 4.8.

Working our way backwards, we now define Xn = (1 + r)nYn, An = (1 + r)nFn/Sn−1 and

Vn = (Xn−1 − AnSn−1)/Bn−1. Then Xn ≥ 0, (An)n and (Vn)n are predictable sequences,

and the above computations can be read in reverse to show that (10) is satisfied, i.e., the

sequences (An, Vn)n represent a valid hedging strategy.

41



Notes. 1. In the proof above, one can check that the processes An, Vn are nonnegative.

This means that, although we didn’t require it as part of the definition of hedging strategies,

in practice hedging will never involve investing negative amounts of money (which would

correspond to “shorting” stocks or issuing bonds).

2. The formula (11) is written in a form that is not very explicit, as it requires comput-

ing a messy average for a multiplicative random walk. In the “real” Black-Scholes formula,

where the stock price (Sn)n process is modeled by a geometric Brownian motion (the

continuous-time analogue of a multiplicative random walk), one can evaluate the correspond-

ing expectation to obtain a much more explicit formula. The Black-Scholes model has also

been adapted to American-style options and other variants. As usual, if you want to learn

more about this subject, Wikipedia will make you wish you didn’t.

End of Part I
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Part II — Ergodic Theory

Chapter 5: Dynamical systems

Ergodic theory is a mathematical theory that evolved out of the study of global properties

of dynamical systems. Here, we speak loosely of a dynamical system as consisting of a

phase space Ω (a set, whose points are the possible states of the system) together with

some dynamics, which are a notion of how the state of the system evolves over time. Time

may flow continuously or in discrete steps. In the simplest case of discrete-time dynamics,

the dynamics are encapsulated by a mapping T : Ω→ Ω. We imagine that if at a given time

the state of the system is some point ω ∈ Ω, then in the next time step it will be T (ω). (We

assume that the dynamics, i.e., the rules of evolution of the system over time, are themselves

unchanging over time.)

The description of the dynamics in a continuous-time dynamical system is more subtle;

it consists of a family (Ts)s≥0 of maps, where for each s ≥ 0, Ts : Ω → Ω takes the current

state of the system ω ∈ Ω and returns a new point ω′ = Ts(ω) which represents the state of

the system s time units into the future. The maps therefore have to satisfy the conditions

T0 = id,

Ts+t = Ts ◦ Tt, (s, t ≥ 0),

i.e., the family (Ts)s≥0 is a transformation semigroup. In a context where the phase space

has a differentiable structure and the dynamics are a result of solving a differential equation,

the semigroup (Ts)s≥0 is often called a flow.

Dynamical systems arise naturally in physics, probability, biology, computer science (al-

gorithmic computations can often be interpreted as discrete-time dynamical systems) and

many other areas. To illustrate the types of questions that ergodic theory deals with, con-

sider the example of (mathematical) billiards: this is a mathematical idealization of the

game of billiards in which a small ball is bouncing around without loss of energy in some

bounded and odd-shaped region of the plane, being reflected off the walls; see Figure 3 for

two examples. The main question of ergodic theory can be roughly formulated as follows:

If an observer watches the system for a long time, starting from some arbitrary

(random) initial state, can the ideal statistics of the system be recovered?
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(a) (b)

Figure 3: Billiard dynamical systems: (a) The “Bunimovich stadium”; (b) The “Sinai bil-

liard” (source: Wikipedia)

The question is formulated in a deliberately vague way, but the idea behind “ideal statis-

tics” is that they are represented by some probability measure P on the phase space Ω

(equipped with a suitable measurable structure F) that is compatible with both the way

the “arbitrary” initial state of the system is chosen, and with the action of the dynamics of

the system (we shall make these ideas more precise soon). The way the observer will try to

recover the measure P is as follows: starting from the initial state x0 one gets a sequence of

subsequent states

x0, x1 = T (x0), x2 = T (T (x0)), x3 = T 3(x0), . . .

in the case of a discrete-time system, or a one-parameter family of states

xs = Ts(x0), (s ≥ 0)

for a continuous-time system (in both the discrete and continuous cases this would be referred

to as the orbit of x0 under the dynamics). For a given event A ∈ F , the observer computes

the empirical frequencies of occurrence of A in the orbit, namely

µ
(n)
A (x0) =

1

n
#{1 ≤ k ≤ n : xk ∈ A} =

1

n

n−1∑
k=0

1A(xk), (n ≥ 1),

or, in the case of a continuous-time system

µ
(s)
A (x0) =

1

s

∫ s

0

1A(xs) ds, (s ≥ 0).
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One might expect that in a typical situation, the quantity µ
(n)
A (x0) or its continuous-time

analogue µ
(s)
A (x0) should converge (as n or s tend to infinity) to a limit that is a constant

and independent of x0, except possibly for some small set of “badly-behaved” initial states

x0. If that is the case, we might denote this limit by P(A) and say that it represents the

“ideal” statistics of the system.

A more general way of recovering the statistics of the system is to look at observables,

which are measurable functions f : Ω→ R on the phase space (an observable is the dynamical

systems or physics equivalent term for a random variable, really). For an observable f we

can form the ergodic average

µ
(n)
f (x0) =

1

n

n−1∑
k=0

f(xk) =
1

n

n−1∑
k=0

f(T k(x0)),

(or the analogous continuous-time quantity, whose form we leave to the reader to write

down), and hope that again the ergodic averages converge to a limit, which is independent

of x0 and represents the “ideal” average value of the observable f , denoted E(f) (in physics,

usually this would be denoted 〈f〉). By computing this ideal average for many different

observables we can recover all the information on the probability measure P.

One can now ask whether the nice situation described above actually happens in practice.

Coming back to the example of billiards, it is easy to see that for some shapes of the billiard

“table” one cannot hope to recover any meaningful statistics for the system, for what may

be a trivial reason. For example, a rectangular table has the property that the ratio of

the absolute values of the horizontal and vertical components of the initial speed of the

ball is always preserved (equivalently, the quantity | tan(α)| where α is the initial angle is

preserved). Thus, by observing the trajectory of a single ball we have no hope of recovering

any meaningful information on the statistics of the system when started with a ball for

which the “invariant” quantity | tan(α)| is different. In this case we say that the billiard

dynamical system on a rectangular domain is non-ergodic. Less trivially, an ellipse-shaped

billiard can also be shown to be non-ergodic, because of a less obvious geometric invariance

property: it can be shown that an orbit will not fill the entire ellipse but will have a non-

trivial envelope which is either a smaller ellipse, a hyperbola, a closed polygon or a line (see

http://cage.ugent.be/~hs/billiards/billiards.html, and Figure 4).

On the other hand, in many cases, such as the domains shown in Figure 3, it can be
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Figure 4: Billiard in an ellipse-shaped domain

proved that the nice situation exists, i.e., the billiard is ergodic (we will define later what

that actually means). This is related (in a way that is difficult to articulate precisely),

to the emergence of a kind of “chaos” – i.e., the billiard ball trajectories are erratic and

irregular rather than forming a nice pattern as in the trivial examples discussed above. When

ergodicity holds, the statistics of the system can be recovered from the typical trajectory of

a single ball; in the case of billiards, it turns out that these statistics are quite interesting:

the underlying measure P on the phase space (which may be parametrized in terms of

three parameters φ, θ, ` — see the article What is the ergodic theorem? by G. D. Birkhoff,

American Math. Monthly, April 1942, for the meaning of these quantities) takes the form

P(A) =

∫∫∫
A

sin θ

sin θ1

dθ dφ d`.

Note that even when the system is ergodic, there may be exceptional orbits from which

one cannot recover any statistics. For example, in the Bunimovich stadium shown in Figure 3,

a trajectory that starts in a vertical direction starting in the rectangular area bounded

between the two semi-circles will be a periodic vertical line. However, the key point is that

such trajectories are atypical examples that only occur on a measure 0 set of the phase space.

It should also be noted that in any given example, proving that the ergodicity property

holds may be extremely difficult. In fact, the family of dynamical systems (and even more

restrictively billiard systems) for which ergodicity has been proved rigorously is quite limited,

and in practical dynamical systems that one encounters in physics or other applied areas

usually this is assumed without proof, as long as there is a sufficiently strong intuition that

allows one to rule out a “trivial” reason why ergodicity should fail to hold.

In the next few sections, we shall start developing the basic ideas of ergodic theory in a

46



more formal and precise way. The key concept is of a measure-preserving system, which

is a probability space together with a measure-preserving map representing the dynamics

of the system. The main result we will prove is the fundamental result of ergodic theory,

known as Birkhoff’s pointwise ergodic theorem. It explains precisely the connection

between the notion of ergodicity and the ability to “recover the statistics of the system” as

illustrated above. We shall also give some important examples and explain why the study of

ergodic theory is natural from the point of view of probability theory, since one can consider

the Birkhoff ergodic theorem as a powerful generalization of the strong law of large numbers.

47



Chapter 6: Measure preserving systems

6.1 Measure preserving systems

In the previous section we cheated a little bit by considering dynamical systems without an

underlying measurable structure or notion of measure (in fact, such a structure was implicit

in the discussion of the orbit of a “typical” or “random” initial state). In ergodic theory we

concentrate on dynamical systems which come equipped with a measure, and furthermore,

we require the measure to be preserved under the action of the dynamics. This idea leads

to the following definitions.

Definition 6.1. Let (Ω,F ,P) be a probability space. A measurable map T : Ω→ Ω is called

measure preserving if for any event E ∈ F we have

P(T−1(E)) = P(E). (13)

If T is measure preserving, we say that the probability measure P is invariant under T .

The condition (13) is sometimes written in the form P = P◦T−1. This can be interpreted

as the statement that the push-forward of P under T is again P; that is, if X is an Ω-valued

random variable with distribution P, then T (X) has the same distribution.

Definition 6.2. A measure preserving system is a probability space equipped with a

measure preserving map, i.e., a quadruple (Ω,F ,P, T ), where (Ω,F ,P) is a probability space

and T : Ω→ Ω is a measure preserving map.

Measure preserving systems are the fundamental objects studied in ergodic theory (just

like vector spaces are the fundamental objects of linear algebra, topological spaces are the

fundamental objects of topology, etc.). It makes sense to ask to see some examples of such

systems before proceeding with their theoretical study. Aside from some very interesting

measure preserving systems that originate in dynamical systems (such as the billiard systems

mentioned in the previous chapter), a huge class of examples arise in a very natural way in

probability theory, and are intimately related to the notion of a stationary sequence,

which is the subject of the next section.
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6.2 Stationary sequences

Let (Xn)∞n=1 be a sequence of random variables. The sequence is called stationary if for

any n,m ≥ 1, we have the equality in distribution

(Xn, . . . , Xn+m−1)
D
= (X1, . . . , Xm). (14)

Note that in particular this implies that the variables X1, X2, . . . are identically distributed.

Stationarity is a stronger property that also ensures that any pair of successive variables

(Xn, Xn+1) is equal in distribution to the first pair (X1, X2), any triple (Xn, Xn+1, Xn+2) is

equal in distribution to the first triple (X1, X2, X3), etc.; that is, any probabilistic question

about a block of adjacent variables does not depend on the “origin” of the block. An i.i.d.

sequence is a trivial example of a stationary sequence.

A stationary sequence gives rise in a natural way to a measure preserving system known

as the shift dynamics. To define it, first note that although the variables may be defined

on a generic probability space (Ω,F ,P), there is no real loss of generality in assuming that

the probability space is the canonical product space

Ω = RN

(sometimes denoted by R∞) together with the product σ-algebra B = B(RN), and the

probability measure µ defined by

µ(E) = P((X1, X2, . . .) ∈ E),

(i.e., the distribution measure of the infinite-dimensional vector (X1, X2, . . .)). In this rep-

resentation, the random variables are simply the coordinate functions

Xn(ω) = πn(ω) = ωn,

where ω = (ω1, ω2, . . .) ∈ RN.

On the space (RN,B, µ) we define the shift map S : RN → RN by

S(ω1, ω2, ω3, . . .) = (ω2, ω3, ω4, . . .).

Lemma 6.3. The shift map S is a measure preserving map of the probability space (RN,B, µ)

if and only if the sequence (Xn)∞n=1 is stationary.
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Exercise 6.4. Prove Lemma 6.3.

Definition 6.5. If (Xn)∞n=1 the measure preserving system (RN,B, µ, S) described above is

called the one-sided shift map (or sometimes just shift map) associated to (Xn)∞n=1.

