MAT235: Discussion 4

1 Order statistics

Let X_1, \dots, X_n be independent independent identically distributed variables with a common density function f. Let $X_{(1)} \leq \dots \leq X_{(n)}$ denote the order statistics. Then the density of $X_{(n)}$ can be obtained as:

$$P(X_{(n)} \le x) = P(\max(X_1, \cdots, X_n) \le x) = P(X_1 \le x, \cdots, X_n \le x)$$
$$= P(X \le x)^n = F(x)^n$$
$$\Rightarrow f_{X_{(n)}}(x) = \frac{dF(x)^n}{dx} = nF(x)^{n-1}f(x).$$

The density of $X_{(1)}$ could also be obtained as:

$$P(X_{(1)} \ge x) = P(\min(X_1, \cdots, X_n) \ge x) = P(X_1 \ge x, \cdots, X_n \ge x)$$

= $P(X \ge x)^n = (1 - F(x))^n$
 $\Rightarrow f_{X_{(1)}}(x) = \frac{d[1 - (1 - F(x))^n]}{dx} = n(1 - F(x))^{n-1}f(x).$

For general $X_{(k)}$, the density is:

$$\begin{aligned} f_{X_{(k)}}(x)dx &= P(X_{(k)} \in [x, x + dx)) = P(\text{one of } X' \mathbf{s} \in [x, x + dx), \, k - 1 \text{ of } X' \mathbf{s} < x) \\ &= \binom{n}{1} P(X \in [x, x + dx)) \binom{n - 1}{k - 1} P(X < x)^{k - 1} P(X \ge x)^{n - k} \\ &= nf(x)dx \cdot \binom{n - 1}{k - 1} F(x)^{k - 1} (1 - F(x))^{n - k} \\ &\Rightarrow f_{X_{(k)}}(x) = nf(x) \binom{n - 1}{k - 1} F(x)^{k - 1} (1 - F(x))^{n - k}. \end{aligned}$$

For $1 \leq i < j \leq n$, the joint density of $X_{(i),X_{(j)}}$ can be obtained similarly:

$$f_{X_{(i)},X_{(j)}}(u,v) = \frac{n!}{(i-1)!(j-i-1)!(n-j)!} f(u)f(v)F(u)^{i-1}[F(v)-F(u)]^{j-i-1}[1-F(v)]^{n-j},$$

if u < v. Generalize this result to the joint density of $X_{(i_1)}, \dots, X_{(i_k)}$ for $1 \le i_1 < \dots < i_k \le n$.

Example: Let X_1, \dots, X_n be independent U(0, 1). The density of $X_{(k)}$ is

$$\frac{n!}{(k-1)!(n-k)!}x^{k-1}(1-x)^{n-k},$$

which is a beta distribution Beta(k, n - k + 1). What is the density of $nX_{(n)}$ and what is the limit of this density function as $n \to \infty$.

Example: Let X_1, X_2, X_3 be independent U(0, 1). What is the probability that the rods of length X_1, X_2, X_3 may be used to make a triangle.

A triangle may be formed if $X_{(3)} < X_{(1)} + X_{(2)}$. And by previous result we know the joint density of $X_{(1)}, X_{(2)}, X_{(3)}$ is $f_{X_{(1)}, X_{(2)}, X_{(3)}}(u, v, w) = 6$ if $0 \le u \le v \le w \le 1$. Therefore:

$$P(\text{triangle}) = 1 - P(X_{(3)} \ge X_{(1)} + X_{(2)})$$

= $1 - \int_0^1 \left[\int_0^{u/2} \int_0^v 6dw dv + \int