What about a two-sided shift map? One can consider a two-sided infinite sequence

(Xn)∞n=−∞, and say that it is stationary if the equation (14) holds for any m ≥ 1 and n ∈ Z.

One may associate with such a stationary sequence the two-sided shift dynamics, which

is the measure preserving system (RZ,B(RZ), µ, S), where as before µ is the distribution

measure of the sequence (Xn)n∈Z, and S is the two-sided shift, given by

S((ωn)n∈Z) = (ωn+1)n∈Z.

One may check easily that Lemma 6.3 remains true when replacing the one-sided concepts

of stationary sequence and shift dynamics with their two-sided analogues.

From the definitions it may appear that the notion of a two-sided stationary sequence is

more general than that of a one-sided shift, since half of the elements of a two-sided stationary

sequence (Xn)n∈Z can be removed to give a one-sided stationary sequence (Xn)n≥1. However,

in fact this is not the case, as the next result shows.

Lemma 6.6. Given a one-sided stationary sequence (Xn)n≥1, there exists a two-sided sta-

tionary sequence (Yn)n∈Z defined on some probability space such that (Yn)n≥1
D
= (Xn)n≥1.

Proof. This is a simple example of an application of the Kolmogorov extension theorem, a

useful result from measure theory that enables one to construct measures on infinite product

spaces with prescribed finite-dimensional marginals (see [Dur2010], section A.3). Here, the

stationarity condition (14) determines the joint m-dimensional distribution of any block

(Yn, . . . , Yn+m−1) of m successive random variables in the sequence, where m ≥ 1 and n ∈ Z.

These distributions satisfy the consistency condition in the Kolmogorov extension theorem,

and therefore are indeed the m-dimensional marginals of some infinite sequence (Yn)n∈Z

defined on a single probability space.

We saw that we can associate with any stationary sequence a measure preserving system.

Going in the opposite direction, if we start with a measure preserving system (Ω,F ,P, T ),
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any random variable X : Ω→ R (what we called an observable in the previous chapter) can

be transformed by T to a new variable

X ◦ T = X(T ).

The measure preserving property implies that X◦T is equal in distribution to X. By starting

with X and repeatedly iterating the transformation T we get a sequence (Xn)∞n=1 given by

Xn = X ◦ T n−1.

Lemma 6.7. (Xn)n is a stationary sequence.

Exercise 6.8. Prove Lemma 6.7

The conclusion from the above discussion is that the study of stationary sequences is

roughly equivalent to the study of measure preserving systems with a distinguished ob-

servable, and indeed much of ergodic theory could be developed using just the language of

stationary sequences, although this would come at great cost to the elegance and beauty of

the theory.

6.3 Examples of measure preserving systems

1. i.i.d. sequences. As mentioned in the previous section, any i.i.d. sequence is stationary

and hence has an associated shift measure preserving system, referred to as an i.i.d. shift.

In the case when the i.i.d. random variables take on only a finite number of values with

positive probability this measure preserving system is known as a Bernoulli shift.

2. A shift-equivariant function of a stationary sequence. Given a stationary sequence

(Xn)∞n=1 and a measurable function F : RN → RN one can manufacture a new stationary

sequence (Yn)∞n=1 via the equation

Yn = F (Xn, Xn+1, Xn+2, . . .), (n ≥ 1). (15)

The verification that (Yn)n is stationary is easy and is left to the reader. In this way one

can generate starting from a known stationary sequence (e.g., an i.i.d. sequence) a large

class of new and interesting sequences.
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3. Stationary finite-state Markov chains. Let A = {α1, . . . , αd} be a finite set. A

finite-state Markov chain with state space A is a sequence (Xn)∞n=0 of A-valued

random variables such that for each n ≥ 0 and 1 ≤ j1, j2, . . . , jn+1 ≤ d we have that

P(Xn+1 = αjn+1 |X1 = α1, . . . , Xn = αn) = P(Xn+1 = αjn+1 |Xn = αn). (16)

That is, the conditional distribution of Xn+1 given the n preceding values X1, . . . , Xn is

only dependent on the value of the last observed variable Xn; this property is known as the

Markov property. In most cases the chain is also assumed to be time-homogoneous,

meaning that the expression in (16) is independent of n. In this case, if we denote

pi,j = P(X2 = αj |X1 = αi), (1 ≤ i, j ≤ d),

then the matrix P = (pi,j)
d
i,j=1 together with the probability distribution of the initial

state X0 determine the distribution of the entire sequence. The probability pi,j is referred

to as the transition probability from state i to j, and the matrix P is called the

transition matrix of the chain. The distribution of X0 is usually given as a probability

vector π = (π1, . . . , πd) where πj = P(X0 = j). It is easy to show (we will do so later,

when we study Markov chains more in depth) that the vector π(n) = (π
(n)
1 , . . . , π

(n)
d )

representing the probability distribution of Xn is obtained from π and P via

π(n) = πP n,

the linear-algebraic result of multiplying the row vector π by the matrix P multiplied by

itself n times.

Assume now that π is chosen to be a probability vector satisfying the equation π = πP ;

i.e., π is a left-eigenvector of the transition matrix P with eigenvalue 1. By the above

remarks, this means that the sequence (Xn)n is a sequence of identically distributed

random variables, and furthermore it is easy to see that (Xn)n is in fact a stationary

sequence. A Markov chain started with such an initial state distribution is called a

stationary Markov chain. The associated shift measure preserving system is known

as a Markov shift.

4. Tossing a randomly chosen coin. Let 0 ≤ U ≤ 1 be a random variable. We can

define a stationary sequence X1, X2, . . . by the following “two-step experiment”: first,
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pick a random coin with bias U ; then, toss the chosen coin infinitely many times (the

coin tosses being independent of each other), denoting the results (encoded as 0’s or 1’s)

by X1, X2, . . .. Formally, we can define the distribution of the sequence by

P(X1 = a1, . . . , Xn = an) = E
[
U

P
j aj(1− U)n−

P
j aj
]
, a1, . . . , an ∈ {0, 1}.

Note that the Xn’s are identically distributed (in fact, the sequence is stationary), but

not independent (except in the extreme case when U is a.s. constant); rather, they are

said to be conditionally independent given U .

5. Pólya’s urn experiment. Let In be as in Chapter 1 the indicator random variable of

the event that in Pólya’s urn experiment a white ball was drawn in the nth round. We

proved that the distribution of the sequence (In)∞n=1 is invariant under finite permutations,

so in particular it is stationary and has an associated measure preserving shift.

6. Rotation of the circle (a.k.a. x+α modulo 1). Let (Ω,F ,P) be the unit interval [0, 1]

with Lebesgue measure. One can consider [0, 1] to be topologically a circle by identifying

both endpoints 0 and 1 as a single point. Fix 0 ≤ α < 1. The circle rotation map

Rα : [0, 1)→ [0, 1), which rotates the circle by a fraction α, is defined by

Rα(x) = x+ α mod 1 =

x+ α if x+ α < 1,

x+ α− 1 otherwise.

Lemma 6.9. Rα preserves Lebesgue measure.

Proof. If A ⊂ [0, 1] is a Borel set, then

Leb(R−1
α (A)) = Leb

((
A ∩ [0, α) + 1

)
t
(
A ∩ [α, 1)− 1

))
= Leb

(
A ∩ [0, α) + 1

)
+ Leb

(
A ∩ [α, 1)− 1

)
= Leb

(
A ∩ [0, α)

)
+ Leb

(
A ∩ [α, 1)

)
= Leb

((
A ∩ [0, α)

)
t
(
A ∩ [α, 1)

))
= Leb(A).
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7. The 2x mod 1 map. Similarly to the previous example, the 2x mod 1 map or doubling

map is also defined on the probability space [0, 1] with Lebesgue measure, and is given

by

D(x) = 2x mod 1 =

2x x < 1
2
,

2x− 1 x ≥ 1
2
.

Lemma 6.10. D preserves Lebesgue measure.

Proof. If A ⊂ [0, 1] is a Borel set, then

Leb(D−1(A)) = Leb
(

1
2
A t

(
1
2
A+ 1

2

))
= 1

2
Leb(A) + 1

2
Leb(1

2
+ A) = Leb(A).

We have seen before that the measure space [0, 1] with Lebesgue measure is isomorphic

to the product space of an infinite sequence of i.i.d. unbiased coin tosses. It is easy to

see that under this isomorphism, the doubling map translates to the shift map S of the

Bernoulli sequence. So, the doubling map is really a disguised version of the Bernoulli

shift associated with i.i.d. unbiased coin tosses.

8. The continued fraction map. A well-known fact from number theory says that any

rational number x ∈ (0, 1) has a unique continued fraction expansion of the form

x =
1

n1 + 1
n2+ 1

n3+ 1

...+ 1
nk

,

where k ≥ 1, n1, . . . , nk ∈ N and nk > 1. Such an expansion is said to be finite, or

terminating. Similarly, any irrational x ∈ (0, 1) has a unique infinite continued fraction

expansion, which takes the form

x =
1

n1 + 1
n2+ 1

n3+ 1

n4+ 1
...

,

where n1, n2, n3 . . . ∈ N. The numbers n1, n2, . . . are called the quotients of the expan-

sion, and are analogous to the digits in the decimal (or base-b) expansion of a real number.
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They are computed using a process that is a natural generalization of the Euclidean al-

gorithm to real numbers, namely:

n1 = the number of times a stick of length x “fits” inside a stick of length 1,

n2 = the number of times a stick of length x2 = (1− n1x) fits inside a stick

of length x,

n3 = the number of times a stick of length x3 = (x− n2x1) fits inside a stick

of length x2,

...

Gauss studied in 1812 the statistical distribution of the quotients for a number x chosen

uniformly at random in (0, 1). In this case, since x is irrational with probability 1 we need

not worry about terminating expansions, and can consider the quotients n1, n2, . . . to be

random variables defined on the measure space (0, 1) equipped with Lebesgue measure.

Gauss reformulated the problem in terms of a measure preserving system (before this

concept even existed!) now called the continued fraction map or Gauss map. To see

how this reformulation works, note first that, in the computation above, the first quotient

n1 can be represented in the form

n1 =

⌊
1

x

⌋
(where bzc denotes as usual the integer part of a real number z). Next, observe that, to

continue with the computation of the next quotients n2, n3, . . ., instead of replacing the

two yardsticks of lengths 1 and x (which are used in the computation of the first quotient

n1) by a pair of yardsticks of lengths x and x2 = 1 − n1x, one can instead rescale the

yardstick of length x to be of length 1, so that the yardstick of length x2 becomes of

length

x′ =
1− n1x

x
=

1

x
− n1 =

{
1

x

}
(where {z} = z − bzc is the fractional part of z). The quotient n2 can be computed

from this rescaled value x′ in the same way that n1 is computed from x. By continuing

in this way one can obtain all the quotients by successive rescaling operations. Formally,

define the Gauss map G : (0, 1)→ [0, 1) and a function N : (0, 1)→ N by

G(x) =

{
1

x

}
, N(x) =

⌊
1

x

⌋
.
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Then the above comments show that the quotients n1, n2, . . . are obtained by

n1 = N(x),

n2 = N(G(x)),

n3 = N(G2(x)), . . .

nk = N(Gk−1(x)), . . .

(Note that the range of G is [0, 1) instead of the open interval (0, 1) since G(x) = 0 exactly

when x is a rational number of the form x = 1/m; this is related to the fact that if we

start with any rational number x, after a finite number of iterations of G we will reach 0

and will not be able to extract any more quotients.)

If you guessed that the Gauss map G preserves Lebesgue measure, you guessed wrong.

The real situation is more interesting:

Lemma 6.11. The map G preserves the Gauss measure γ on (0, 1), given by

γ(A) =
1

log 2

∫
A

dx

1 + x
.

Exercise 6.12. Prove Lemma 6.11.

An important observation is that Gauss measure and Lebesgue measure are mutually

absolutely continuous with respect to each other. This means that any event which

has probability 1 with respect to one is also a probability 1 event with respect to the

other. Thus any almost-sure statistical results about the measure preserving system

((0, 1),B, γ, G) (which will be obtained from the Birkhoff ergodic theorem once we develop

the theory a bit more) will translate immediately to statements about the behavior of the

continued fraction expansion of a uniformly random real number.

The continued fraction map described above is intimately related to the Euclidean algo-

rithm for computing the greatest common divisor (GCD) of two integers, since iterating

the map starting from a rational fraction p/q reproduces precisely the sequence of quo-

tients (and remainders, if one takes care to record them) in the execution of the Euclidean

algorithm, and the last non-zero iteration T k(p/q) is of the form 1/d, where d is precisely

the GCD of p and q. Given the usefulness of the Euclidean algorithm and its historical
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status as one of the earliest algorithms ever described, is not surprising that already in

the early days of the theory of algorithms (a.k.a. the 1960’s) researchers were interested

in giving a quantitative analysis of the running time of this venerable procedure. Such

analyses lead directly to ergodic theoretic questions about the continued fraction map; the

renewed interest in this classical problem has stimulated new and extremely interesting

studies into the mathematics of the Gauss map. A highly readable account of these fas-

cinating developments (the latest of which being less than 15 years old and still inspiring

new research even in recent years) is told in Sections 4.5.2–4.5.3 of Vol. II of Donald E.

Knuth’s celebrated book series The Art of Computer Programming.

9. The binary GCD algorithm. Continuing the discussion above, a fact that is little-

known outside computer science circles is that in modern times a new algorithm for

computing GCD’s was proposed that gives the Euclidean algorithm a serious run for its

money, and is actually faster in some implementations. This algorithm was proposed by

Josef Stein in 1967 and is known as the binary GCD algorithm or Stein’s algorithm.

It replaces the integer division operations of the Euclidean algorithm, which are costly

in some computer architectures, with a clever use of subtractions (which are generally

cheap) and divisions by 2, which can be implemented in machine language as (also cheap)

bit shift operations.

[Here is a summary of the algorithm: start with two integers u < v. First, extract the

common power-of-2 factor to get to a situation where at least one of u, v is odd. Then,

successively replace (u, v) with the new pair (v− u)/2k, u (sorted so that the smaller one

gets called “u” and the bigger one “v”), where 2k is the maximal power of 2 dividing

v − u. Eventually one of the numbers becomes 0 and the remaining one represents the

odd component of the GCD of the original numbers.]

The computer scientist Richard Brent noticed in 1976 that this algorithm can also be

reformulated in terms of a dynamical system. Similarly to the case of the Euclidean

algorithm, the theoretical analysis of the running time of the binary GCD algorithm

leads to highly nontrivial questions (most of them still open) about the behavior of this

dynamical system. In particular, this system has an invariant measure that is mutually

absolutely continuous with respect to Lebesgue measure, and is analogous to the Gauss

measure, but no good formula for it is known. See Section 4.5.3 in Knuth’s book mentioned
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above for more details.

10. The 3x+ 1 map. The 3x+1 problem or Collatz problem is a famous open problem

(studied since the 1950’s, and originating in work of L. Collatz around 1932) about a

discrete dynamical system on the positive integers. It pertains to iterations of the map

T : N→ N defined by

T (n) =

3n+ 1 if n is odd,

n
2 if n is even.

The conjecture is that for any initial number n0, iterating the map will eventually lead to

the cycle 1, 4, 2, 1, 4, 2, 1, . . . The mathematician Paul Erdös was quoted as saying “Math-

ematics is not yet ready for such problems” and offered a $500 prize for its solution.

One of the many (ultimately unsuccessful) attempts to study the problem was based

on the beautiful observation that this dynamical system can be turned into a measure

preserving system, by extending its domain of definition to the ring Z2 of 2-adic integers.

This is an extension of the usual ring Z of integers in which every element has a binary

expansion that extends infinitely far to the left (instead of to the right as a real number

would). That is, a dyadic integer is a formal expression of the form

a0 + 2 · a1 + 4 · a2 + 8 · a3 + . . .+ 2nan + . . . =
∞∑
n=0

an2n

where a0, a1, a2, . . . ∈ {0, 1}. It can be shown that one can do algebra, and even an exotic

form of calculus, on these numbers (and more generally over similar sets of numbers in

which the binary expansion is replaced by a base-p expansion where p is an arbitrary

prime number — these are the so-called p-adic integers). Since the notion of the parity

of a number extends to 2-adic integers, the 3x + 1 map T extends in an obvious way

to a map T̃ : Z2 → Z2. It can be shown that T̃ preserves the natural volume measure

of Z2. For more information, see Wikipedia or the article The 3x + 1 problem and its

generalizations, by J. C. Lagarias (American Math. Monthly 92 (1985), 3–23).

11. Billiards. In Chapter 5 we discussed billiard dynamical systems, and mentioned a for-

mula on the limiting statistics of such a system, in the case when it is ergodic. This is

related to the fact that the billiard dynamics also has an invariant measure, given (in a
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suitable parametrization of the phase space) by

µ(A) =

∫∫∫
A

sin θ

sin θ1

dθ dφ d`.

12. Hamiltonian flow. Hamiltonian mechanics is a formalism for modeling a mechani-

cal system of particles and rigid bodies interacting via physical forces, with no external

influences. The phase space is some set Ω representing the possible states of the system

(formally, it is a symplectic manifold, and has a smooth structure — i.e., one can solve

differential equations on it and do other calculus-type operations). The Hamiltonian

flow is a semigroup of maps (Hs)s≥0 representing the time-evolution of the system, i.e.,

Hs(ω) takes an initial state ω ∈ Ω of the system and returns a new state representing

the state of the system s time units in the future. A result known as Liouville’s theorem

says that the natural volume measure of the manifold is preserved under the Hamiltonian

system. Thus, the Hamiltonian flow is a measure preserving flow (the continuous-

time analogue of a measure preserving system, which we will not discuss in detail). Such

flows provided some of the original motivation for questions of ergodic theory, since, e.g.,

statistical physicists in the 19th century wanted to understand the statistical behavior

of ideal gases (note that billiard can be thought of a toy model for a gas in an enclosed

region).

13. Geodesic flow. On a compact Riemann surface (or more generally a Riemannian man-

ifold), the geodesic flow (ϕs)s≥0 is a family of maps, where each ϕs takes a point on the

manifold together with a “direction” at s (formally, an element of the tangent space at

s), and returns a new pair “point+direction” that is obtained by proceeding s units of

distance along the unique geodesic curve originating from s in the given direction. (For

a more formal description, see Wikipedia or a textbook on differential geometry). The

geodesic flow preserves the volume measure and is thus a measure preserving flow.

14. The logistic map. The logistic map was originally studied as a simple model for the

dynamics of population growth of animal and plant species. It is given by the formula

Lr(x) = rx(1− x) (0 < x < 1),

where r > 0 is a parameter of the system. Here, x represents the size of the popula-

tion, and Lr(x) represents the size of the population one generation later, so successive
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Figure 5: Chaos in the logistic map (source: Wikipedia)

iterations Lnr (x) correspond to the evolution of the population sizes over time starting

from some initial size x. The assumptions underlying the model are that when x is small

one should observe roughly exponential growth when iterating the map, but as the size

of the population increases, the environmental resources required to support growth are

depleted, leading to starvation and a sharp decrease in the population size.

The logistic map is a famous example of the emergence of chaos: for values of r between

0 and 3, the system stabilizes around a unique value (0 if r ≤ 1, or (r−1)/r if 1 ≤ r ≤ 3).

When r becomes slightly bigger than 3 a bifurcation occurs, leading to an oscillation

between 2 values; as r increases further, additional bifurcations occur (oscillation betweeen

4 values, 8 values etc.) until chaotic behavior emerges at r ≈ 3.57 and continues (with

occasional intervals of stability) until r = 4, after which point the range of the map

leaves [0, 1] so the model stops making sense as a dynamical system. See Figure 5 for an

illustration of this remarkable phenomenon.

Lemma 6.13. When r = 4, the map L4 has an invariant measure λ on (0, 1) given by

λ(dx) =
1

π
√
x(1− x)

dx
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(also known as the Beta(1
2
, 1

2
) distribution).

Exercise 6.14. Prove Lemma 6.13

6.4 Ergodicity

Let (Ω,F ,P, T ) be a measure preserving system. An event A ∈ F is called T -invariant (or

invariant under T , or just invariant if the context is clear) if

T−1(A) = A a.s.,

with the convention that two events A,B are considered equal almost surely if their sym-

metric difference has probability 0. That is, A is invariant if

P(A4T−1(A)) = 0,

(where A4B = (A \B) ∪ (B \A) denotes the symmetric difference of two sets). We denote

by I the collection of a.s. invariant events.

Lemma 6.15. I is a σ-algebra.

Exercise 6.16. Prove Lemma 6.15.

Definition 6.17. The measure preserving system (Ω,F ,P, T ) is called ergodic if for any

invariant event A, P(A) = 0 or P(A) = 1.

A sub-σ-algebra of F all of whose events have probability 0 or 1 is called trivial. (We

already saw an example: the σ-algebra of tail events of an i.i.d. sequence of random variables

is trivial, according to the Kolmogorov 0-1 law.) So, another way of saying that a measure

preserving system is ergodic is that its σ-algebra I of invariant events is trivial.

There is an equivalent way to characterize ergodicity in terms of invariant random vari-

ables rather than events, given in the following exercise.

Exercise 6.18. If (Ω,F ,P, T ) is a measure preserving system, a random variable X : Ω→ R
is called invariant if X ◦ T ≡ X almost surely. Prove that a random variable is invariant

if and only if it is measurable with respect to I, and that a system is ergodic if and only the

only invariant random variables are almost surely constant.
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Exercise 6.19. Show that a measure preserving system (Ω,F ,P, T ) is ergodic if and only

if the probability measure P cannot be represented in the form

P = αQ1 + (1− α)Q2,

where 0 < α < 1 and Q1, Q2 are two distinct T -invariant probability measures on the mea-

surable space (Ω,F). (In words, this means that an ergodic system cannot be decomposed

into a nontrivial convex combination of two simpler systems.)

To get a feel for this new concept, let us examine which of the measure preserving systems

discussed in the previous section are ergodic.

1. i.i.d. sequence. Let A be an invariant event in the i.i.d. shift. A is in the product σ-

algebra, in other words, it is measurable with respect to σ(X1, X2, . . .), where X1, X2, . . .

denote the coordinate functions of the product space. Then

S−1(A) = {ω ∈ RN : (ω2, ω3, . . .) ∈ A}

is measurable with respect to σ(X2, X3, . . .), and similarly, for any n ≥ 1,

S−n(A) = {ω ∈ RN : (ωn+1, ωn+2, . . .) ∈ A}

is in σ(Xn+1, Xn+2, . . .). It follows that

A′ =
∞⋂
N=1

∞⋃
n=N

S−n(A) = {S−n(A) i.o.}

is a tail event, and hence has probability 0 or 1 by the Kolmogorov 0-1 law. But we

assumed that A was invariant, which implies that A = S−n(A) almost surely for all

n ≥ 1, and therefore also A = A′ almost surely. It follows that A is also a 0-1 event7. We

have proved:

Lemma 6.20. Any i.i.d. shift map is ergodic.

7The above argument shows that I ⊆ T (the σ-algebra of invariant subsets is contained in the tail

σ-algebra), as long as we identify sets which are a.s. equal.
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2. A shift-equivariant function of an ergodic stationary sequence.8 Let (Xn)n be

a stationary sequence whose associated shift system is ergodic (such a sequence is called

simply a stationary ergodic sequence), and let Yn be defined as in (15).

Lemma 6.21. The stationary sequence (Yn)n is also ergodic.

Proof. Let A be an invariant event for the (Yn) sequence. We can think of A as “living”

in the original product space RN associated with the shift map for the sequence (Xn)n.

(Formally, the sequence (Yn)n is an infinite-dimensional random vector, i.e., it maps the

RN “of” the (Xn)n sequence into a “different copy” of RN; by pulling back the event

A with respect to this mapping we get a “copy” of A in the original product space.)

The fact that A is invariant under shifting the Yn’s means it is also invariant under the

original shift of the Xn’s, hence is a 0-1 event by the assumption that the (Xn)n sequence

is ergodic.

3. Stationary finite-state Markov chains. A Markov chain is called irreducible if

any state can be reached in a sequence of steps from any other state. It is not hard to

prove (see [Dur2010, Example 7.1.7, p. 281]) that a stationary finite-state Markov chain

is ergodic if and only if it is irreducible.

4. Tossing a randomly chosen coin. In this experiment we have

U = lim
n→∞

1

n

n∑
k=1

Xk

by the strong law of large numbers (conditioned on the value of U). So, the random coin

bias U is an invariant random variable, and thus the sequence (Xn)n is ergodic if and only

if U is a.s. constant (equivalently, if and only if the sequence is i.i.d.).

We should note that this process is in some sense an archetypical example of a non-ergodic

process, in the sense that non-ergodicity is precisely the behavior in which the experi-

ment chooses “at the dawn of time” some random data or information (represented by the

8In more abstract treatments of ergodic theory, this example would be called a factor map or ho-

momorphism. An important family of problems in ergodic theory is concerned with identifying when one

measure preserving system can be obtained as a homomorphism of another (usually simpler) measure preserv-

ing system, and especially when one can find an invertible homomorphism, also known as an isomorphism,

between the two systems.
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σ-algebra of invariant events), and then performs a stationary ergodic sequence of experi-

ments that depends on this initial data. In other words, a general stationary sequence can

always be represented as a mixture, or a kind of weighted average, of stationary ergodic

sequences, where the weights in the mixture correspond to the probability distribution of

the initial data. (The precise formulation of this statement leads to the concept of the

ergodic decomposition of a measure preserving system, which we will not discuss in

detail since it requires some slightly advanced notions from functional analysis.)

Exercise 6.22. Show that the σ-algebra I of invariant subsets for this process coincides

with the σ-algebra σ(U) generated by the random coin bias U . That means that, not

only is U an invariant random variable, but any other invariant random variable can be

computed once the value of U is known.

5. Pólya’s urn. The limiting fraction Y of white balls in the urn (see (4)) is an invariant

random variable. By (3), it is non-constant, which shows that the shift associated with

the stationary sequence of indicators (In)n in Pólya’s urn experiment is not ergodic.

It is an amusing and rather counter-intuitive fact that the Pólya urn experiment is actually

a special case of the “tossing a randomly chosen coin” family of examples discussed above.

In fact, the “random coin bias” U is equal to the limiting fraction Y of white balls in the

urn. To see this, note that by a short computation (2) can be massaged into the form

P(I1 = x1, . . . , In = xn) =
B(a+ k, b+ n− k)

B(a, b)
,

where B(u, v) =
∫ 1

0
xu−1(1 − x)v−1 dx denotes the Euler beta function, and k =

∑n
j=1 xj

(check!). We can further recognize the quantity on the right hand side as an expectation,

namely

B(a+ k, b+ n− k)

B(a, b)
=

1

B(a, b)

∫ 1

0

xa−1(1− x)b−1xk(1− x)n−k dx = E(Uk(1− U)n−k),

where U ∼ Beta(a, b). Thus, we have the amazing fact that, in effect, Pólya’s urn behaves

as if at the beginning of time, it chooses the random limiting fraction Y of white balls

(without telling the experimenter!), and subsequently tosses an i.i.d. sequence of coin

tosses with bias Y to choose the successive colors of the balls that get added to the urn.

Furthermore, by the exercise above, the σ-algebra of invariant subsets is the one generated
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by Y , so intuitively one can say that this random variable measures the precise extent

of non-ergodicity in the process, i.e., the decomposition of the process into its ergodic

components.

6. Rotation of the circle. The following result has a natural number theoretic interpre-

tation, which we’ll discuss later after proving the Birkhoff pointwise ergodic theorem.

Theorem 6.23. The circle rotation map Rα is ergodic if and only if α is irrational.

Proof. If α = p/q is rational, the set

E =
[
0, 1

2q

]
∪
[

1
q
, 3

2q

]
∪
[

2
q
, 5

2q

]
∪
[

3
q
, 7

2q

]
∪ . . . ∪

[
q−1
q
, 2q−1

2q

]
is an example of a nontrivial invariant set. Conversely, assume that α is irrational. Let

A ⊂ [0, 1] be an invariant event. The indicator variable 1A is a bounded measurable

function, hence an element of L2[0, 1], and can therefore be expanded in the Fourier basis

1A(x) =
∞∑

n=−∞

cne
2πinx.

(The equation represents an equality in L2, i.e., it is true for almost every x ∈ [0, 1].) The

coefficients cn in the expansion are given by cn = 1
2π

∫ 1

0
1A(x)e−2πinx dx. Then we have

1R−1
α (A)(x) = (1A ◦Rα)(x) = 1A(Rα(x)) =

∞∑
n=−∞

cne
2πinRα(x) =

∞∑
n=−∞

cne
2πin(x+α mod 1)

=
∞∑

n=−∞

cne
2πin(x+α) =

∞∑
n=−∞

dne
2πinx,

where we denote dn = cne
2πinα. Since A is invariant, i.e., 1R−1

α (A) = 1A a.s., we get that

cn = dn for all n ∈ Z. But α is irrational, so e2πinα 6= 1 if n 6= 0. It follows that cn = 0

for all n 6= 0, which leaves only the constant Fourier coefficient, i.e., 1A ≡ c0 a.s., which

proves that A is a trivial event.

7. The 2x mod 1 map. As we discussed earlier, this system is equivalent to the (1
2
, 1

2
)

Bernoulli shift, so by Lemma 6.20 above, the doubling map is ergodic.
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8. The continued fraction map. The Gauss map is ergodic, a fact which has important

consequences (which we will discuss in the next chapter) for understanding the distribu-

tion of continued fraction quotients of a typical real number. There are many proofs of

this result. See for example the book Ergodic Theory and Information by P. Billingsley,

and the paper by Bowen cited in example 13 below.

9. The 3x+1 map. K. R. Matthews and A. M. Watts studied the extension T̃ of the 3x+1

map to the 2-adic integers in a 1983 paper, and in particular proved that T̃ is ergodic

(see the survey by Lagarias mentioned in Section 6.3).

10. Billiards. In Chapter 5 we described some example of billiard systems which are known

to be ergodic, and some which aren’t (for relatively trivial reasons). In general it is

extremely difficult to prove that a given billiard system is ergodic, but, similarly to the

example of Markov chains described above, there is a kind of philosophical principle (that

applies to billiard and other types of dynamical systems) that says that unless a system is

non-ergodic for a relatively obvious or trivial reason (e.g., because there is some obvious

quantity that is conserved such as the energy of a mechanical system), one would expect

the system to be ergodic, even though in practice one may have no idea how to prove it

in a given situation. As with any philosophical principle, one should take care in deciding

how to apply it9.

11. Hamiltonian flow. The situation is similar to that of billiard systems: most systems are

assumed to be ergodic unless there are obvious reasons why they are not, but as far as I

know this cannot be proved in virtually any example which has any real-world relevance.

12. Geodesic flow. Some geodesic flows are not ergodic (e.g., the sphere), and others are (for

example, hyperbolic space). The main property required to have ergodicity is negative

curvature, but I am not familiar with the specific details. It is also interesting to note

that there is a beautiful theory linking the continued fraction map and other dynamical

systems with a number-theoretic flavor to geodesic flows on compact hyperbolic surfaces

(in the case of the continued fraction map, it can be related to the geodesic flow on the

modular surface H/PSL(2,Z), the quotient of the hyperbolic plane by the modular

group).

9Note: a philosophical principle is what mathematicians invent when they can’t say anything rigorous.

66



13. The logistic map. This map is ergodic, a fact that follows as a consequence of a

much more general result proved in the paper Invariant measures for Markov maps of the

interval, by R. Bowen (Commun. Math. Phys. 69 (1979), 1–17).
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Chapter 7: Ergodic theorems

7.1 Von Neumann’s L2 ergodic theorem

Our first ergodic theorem is von Neumann’s ergodic theorem, which in fact is a result in

operator theory that has a nice interpretation for our problem of the convergence of ergodic

averages in a measure preserving system.

Theorem 7.1 (Von Neumann’s ergodic theorem.). Let H be a Hilbert space, and let U be

a unitary operator on H. Let P be the orthogonal projection operator onto the subspace

Ker(U − I) (the subspace of H consisting of U-invariant vectors). For any vector v ∈ H we

have
1

n

n−1∑
k=0

Ukv → Pv as n→∞. (17)

(Equivalently, the sequence of operators 1
n

∑n−1
k=0 U

k converges to P in the strong operator

topology.)

Proof. Define two subspaces

V = Ker(U − I) = {v ∈ H : Uv = v},

V ′ = Range(U − I) = {Uw − w : w ∈ H}.

Note that (17) holds trivially for v ∈ V . For a different reason, we also show that it holds

for v ∈ V ′: if v = Uw − w then we have

1

n

n−1∑
k=0

Ukv =
1

n
(Unw − w)→ 0 as n→∞.

On the other hand, one can verify that v ∈ V ⊥, and therefore Pv = 0, by observing that if

z ∈ V then

〈w, z〉 = 〈Uw,Uz〉 = 〈Uw, z〉,

hence 〈Uw − w, z〉 = 0.

Combining the above observations we see that (17) holds for v ∈ V +V ′. Next, we claim

that it also holds for v ∈ V + V ′, the norm closure of V + V ′. Indeed, if v ∈ V + V ′ then
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for an arbitrary ε > 0 we can take w ∈ V + V ′ such that ‖v − w‖ < ε and conclude that∥∥∥∥∥
(

1

n

n−1∑
k=0

Uk − P

)
v

∥∥∥∥∥ ≤
∥∥∥∥∥
(

1

n

n−1∑
k=0

Uk − P

)
w

∥∥∥∥∥+

∥∥∥∥∥
(

1

n

n−1∑
k=0

Uk − P

)
(v − w)

∥∥∥∥∥
≤

∥∥∥∥∥
(

1

n

n−1∑
k=0

Uk − P

)
w

∥∥∥∥∥+ ε.

This implies that lim supn→∞
∥∥( 1

n

∑n−1
k=0 U

k − P
)
v
∥∥ < ε, and since ε was an arbitrary positive

number we get (17).

Finally, we claim that H = V + V ′. Since V + V ′ is a closed subspace of H, we have

V + V ′ =
((
V + V ′

)⊥)⊥
,

(in general, the orthogonal complement of the orthogonal complement of a subspace W of

a Hilbert space is equal to W ). So, it suffices to show that
(
V + V ′

)⊥
= {0}, i.e., that the

only vector orthogonal to all of V + V ′ is the zero vector. Assume w is such a vector. Then

w ⊥ Uw − w. But note that we have the identity

‖Uw − w‖2 = 〈Uw − w,Uw − w〉 = ‖Uw‖2 + ‖w‖2 − 2 Re〈Uw,w〉

= 2‖w‖2 − 2 Re〈Uw,w〉 = −2 Re〈Uw − w,w〉

which means that Uw−w = 0, i.e., w ∈ V . Since w ∈
(
V + V ′

)⊥
we get that w is orthogonal

to itself and therefore w = 0, as claimed.

Let (Ω,F ,P, T ) be a measure preserving system. We associate with T an operator UT

on the Hilbert space L2(Ω), defined by

UT (f) = f ◦ T.

The fact that T is measure preserving implies that UT is unitary:

〈UTf, UTg〉 = E((UTf)(UTg)) = E((f ◦ T )(g ◦ T )) = E((fg) ◦ T ) = E(fg) = 〈f, g〉.

Note also that the subspace Ker(U − I) consists exactly of the invariant (square-integrable)

random variables, or equivalently those random variables which are measurable with respect

to the σ-algebra I of invariant events. Recalling the discussion of conditional expectations

in Chapter 2, we also see that the orthogonal projection operator P is exactly the condi-

tional expectation operator E (· | I) with respect to the σ-algebra of invariant events! Thus,

Theorem 7.1 applied to this setting gives the following result.
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Theorem 7.2 (The L2 ergodic theorem). Let (Ω,F ,P, T ) be a measure preserving system.

For any random variable X ∈ L2(Ω,F ,P), we have

1

n

n−1∑
k=0

X ◦ T k → E (X | I) in L2 as n→∞.

In particular, if the system is ergodic then

1

n

n−1∑
k=0

X ◦ T k → E(X) in L2 as n→∞.

7.2 Birkhoff’s pointwise ergodic theorem

We will now prove the fundamental result of ergodic theory, known alternately as Birkhoff’s

pointwise ergodic theorem; Birkhoff’s ergodic theorem; the pointwise ergodic

theorem; or just the ergodic theorem10.

Theorem 7.3 (Birkhoff’s ergodic theorem). Let (Ω,F ,P, T ) be a measure preserving system.

Let I denote as usual the σ-algebra of T -invariant sets. For any random variable X ∈
L1(Ω,F ,P), we have

1

n

n−1∑
k=0

X ◦ T k a.s.−−→ E (X | I) as n→∞. (18)

When the system is ergodic, we have

1

n

n−1∑
k=0

X ◦ T k a.s.−−→ E(X) as n→∞. (19)

For the proof, we start by proving a lemma, known as the maximal ergodic inequality.

Lemma 7.4. With the same notation as above, denote also S0 = 0, Sn =
∑n−1

k=0 X ◦T k, and

let Mn = max{Sk : 0 ≤ k ≤ n}. For each n ≥ 1 we have

E(X1{Mn>0}) ≥ 0.

10Incidentally, I’ve always found it strange that ergodic theory — unlike other areas of math — seems

to be the only theory named after an adjective (as opposed to a noun, as in the theory of numbers, or as in

the non-existent name the theory of ergodicity, which would perhaps have been a better name for ergodic

theory). Similarly, the ergodic theorem is, as far as I know, the only theorem in math to be named after an

adjective. (And what does the name mean, anyway? That the theorem has no nontrivial invariant sets...?)

If you think of any counterexamples to this observation, please let me know!
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Proof. For each 0 ≤ k ≤ n we have

Sk+1 = X + Sk ◦ T ≤ X +Mn ◦ T,

or equivalently X ≥ Sk+1 −Mn ◦ T . Since this is true for each 0 ≤ k ≤ n, we get that

X ≥ max(S1, . . . , Sn)−Mn ◦ T,

and therefore, noting that on the event {Mn > 0}, we have Mn = max(S1, . . . , Sn), we get

that

E(X1{Mn>0}) ≥ E
[
(max(S1, . . . , Sn)−Mn ◦ T )1{Mn>0}

]
= E

[
(Mn −Mn ◦ T )1{Mn>0}

]
= E [(Mn −Mn ◦ T )]− E

[
(Mn −Mn ◦ T )1{Mn>0}c

]
= 0− E

[
(Mn −Mn ◦ T )1{Mn=0}

]
= E

[
(Mn ◦ T )1{Mn=0}

]
≥ 0.

Proof of the ergodic theorem. E (X | I) is an invariant random variable, so by replacing X

with X−E (X | I), we can assume without loss of generality that E (X | I) = 0; in this case,

we need to prove that Sn/n → 0 almost surely (where Sn =
∑n−1

k=0 X ◦ T k as in the lemma

above). Denote X = lim supn→∞ Sn/n. X is an invariant random variable, taking values

in R ∪ {±∞}. Fix ε > 0, and consider the invariant event A = {X > ε}. We claim that

P(A) = 0. Once we prove this, since ε is arbitrary it will follow that X ≤ 0 almost surely.

By applying the same result to −X instead of X the reverse inequality that almost surely

lim inf Sn/n ≥ 0 will also follow, and the theorem will be proved.

To prove the claim, define a new random variable X∗ = (X− ε)1A. Applying Lemma 7.4

to X∗ we get that

E
[
X∗1{M∗n>0}

]
≥ 0,

where M∗
n = max(0, S∗1 , . . . , S

∗
n) and

S∗k =
k−1∑
j=0

X∗ ◦ T j =
k−1∑
j=0

(
(X − ε) ◦ T k−1

)
1A = (Sk − kε)1A
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(sinceA is an invariant event). Note that the events {M∗
n > 0} are increasing, soX∗1{M∗n>0} →

X∗1B almost surely as n→∞, where the event B is defined by

B =
∞⋃
n=1

{M∗
n > 0} =

{
sup
n≥1

S∗n > 0

}
=

{
sup
n≥1

S∗n/n > 0

}
.

Furthermore, the convergence is dominated, since E|X∗| ≤ E|X|+ ε <∞, so the dominated

convergence theorem implies that

E(X∗1B) ≥ 0.

Finally, observe that A ⊂ B, because

A = {lim sup
n→∞

Sn/n > ε} ⊆ A ∩ {Sn > nε for some n ≥ 1}

=
∞⋃
n=1

{(Sn − nε)1A > 0} =

{
sup
n≥1

S∗n > 0

}
= B.

So we have shown that

0 ≤ E(X∗1B) = E((X − ε)1A1B) = E((X − ε)1A∩B) = E((X − ε)1A)

= E(X1A)− εP(A) = E(E (X | I) 1A)− εP(A) = −εP(A),

which proves our claim that P(A) = 0.

7.3 The L1 ergodic theorem

A trivial addendum to the previous proof shows that we also get L1 convergence of the

ergodic averages.

Theorem 7.5 (L1 ergodic theorem). The convergence in (18), (19) is also in L1.

Proof. Fix M > 0, and write X = YM + ZM where YM = X1{|X|≤M} and ZM = X − YM =

X1{|X|>M}. The pointwise ergodic theorem implies that

1

n

n∑
k=0

YM ◦ T k → E (YM | I) almost surely as n→∞,

and since |YM | ≤M the bounded convergence theorem implies also convergence in L1, i.e.,∣∣∣∣∣ 1n
n∑
k=0

YM ◦ T k − E (YM | I)

∣∣∣∣∣→ 0 as n→∞. (20)
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Next, for ZM we have the trivial estimates

E

∣∣∣∣∣ 1n
n−1∑
k=0

ZM ◦ T k
∣∣∣∣∣ ≤

n−1∑
k=0

E|ZM ◦ T k| = E|ZM |,

E |E (ZM | I)| ≤ EE (|ZM | | I) = E|ZM |,

so, combining this with (20), this shows that almost surely

lim sup
n→∞

E

∣∣∣∣∣ 1n
n−1∑
k=0

X ◦ T k − E (X | I)

∣∣∣∣∣ ≤ 2E|ZM |.

Letting M →∞ finishes the proof, since lim supM→∞E|ZM | = 0 by the dominated conver-

gence theorem.

Exercise 7.6. Prove that if X is in Lp for some p > 1 then the convergence in (18) is also

in the Lp norm.

7.4 Consequences of the ergodic theorem

In probability theory and many related fields, the ergodic theorem is an essential tool that

is used frequently in concrete situations. Here are some of its consequences with regards to

some of the examples we discussed before.

1. The strong law of large numbers. If X1, X2, . . . are i.i.d. with E|X1| < ∞, then

if we think of the variables as being defined on the canonical product space RN (i.e.,

Xn = πn(ω) is the nth coordinate function), then we have Xn = X1 ◦ Sn−1, where

S : RN → RN is the shift map. Thus, the ergodic average 1
n

∑n−1
k=0 X1 ◦ Sk is the same

as the familiar empirical average 1
n
Sn = 1

n

∑n
k=1Xk for an i.i.d., sum, and Birkhoff’s

ergodic theorem implies the strong law of large numbers. (In fact, one can think of the

ergodic theorem as a powerful and far-reaching generalization of the SLLN).

2. Equidistribution of the fractional part of nα. A classical question in number

theory concerns the statistical properties of the fractional part of the integer multiples

of a number α, i.e., the sequence {nα} (sometimes written as nα mod 1), where {z} =

z − bzc denotes the fractional part of a real number z. If α is a rational number, it

is easy to see that this sequence is periodic, and its range is the finite set of numbers

73



{
k
q

: k = 0, 1, . . . , q − 1
}

(where q is the denominator in the representation of α as a

reduced fraction p/q), so the question is trivial. In the case of irrational α something

nice (though not too surprising, in hindsight) happens:

Theorem 7.7 (Equidistribution theorem). If α ∈ R \Q then the sequence ({nα})∞n=1

is equidistributed in [0, 1]11. More precisely, for any 0 < a < b < 1 we have

1

n
#
{

1 ≤ k ≤ n : {nα} ∈ (a, b)
}
→ b− a as n→∞.

To prove this, note that {nα} is simply Rα(0), where Rα is the circle rotation map

discussed in previous sections. Since we proved that Rα is ergodic when α is irrational,

the ergodic theorem implies that for almost every x ∈ [0, 1]

1

n
#
{

1 ≤ k ≤ n : {x+nα} ∈ (a, b)
}

=
1

n

n−1∑
k=0

(
1(a,b) ◦Rk

α

)
(x)→

∫ 1

0

1(a,b)(u) du = b−a

as n → ∞. This would appear to be a weaker result, since it doesn’t guarantee that

the convergence occurs for the specific initial point x = 0. However, in the particular

example of the irrational circle rotation map (and the particular observable of the form

1(a,b)) a slightly unusual thing happens, which is that the ergodic theorem turns out to

be true not just for almost every initial point x but for all x; in fact, it is easy to see

that convergence for one value of x is equivalent to convergence for any other value of

x (and in particular x = 0). This is left to the reader as an exercise.

Note. Theorem 7.7 was proved in 1909 and 1910 independently by Weyl, Sierpinski

and Bohl. In 1916 Weyl showed that the sequence {n2α} is equidistributed, and

more generally that {p(n)} is equidistributed if p(x) is a polynomial with at least

one irrational coefficient. Vinogradov proved in 1935 that if α is irrational then the

sequence {pnα} is equidistributed, where pn is the nth prime number. Jean Bourgain

(winner of a 1994 Fields Medal) proved similar statements in the more general setting

11This is the terminology used in number theory — see for example Section ? in the book

An Introduction to the Theory of Numbers, by Hardy and Wright, and the Wikipedia article

http://en.wikipedia.org/wiki/Equidistributed sequence. Note that in probability theory the word

equidistributed means equal in distribution rather than uniformly distributed, so one should take care when

using this term for the number theoretic meaning when talking to a probabilist.
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of the pointwise ergodic theorem (i.e., the ergodic averages of the form 1
n

∑n
k=1X ◦T k

2

and 1
n

∑n
k=1X ◦T pk in a measure preserving system converge almost surely, under mild

integrability conditions).

3. Benford’s law. A beautiful variant of the circle rotation example above involves

multiplication instead of addition (but one then has the luxury of multiplying by nice

numbers such as rational numbers or integers, instead of adding irrational numbers).

Consider for example the distribution of the first digit in the decimal expansion of

the sequence of powers of 2, (2n)∞n=1. Should we expect all digits to appear equally

frequently? No, a quick empirical test shows that small digits appear with higher

frequency than large digits. To see why, note that this is related to the dynamical

system T : x 7→ 2x mod (10k)∞k=1 on the interval [1, 10) (i.e., multiplication by 2 in

the quotient group of all positive numbers with the multiplication operator quotiented

by the cyclic group generated by the number 10). For example, starting from 1 and

iterating the map we get the sequence

1 7→ 2 7→ 4 7→ 8 7→ 1.6 7→ 3.2 7→ 6.4 7→ 1.28 7→ . . .

It is easy to check that this map has the invariant measure

dµ(x) =
1

log 10

dx

x
(0 < x < 1)

In fact, this is a thinly disguised version of the circle rotation map Rα with α = log10 2;

the two maps are conjugate by the mapping C(x) = log10 x (i.e., C maps [1, 10)

bijectively to [0, 1) and the relation T = C−1 ◦ Rα ◦ C holds), and furthermore the

measure µ defined above is the pull-back of Lebesgue measure on [0, 1) with respect to

the conjugation map C, which is why an experienced ergodicist will know immediately

that µ is an invariant measure for T .12

With this setup, we can answer the question posed at the beginning of the example.

For each 1 ≤ d ≤ 9, the fraction of the first n powers of 2 whose decimal expansions

12We are skirting an important concept in ergodic theory here — in fact, the map C is an example of an

isomorphism between two measure preserving systems. Isomorphisms play a central role in ergodic theory,

and there’s a lot more to say about them, but we will not go further into the subject due to lack of time.
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start with a given digit d is given by

1

n
#{0 ≤ k ≤ n− 1 : T k(1) ∈ [d, d+ 1)} =

1

n

n−1∑
k=0

(
1[d,d+1) ◦ T k

)
(1)

→ 1

log 10

∫ d+1

d

dx

x
= log10

d+ 1

d
,

where the convergence follows by the equidistribution theorem (Theorem 7.7), the

above comments and the exercise below. This probability distribution on the numbers

1, . . . , 9 is known as Benford’s law. Note that the most common digit 1 appears

more than 30% of the time, and the least frequent digit 9 only appears only 4.6% of

the time.

Exercise 7.8. Let n < m be positive integers. Prove that if m is not an integer power

of n then logm n is an irrational number.

Benford’s law is indeed an amusing distribution. From the exercise it is apparent that

the choice of 2 as the factor of multiplication of the dynamical system is not special,

and any other number that is not a power of 10 will work. In fact, even this does

not come close to describing the generality in which Benford’s law holds empirically as

the first-digit distribution of real-life datasets. The reason for this is the fact that the

measure µ is invariant under all scaling transformations. Thus, one should expect to

observe an approximation to Benford’s law in any set of numbers which are more or

less “scale-free”, in the sense that the set contains samples that span a large number of

orders of magnitude, and where the unit of measurement is arbitrary and not inherently

tied to the data being measured. Examples include distances between points on a map,

financial reports, heights of the world’s tallest structures and many more; it has even

been proposed in several studies that Benford’s law can be applied to the problem of

detecting tax evasion and various forms of financial fraud and possibly also election

fraud. (Presumably, this will work under the assumption that the cheaters who fake

financial and tax reports are themselves not aware of the importance of Benford’s law!)

4. Continued fractions. The fact that the continued fraction map on (0, 1) (together

with the Gauss invariant measure) is ergodic has important consequences regarding

the distribution of quotients in the continued fraction expansion of a number chosen
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d PBenford(d) = log10
d+1
d

Graphical illustration

1 30.1%

2 17.6%

3 12.5%

4 9.7%

5 7.9%

6 6.7%

7 5.8%

8 5.1%

9 4.6%

Table 1: The (approximate) digit frequencies in Benford’s law

uniformly at random in (0, 1). In contrast to the much more trivial case of the digits in

a decimal (or base-b) expansion, which are simply i.i.d. random numbers chosen from

0, . . . , 9, the asymptotic distribution of successive continued fraction quotients is that

they are identically distributed, but not quite independent. To see this, note that the

marginal distribution of a single quotient can be computed using ergodic averages, as

follows. For each q ≥ 1, the set of numbers x whose first quotient N(x) = b1/xc is

equal to q is exactly the interval
(

1
q+1

, 1
q

]
. Thus, for a given number x we can recover

the proportion of the first n quotients equal to q as

1

n

n−1∑
k=0

(
1(1/(q+1),1/q] ◦Gk

)
(x),

which by the ergodic theorem converges to

1

log 2

∫ 1/q

1/(q+1)

dx

1 + x
= log2

(
(q + 1)2

q(q + 2)

)
(21)

for a set of x’s that has measure 1 with respect to Gauss measure γ (and hence, also

almost surely with respect to Lebesgue measure, since γ and Lebesgue are mutually

absolutely continuous with respect to each other). Thus, the formula on the right-

hand side of (21) (which is oddly reminiscent of Benford’s law, though they are not

related) represents the limiting distribution of the first quotient of a random number.
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For example, the frequency of occurrence of the quotient 1 is log2(4/3) ≈ 41.5% —

more than 40% of the quotient are equal to 1 ! Note that this is an asymptotic result

that pertains to the statistics of many quotients of a given number x, and not to the

first quotient of x: if x is chosen uniformly in [0, 1], because Lebesgue measure is not

invariant under the Gauss map G, the first quotient of x has a different distribution

(clearly, the probability that the first quotient is q is exactly 1/q−1/(q+1), the length

of the interval (1/(q + 1), 1/q]).

Exercise 7.9. Compute the asymptotic probability that a pair of successive quotients

of a randomly chosen x in [0, 1] is equal to (1, 1) and compare this to the square of the

frequency of 1’s, to see why successive quotients are not independent of each other. Are

two successive 1’s positively or negatively correlated?

What other quantities of interest can one compute for the continued fraction expansion

of random numbers? One can try computing the expected value of a quotient, but that

turns out not to be very interesting — the average 1
log 2

∫ 1

0
N(x) dx

1+x
is infinite. The

Russian probabilist Khinchin (known for his Law of Iterated Logarithm, a beautiful

result on random walks and Brownian motion) derived an interesting limiting law for

the geometric average of the quotients. He proved that for almost every x ∈ [0, 1], the

geometric average (q1 . . . qn)1/n of the first n quotients of x converges to the constant

K =
∞∏
k=1

(
1 +

1

k(k + 2)

)log2 k

≈ 2.68545

(known as Khinchin’s constant).

Exercise 7.10. Prove Khinchin’s result.

We mention one additional and very beautiful limiting result on continued fraction

expansions. If x ∈ (0, 1) has an infinite continued fraction expansion

x =
1

n1 + 1
n2+ 1

n3+ 1

n4+ 1
...

,
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where n1, n2, . . . are the quotients in the expansion, it is interesting to consider the

truncated expansion
Pk
Qk

=
1

n1 + 1
n2+ 1

n3+ 1

...+ 1
nk

,

which are rational numbers that become better and better approximations to x. In

fact, one reason why continued fraction expansions are so important in number theory

is that it can be shown that the best rational approximation to x with denominator

bounded by some bound N will always be the last truncated continued fraction Pk/Qk

for which Qk ≤ N , and furthermore, the inequalities

1

Qk(Qk +Qk+1)
≤
∣∣∣∣x− Pk

Qk

∣∣∣∣ ≤ 1

QkQk+1

(22)

hold. How fast should we expect this sequence of rational approximations to converge?

The answer is given in the following theorem. For the proof (which is surprisingly not

difficult), see Section 1.4 in the book Ergodic Theory and Information by P. Billingsley.

Theorem 7.11. For almost every x ∈ (0, 1) we have

lim
k→∞

1

k
logQk =

π2

12 log 2
, (23)

lim
k→∞

1

k
log

∣∣∣∣x− Pk
Qk

∣∣∣∣ =
π2

6 log 2
, (24)

lim
k→∞

1

k
log Leb(∆k(x)) =

π2

6 log 2
, (25)

where ∆k(x) = {y ∈ (0, 1) : nj(y) = nj(x) for 1 ≤ j ≤ k} (this interval is sometimes

called the kth fundamental interval of x), and Leb(·) denotes Lebesgue measure

(it is easy to see that the same statement is true if Gauss measure is used instead).

Note that (24) and (25) follow easily by combining (23) with (22). The interesting

constant π2

6 log 2
is sometimes referred to as the entropy constant of the continued

fraction map.
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Chapter 8: Entropy and information theory

8.1 Entropy and its basic properties

In this chapter we give an introduction to information theory, a beautiful theory at

the intersection of ergodic theory, probability, statistics, computer science, and branches of

engineering and physics.

Throughout the chapter, X1, X2, X3, . . . will denote a stationary ergodic sequence of

random variables taking values in a finite set A = {α1, . . . , αd}. We think of the sequence as

an information source, emitting successive symbols from the set A, which in this context

will be referred to as the alphabet. Think of a long text in English or some other language13;

a sequence of bits being transmitted from one computer to another over a network; data

sampled by a scientific instrument over time, etc. — all of these are examples of information

sources which in suitable circumstances are well-modeled by a stationary ergodic sequence

over a finite alphabet.

A fundamental problem of information theory is to measure the information content of

the source. This is a numerical quantity which has come to be known as entropy. We will

define it and also try to explain what the number it gives means. E.g., if the entropy of

a source is 3.5, what does that tell us regarding the difficulty of storing or communicating

information coming from the source?

Let us start with the simplest case of an i.i.d. sequence. Denote pk = P(X1 = αk).

The probability vector (p1, . . . , pd) gives the relative frequencies of occurrence of each of

the symbols α1, . . . , αd, and for an i.i.d. sequence completely characterizes the statistical

properties of the sequence, so entropy will simply be a function of the numbers p1, . . . , pd.

We define it as

H(p1, . . . , pd) = −
d∑

k=1

pk log2(pk),

13It may seem unusual to you that language is considered as a statistical source, but spoken and written

language does exhibit very clear statistical characteristics. Note that information theory makes no attempt

to address the meaning (or usefulness) of a string of text. Thus, the word “information” is used in a slightly

different meaning in information theory versus how an ordinary person might use it. For example, a string

of random unbiased binary bits might appear to contain very little information to a layperson, but in the

information theory sense this kind of string has the highest possible information content for a binary string

of given length.
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with the convention that 0 log 0 = 0. The logarithm is traditionally taken to base 2, to reflect

the importance of entropy in computer science and engineering, although in certain fields

(notably thermodynamics and statistical physics) the natural base is used, and any other

base may be used as long as it is used consistently in all formulas. If the base 2 is used, we

say that entropy is measured in units of bits. The letter H used for the entropy function is

actually a capital Greek eta, the first letter of the Greek word entropia14.

Note that entropy can be regarded as the average of the quantity − log2 pk weighted by

the probabilities pk. Thus, sometimes we write

H(p1, . . . , pk) = −E log2 p(X),

where X is a random variable representing a source symbol (i.e., P(X = αk) = pk for each

1 ≤ k ≤ d, and p(αk) = pk represents the probability of each symbol. (It is a distinctive

and somewhat curious feature of information theory that probabilities are often themselves

regarded as random variables.)

Example 8.1. In the case of a 2-symbol alphabet (d = 2), the entropy function is usually

written simply as a function of one variable, i.e.,

H(p) = −p log2 p− (1− p) log2(1− p)

This function is concave, has the symmetry H(p) = H(1− p), equal to 0 at p = 0 and p = 1,

and takes the maximum value H(1/2) = 1 at p = 1/2 (see figure).

Lemma 8.2 (Gibbs’s inequality). If (p1, . . . , pd) is a probability vector and (q1, . . . , qd) is a

sub-probability vector, i.e., we have pk, qk ≥ 0,
∑

k pk = 1 and
∑
qk ≤ 1, then

−
d∑

k=1

pi log pi ≤ −
d∑

k=1

pi log qi,

with equality holding if and only the two vectors are equal.

14See the Wikipedia article http://en.wikipedia.org/wiki/History of entropy#Information theory

for an amusing and often-told story about the origin of the term entropy in information theory.
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Figure 6: The entropy function H(p) for a two-value distribution

Proof. The form of the inequality is unchanged by changing the logarithm basis, so we use

the natural logarithm. Since log x ≤ x− 1 for all x > 0, we have

−
d∑

k=1

pk(log qk − log pk) = −
d∑

k=1

pk log

(
qk
pk

)
≥ −

d∑
k=1

pk

(
qk
pk
− 1

)
= −

∑
k

qk +
∑
k

pk ≥ −1 + 1 = 0.

Lemma 8.3 (Properties of the entropy function). The entropy function of d-dimensional

probability vectors (p1, . . . , pd) satisfies:

1. 0 ≤ H(p1, . . . , pd) ≤ log2 d

2. H(p1, . . . , pd) = 0 if and only if pk = 1 for some k (and all the other pj’s are 0).

3. H(p1, . . . , pd) = log2 d if and only if pk = 1/d for all k.

4. H(p ⊗ q) = H(p) + H(q), where if p = (p1, . . . , pd) and q = (q1, . . . , q`), we use the

notation p⊗ q to denote the probability vector (piqj)i,j on the product of two alphabets

of sizes d and `.

5. H(p1, . . . , pd) is a concave function.

Exercise 8.4. Prove Lemma 8.3.
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8.2 The noiseless coding theorem

Our first interpretation of the entropy function will be in terms of the problem of noise-

less coding. Recall that the information source emits symbols in the finite alphabet

A = {α1, . . . , αd}. To transmit the symbol over a digital communication channel or store it

on a computer storage system (which is the same as transmission, except we’re transmitting

it to ourselves in the future rather than to a different physical location), we need to encode

the symbols as binary bits. We assume that the storage system or communication system

are noiseless, i.e., no corruption of our data is expected to occur.

What is a good way to encode the symbols as binary bits? A naive approach would be to

allocate d distinct binary strings, one for each of the symbols. Since the strings need to be

distinct so that the transmission can be decoded on the other end, obviously it is necessary

(and sufficient) for the strings to be of length dlog2 de. Thus, in terms of efficiency, this

method uses the channel approximately log2 d times for every symbol encoded.

But perhaps we can do better? For example, it is possible that some of the symbols occur

more frequently than others. A more sophisticated approach would be to assign binary strings

of different lengths to the different symbols, assigning the shorter strings to more frequently

occurring symbols. One must be careful however to make sure that the transmission, which

may consist of the concatenation of several of the strings used to encode a succession of

source symbols, can be faithfully recovered. This leads to the idea of codes.

Definition 8.5. Let {0, 1}∗ = ∪∞n=1{0, 1}n be the set of all finite binary sequences (which

we will call words or strings). A code for the alphabet A = {α1, . . . , αd} is a collection

(wk)
d
k=1 of words in {0, 1}∗. We say the code is uniquely decodable if any word formed as

a concatenation wj1wj2 . . . wjm of words in the code can be decoded in a unique way, i.e., it

is not equal to any other concatenation of words from the same code. We say that the code

is a prefix code if no word wi in the code is a prefix of another word wj.

It is obvious that any prefix code is uniquely decodable, since, when reading a concatena-

tion of words, we know immediately when a word terminates and the next word begins. Not

all uniquely decodable codes are prefix codes, however (the code 0, 01, 011 is an example).

It is however true that uniquely decodable codes that are not prefix codes are in some sense

pointless and for all practical purposes they may be ignored — see Exercise 8.9 at the end

of this section to understand why. Prefix codes, on the other hand, are extremely useful in
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both theory and applications, and used by people (e.g., punctuation marks in language, the

telephone directory), computers (innumerable examples) and even nature (the genetic code

encodes amino acids used as building blocks of proteins as triplets of nucleotides in DNA).

For a word w ∈ {0, 1}∗, denote its length by `(w). Given a code w1, . . . , wd associated with

an information source that emits a random symbol α1, . . . , αd with respective probabilities

p1, . . . , pd, denote by L the (random) word length, i.e., L = `(wk) with probability pk for

k = 1, . . . , d. A crucial quantity that we are interested in is the expected word length

E(L) =
d∑

k=1

pk`(wk).

By the law of large numbers, this quantity says how many bits we will need to transmit

over the channel for every source symbol coded when encoding very long strings of source

symbols. How small can we make L? The following famous result answers this fundamental

question.

Theorem 8.6 (Noiseless coding theorem). Let (p1, . . . , pd) be a probability vector. Then:

1. If (w1, . . . , wd) ∈ {0, 1}∗ is a prefix code for the source, then the expected word length

satisfies

E(L) =
d∑

k=1

pk`(wk) ≥ H(p1, . . . , pd).

2. A prefix code (w1, . . . , wd) ∈ {0, 1}∗ may be found for which the expected word length

satisfies

E(L) =
d∑

k=1

pk`(wk) ≤ H(p1, . . . , pd) + 1.

To prove the theorem, we need an auxiliary result:

Theorem 8.7 (Kraft’s inequality).

1. If w1, . . . , wd is a prefix code then
∑d

k=1 2−`(wk) ≤ 1.

2. Conversely, if `1, . . . , `d are positive integers satisfying
∑d

k=1 2−`k ≤ 1, then there exists

a prefix code w1, . . . , wk with `(wk) = `k.
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Proof. For the first claim, for each word wk = a1 . . . a`(wk) define a real number xk by

xk =

`(wk)∑
j=1

aj2
−j = (0.a1a2 . . . a`(wk))binary,

and consider the interval Ik = (xk, xk + 2−`(wk)) (a sub-interval of (0, 1)). The fact that the

code is a prefix code is equivalent to the statement that the intervals Ik, k = 1, . . . , d are

disjoint. It follows that
∑

k |Ik| =
∑

k 2−`(wk) ≤ 1.

For the other direction, starting with the lengths `1, . . . , `d, first assume without loss

of generality that `1 ≤ `2 ≤ . . . ≤ `k (if not, relabel the indices). It is clear that we can

inductively construct disjoint dyadic intervals I1, . . . , Ik ⊂ (0, 1) such that each Ik is of the

form (xk, xk + 2−`k) where xk has a binary expansion of length `k (take x1 = 0 and let each

xk for k ≥ 2 be the rightmost endpoint of Ik−1; the construction will work because of the

assumption that
∑d

k=1 2−`k ≤ 1, so the intervals never leave (0, 1), and the assumption that

the lengths are increasing, which implies that the length of the binary expansion of xk is at

most `k−1). The code words w1, . . . , wk are then taken as the respective binary expansions

of x1, . . . , xd, where for each xk, if the binary expansion is shorter than `k (as in the case of

x1 = 0), it is brought to the right length by padding it with zeros.

Proof of the noiseless coding theorem. For the first part of the theorem, observe that since∑d
k=1 2−`(wk) ≤ 1 by Kraft’s inequality, we can apply Gibbs’s inequality to the two vectors

(p1, . . . , pk) and (2−`(w1), . . . , 2−`(wd)), to get that

E(L) =
d∑

k=1

pk`(wk) = −
d∑

k=1

pk log2

(
2−`(wk)

)
≥ −

d∑
k=1

pk log2 pk = H(p1, . . . , pd).

For the second part, for each 1 ≤ k ≤ d let `k = d− log2 pke, so that the inequality 2−`k ≤
pk < 2−`k+1 holds. Then

∑
k 2−`k ≤

∑
k pk = 1, so by Kraft’s inequality we can find a prefix

code w1, . . . , wk with word lengths `1, . . . , `k. For this code, we have

E(L) =
d∑

k=1

pk`k = −
d∑

k=1

pk log2

(
2−`k

)
≤ −

d∑
k=1

pk log2(pk/2) = H(p1, . . . , pd) + 1.

While the noiseless coding theorem clearly indicates that the entropy H = H(p1, . . . , pd)

is an interesting number, one might argue that the true minimal expected coding word

85



length, which (by the theorem) lies somewhere in the interval [H,H + 1] (but which in

practice may be hard to compute), is a more meaningful measure of the information content

of a random symbol sampled from the distribution p1, . . . , pd. For example, for a binary

source information source with distribution (p, 1 − p) the “optimal expected word length”

is exactly 1 bit per source symbol. However, in an asymptotic sense the entropy really is

the more meaningful number; the trick is to cluster the source symbols into groups of fixed

length and encode these longer strings, as the following reformulated version of the noiseless

coding theorem explains.

Corollary 8.8 (Noiseless coding theorem, version 2). Let p = (p1, . . . , pd) be a probability

vector. Then:

1. Any prefix code for a source with distribution p has expected word length ≥ H(p).

2. For any ε > 0, we can find an integer N large enough and a prefix code for a source

with distribution p⊗N = p ⊗ . . . ⊗ p (the distribution of a vector of N independent

samples from p) which has expected word length ≤ N(H(p) + ε); that is, the expected

word length per symbol coded is at most H(p) + ε.

Proof. For part 2, take N = 1/ε and apply the first version of the noiseless coding theorem

to the distribution p⊗N , making use of property 4 in Lemma 8.3.

To summarize, this last formulation of the noiseless coding theorem gives a meaning to

the entropy function as measuring precisely the difficulty of (noiselessly) coding the source,

in an asymptotic sense: first, any code will require sending at least H(p) binary bits over

the communication channel; conversely, one can approach this lower bound asymptotically

by coding for multiple symbols simultaneously.

Exercise 8.9. Prove that any uniquely decodable code can be replaced by a prefix code with

the same word lengths.

8.3 The asymptotic equipartition property

A related way of thinking about entropy is in terms of data compression: given a string of

source symbols of length n (which could itself be a binary string in the case of a 2-symbol
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alphabet), how much can we compress it, i.e., what is the typical length of a binary string

we’ll need to represent it? The noiseless coding theorem says that on the average we’ll need

around nH(p1, . . . , pd) bits; however, the theorem doesn’t address the question of how many

bits we’ll need typically (that is, with probability close to 1)? Of course, these questions are

in general not equivalent: for example, it may seem conceivable that the reason the average

number of bits is around nH(p1, . . . , pd) is that around half the time we need a much smaller

number of bits, and the other half of the time we need approximately twice as many. The

following result, known as the asymptotic equipartition property, demonstrates that in

fact in this case the typical behavior is the same as the average one.

Theorem 8.10 (Asymptotic equipartition property for an i.i.d. source). Let X1, X2, . . . be

an i.i.d. information source over the alphabet A = {α1, . . . , αd}, distributed according to the

probability vector p = (p1, . . . , pd) as before. Fix ε > 0. There exists a large enough integer

N such that the sequences AN can be partitioned into a disjoint union of sequences of two

types, namely,

AN = T t E,

where the sequences in T and E are called the typical and exceptional sequences, respec-

tively, such that the following properties hold:

1. P((X1, . . . , XN) ∈ E) < ε, (i.e., the exceptional sequences are indeed exceptional).

2. The probability of observing each typical sequence (x1, . . . , xN) ∈ T satisfies

2−N(H(p)+ε) ≤ P((X1, . . . , XN) = (x1, . . . , xN)) ≤ 2−N(H(p)−ε). (26)

3. Consequently, assuming ε < 1/2, the number of typical sequences satisfies

2N(H(p)−ε)+1 ≤ |T | ≤ 2N(H(p)+ε). (27)

Proof. Define a sequence Z1, Z2, . . . of i.i.d. random variables by

Zn = −
d∑

k=1

− log2 pk1{Xn=αk},

and denote Sn =
∑n

j=1 Zj. By the weak law of large numbers we have that

1

n
Sn

P−−−→
n→∞

E(Z1) = H(p),
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and therefore for large enough N , we have

P

(∣∣∣∣ 1

N
SN −H(p)

∣∣∣∣ ≤ ε

)
≥ 1− ε. (28)

Call the event on the left-hand side B. This is an event that depends on the r.v.’s X1, . . . , XN ,

so it can be represented as a disjoint union of events of the form

B =
⊔

(x1,...,xn)∈T

{(X1, . . . , XN) = (x1, . . . , xn)}

for some set T ⊂ AN of sequences. This will be our set of typical sequences; the exceptional

sequences are defined as the complementary set E = AN \ T .

We now claim that T and E satisfy the properties in the theorem. Property 1 holds

automatically by (28). For property 2, observe that if (x1, . . . , xN) = (αj1 , . . . , αjN ) ∈ T

then by the definition of the event B we have

N (H(p)− ε) ≤ −
N∑
n=1

log2 pjn ≤ N (H(p) + ε) ,

or equivalently

2−N(H(p)+ε) ≤
N∏
n=1

pjn ≤ 2−N(H(p)−ε).

But
∏N

n=1 pjn is exactly P((X1, . . . , XN) = (x1, . . . , xN)), so we get (26). On the other hand,

the total probability of observing any typical sequence is P(B), which is bounded between

1− ε and 1 (hence, between 1/2 and 1, if we assume ε < 1/2). This implies (27).

The implication of the theorem is that since the number of typical sequences is around

2n(H(p)±ε), we can encode them using a binary string of length ≈ nH(p). How easy this

is to do in practice is a different question (some very practical techniques exist that are

not difficult to implement — for example, two well-known methods are known as Huffman

coding and Lempel-Ziv coding).

Exercise 8.11. Use the asymptotic equipartition property to give an alternate proof of the

reformulated version of the noiseless coding theorem.
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8.4 Ergodic sources and the Shannon-McMillan-Breiman theorem

We are now ready to discuss the situation for a general stationary ergodic source X1, X2, . . ..

It turns out that a version of the asymptotic equipartition property is valid for such a

source. To prove it, we first need to correctly define the entropy of the source, and to prove

an important convergence result that replaces the (trivial) use of the law of large numbers

in the case of an i.i.d. source.

For a sequence (x1, . . . , xn) ∈ An, denote

p(x1, . . . , xn) = P((X1, . . . , Xn) = (x1, . . . , xn)), (29)

p(xn |x1, . . . , xn−1) = P(Xn = xn | (X1, . . . , Xn−1) = (x1, . . . , xn−1)), (30)

Hn = −E(log2 p(Xn |X1, . . . , Xn−1)). (31)

In information theory the quantity Hn is often denoted by H(Xn |X1, . . . , Xn−1); it is a

special case of a conditional entropy.

Lemma 8.12. (Hn)∞n=1 is a weakly monotone decreasing sequence, hence converges to a limit

H ≡ lim
n→∞

Hn ≥ 0. (32)

The proof follows by induction by applying the result of the following exercise.

Exercise 8.13. Let A = {α1, . . . , αd} and B = {β1, . . . , βm} be two finite sets. If X, Y are

two random variables such that P(X ∈ A, Y ∈ B) = 1, the conditional entropy H(X |Y ) is

defined by

H(X |Y ) = −
m∑
j=1

d∑
k=1

P(X = αk, Y = βj) log2 P(X = αk |Y = βj)

=
m∑
j=1

P(Y = βj)H(X |Y = βj).

I.e., H(X |Y ) is the average of the entropies of the conditional distributions of X given the

outcome of Y . Prove that H(X |Y ) ≤ H(X), with equality if and only if X and Y are

independent. Deduce also that H(X |Y, Z) ≤ H(X |Z) if Z is another random variable, and

explain why this implies Lemma 8.12.
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We refer to H in (32) as the entropy of the source (Xn)∞n=1. There is an equivalent

way to define it which is also interesting. Since Hn → H, the Cesàro averages of (Hn)n also

converge to H, i.e.,
1

n
(H1 + . . .+Hn)→ H as n→∞.

The average on the left-hand side can be written as

− 1

n
E
[

log2 p(X1) + log2 p(X2 |X1) + log2 p(X3 |X1, X2) + . . .+ p(Xn |X1, . . . , Xn−1)
]

= − 1

n
E [log2 p(X1, . . . , Xn)] =

1

n
H(X1, . . . , Xn).

(Here, H(X1, . . . , Xn) refers to the entropy of the discrete vector random variable (X1, . . . , Xn),

which takes values in the finite set An.) Thus, H may be interpreted as the limit of
1
n
H(X1, . . . , Xn), i.e., the asymptotic entropy per symbol in a long string of symbols sampled

from the source.

The importance of H is explained by the following fundamental result, sometimes referred

to as “the individual ergodic theorem of information theory”.

Theorem 8.14 (Shannon-McMillan-Breiman theorem). We have the almost sure conver-

gence

− 1

n
log2(p(X1, . . . , Xn))

a.s.−−−→
n→∞

H (33)

Lemma 8.15. If (Zn)n is a sequence of nonnegative random variables such that E(Zn) ≤ 1

for all n, then

P

(
lim sup
n→∞

1

n
logZn ≤ 0

)
= 1. (34)

Proof. Fix ε > 0. By Markov’s inequality, we have

P(n−1 logZn ≥ ε) = P(Zn ≥ enε) ≤ e−nε.

Since
∑

n e
−nε <∞, the first Borel-Cantelli implies that P(n−1 logZn ≥ ε i.o.) = 0. This is

true for any ε > 0, so taking a union of these events over ε = 1/k, k = 1, 2, . . . gives (34).

Proof of Theorem 8.14. As explained in Section 6.2, we may assume without loss of gener-

ality that the sequence (Xn)n is actually a two-sided ergodic stationary sequence (Xn)∞n=−∞.
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We start by giving yet another, more subtle, interpretation of the source entropy H. By

stationarity, we may rewrite Hn as

Hn = −E(log2 p(X0 |X−n+1, . . . , X−1)) = −
d∑
j=1

E
[
L
(
E
(
1{X0=αj} | G−1

−n+1

) )]
,

where we denote L(p) = p log2 p and Gts = σ(Xm ; s ≤ m ≤ t). Note that for each j, the

expression E
(
1{X0=αj} | G−1

−n+1

) )
inside the conditional expectation above forms a martingale

(as a function of n) taking values in [0, 1]. By Lévy’s martingale convergence theorem

(Theorem 3.27), we have

E
(
1{X0=αj} | G−1

−n+1

) )
→ E

(
1{X0=αj} | G−1

−∞
)

a.s. as n→∞.

Since L(·) is a bounded continuous function on [0, 1], using the bounded convergence theorem

we therefore get also that

Hn −−−→
n→∞

E

[
−

d∑
j=1

E
(
1{X0=αj} | G−1

−∞
)

log2 E
(
1{X0=αj} | G−1

−∞
)]

Of course, the limit of Hn is H, so we have derived another formula

H = E

[
−

d∑
j=1

E
(
1{X0=αj} | G−1

−∞
)

log2 E
(
1{X0=αj} | G−1

−∞
)]

(35)

for the source entropy. Furthermore, this expression can be rewritten in the simpler form

H = −E log2 p(X0 | G−1
−∞), (36)

where we adopt the notation (in the same vein as (29) and (30))

p(x | Gts) = P
(
Xt+1 = x | Gts

)
. (37)

To see why, note that

p(X0 | G−1
−∞) =

d∑
j=1

1{X0=αj}p(αj | G−1
−∞),
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and use this to write the right-hand side of (36) as

−E log2 p(X0 | G−1
−∞) = −

d∑
j=1

E
[
E
(
1{X0=αj} log2 p(αj | G−1

−∞) | G−1
−∞
) ]

= −
d∑
j=1

E
[

log2 p(αj | G−1
−∞)E

(
1{X0=αj} | G−1

−∞
) ]

= −
d∑
j=1

E
[
p(αj | G−1

−∞) log2 p(αj | G−1
−∞)

]
,

which is the same as the right-hand side of (35).

Having derived the representation (36) for the source entropy, we now apply another

piece of heavy machinery, the ergodic theorem, which implies that

− 1

n

n−1∑
k=0

log2 p(Xk | Gk−1
−∞ )

a.s.−−−→
n→∞

H.

Furthermore, one may verify without much difficulty that this ergodic average can be rewrit-

ten in the form

− 1

n

n−1∑
k=0

log2 p(Xk | Gk−1
−∞ ) = − 1

n
log2 p(X0, . . . , Xn−1 | G−1

−∞). (38)

(where the notation p(x0, . . . , xn−1 | Gts) is defined as an obvious generalization of (37)). So

we conclude that

− 1

n
log2 p(X0, . . . , Xn−1 | G−1

−∞)→ H a.s. as n→∞.

This fact bears some resemblance to the claim (33) that we are trying to prove, and indeed, we

can deduce “half” of our result from it — a one-sided asymptotic bound — using Lemma 8.15,

as follows. Define a sequence of random variables (Zn)∞n=1 by Zn = p(X0,...,Xn−1)

p(X0,...,Xn−1 | G−1
−∞)

. We

have

E(Zn) = E
[
E
(
Zn | G−1

−∞
)]

= E

 ∑
x0,...,xn−1∈A

E

(
p(x0, . . . , xn−1)

p(x0, . . . , xn−1 | G−1
−∞)

p(x0, . . . , xn−1 | G−1
−∞) | G−1

−∞

)
=

∑
x0,...,xn−1∈A

p(x0, . . . , xn−1) = 1. (39)
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So, we are in the situation described in Lemma 8.15, and we conclude that almost surely we

have the inequality

0 ≤ − lim sup
n→∞

1

n
log2 Zn = lim inf

n→∞

(
− 1

n
log2 Zn

)
= lim inf

n→∞

[
− 1

n
log2 p(X0, . . . , Xn−1) +

1

n
log2 p(X0, . . . , Xn−1 | G−1

−∞)

]
= lim inf

n→∞

[
− 1

n
log2 p(X0, . . . , Xn−1)

]
+ lim

n→∞

1

n
log2 p(X0, . . . , Xn−1 | G−1

−∞)

= lim inf
n→∞

[
− 1

n
log2 p(X0, . . . , Xn−1)

]
−H.

That is, we have proved that the inequality

lim inf
n→∞

[
− 1

n
log2 p(X0, . . . , Xn−1)

]
≥ H. (40)

holds with probability 1.

To finish the proof, we will now prove an asymptotically matching upper bound; more

precisely, we claim that for each fixed k ≥ 1, almost surely the inequality

− lim sup
n→∞

1

n
log2 p(X0, . . . , Xn−1) ≤ Hk (41)

holds. Since Hk ↘ H, the inequalities (40) and (41) together imply (33). To this end, for

each k ≥ 1 we define the “kth order Markov approximation” to the function p(x1 . . . , xn) by

pk(x1, . . . , xn) = p(x1, . . . , xk)p(xk+1 |x1, . . . , xk)p(xk+2 |x2, . . . , xk+1) · · · p(xn |xn−k, . . . , xn−1)

= p(x1, . . . , xk)
n∏

j=k+1

p(xj |xj−k, . . . , xj−1) (n ≥ k).

The idea in this definition is that pk(x1, . . . , xk) is the symbol distribution of a modified

source process (X
(k)
n )∞n=1 in which the conditional distribution of observing a symbol xn

given the past symbols x1, . . . , xn−1 is computed from the symbol distribution of the original

process by “forgetting” all the symbols before xn−k, i.e., using only the information in the

past k symbols. This modified source is a generalized type of Markov chain known as a

Markov chain of order k or Markov chain with memory k.

Now observe that we have an expansion analogous to (38), namely

− 1

n
log2 pk(X0, . . . , Xn−1) = − 1

n
log2 p(X0, . . . , Xk−1)−

1

n

n−1∑
j=k

log2 p(Xj |Xj−k, . . . , Xj−1).
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Combining it with an application of the ergodic theorem, we deduce that

− 1

n
log2 pk(X0, . . . , Xn−1)

a.s.−−−→
n→∞

−E
(

log2 p(Xk |X0, . . . , Xk−1)
)

= Hk.

This again bears a resemblance to (33), and we can relate the two using the lemma. Define

a sequence (Yn)∞n=k of random variables by Yn = pk(X0,...,Xn−1)
p(X0,...,Xn−1)

. A short computation similar

to (39), which we leave to the reader to verify, shows that E(Yn) ≤ 1 for all n ≥ k, so from

Lemma 8.15 we get that almost surely,

0 ≥ lim sup
n→∞

1

n
log2 Yn

= lim sup
n→∞

[
1

n
log2 pk(X0, . . . , Xn−1)−

1

n
log2 p(X0, . . . , Xn−1)

]
= −Hk + lim sup

n→∞

(
− 1

n
log2 p(X0, . . . , Xn−1)

)
,

which proves (41) and thus finishes the proof.

Theorem 8.16 (Asymptotic equipartition property for an ergodic source). Let X1, X2, . . .

be a stationary ergodic information source over the alphabet A = {α1, . . . , αd}. Fix ε > 0.

There exists a large enough integer N such that the sequences AN can be partitioned into a

disjoint union of typical and exceptional sequences, namely, AN = T tE, such that we have:

1. P((X1, . . . , XN) ∈ E) < ε.

2. 2−N(H+ε) ≤ P((X1, . . . , XN) = (x1, . . . , xN)) ≤ 2−N(H−ε) for each typical sequence

(x1, . . . , xN) ∈ T .

3. Consequently, assuming ε < 1/2, the number of typical sequences satisfies

2N(H−ε)+1 ≤ |T | ≤ 2N(H+ε).

Proof. The proof is completely analogous to the proof of the i.i.d. case from the previous

section; the random variable Sn is redefined as − log p(X1, . . . , Xn), and the use of the weak

law of large numbers is replaced by the Shannon-McMillan-Breiman theorem.

We conclude this chapter with some examples of stationary ergodic sequences and their

entropies.
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1. i.i.d. source. If X1, X2, . . . is an i.i.d. source whose distribution is described by the

probability vector (p1, . . . , pd) then Hn = H(Xn |X1, . . . , Xn−1) = H(p1, . . . , pd), so the

entropy is the usual entropy we discussed before. For example, if X is a Bernoulli random

variable satisfying P(X = 1) = 1/3 = 1 − P(X = 0) then H = −1
3

log2
1
3
− 2

3
log2

2
3

=

0.91829 . . . bits.

2. Markov source. If X1, X2, . . . is a stationary Markov chain, then the “n-step” condi-

tional entropy Hn is given by Hn = H(Xn |X1, . . . , Xn−1) = H(Xn |Xn−1) = H(X2 |X1)

by the Markov property, so it is enough to compute this “1-step” conditional entropy.

It is easy to see that this is simply an average with respect to the stationary probabil-

ities of the entropies of each of the rows of the transition matrix. For example, if the

Markov chain has the transition matrix

(
1
2

1
2

1 0

)
, then it is easy to check that (2

3
, 1

3
) is

a stationary probability vector for the chain. The entropy is therefore given by

H = H(X2 |X1) = 2
3
H(1

2
, 1

2
) + 1

3
H(1, 0) = 2

3
· 1 = 2

3
= 0.6666 . . . bits.

Note that this stationary Markov chain has the same one-dimensional marginals as the

i.i.d. source discussed above. Nonetheless, the entropy is lower, since it measures the

incremental amount of information gained by examining a symbol once all the previous

symbols are known, which is lower in the case where there is dependence.

3. Continued fractions. From the results discussed in the previous chapter, the entropy

of the sequence of quotients (N ◦Gk)∞k=0 in the continued fraction expansion of a number

chosen according to Gauss measure γ is equal to π2/6 log 2, when measured in the natural

base. If we want to adhere to the information theory convention and measure this entropy

in bits, we must divide by a further factor of log 2, giving an entropy of

π2

6(log 2)2
= 3.423714 . . . bits.

One way of interpreting this fact is that, as we examine more and more of the continued

fraction quotients of a number x chosen uniformly at random from (0, 1), on the average

each additional quotients will increase our knowledge of the binary expansion of x by

about 3.42 additional digits. Incidentally, while preparing these notes I discovered the
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curious fact (which I have not seen mentioned anywhere) that if we measure the entropy

in base 10, we get
π2

6 log(2) log(10)
= 1.03064 . . . ,

i.e., on the average each continued fraction quotient adds an amount of information almost

precisely equal to one decimal expansion digit.

4. Rotations of the circle. Let α ∈ (0, 1) be irrational, let X be a random variable

taking finitely many values on ((0, 1),B,Leb), and let Xn = X ◦ Rn−1
α . Then (Xn)∞n=1 is

a stationary ergodic sequence.

Exercise 8.17. Prove that the entropy of this sequence is 0.

End of Part II
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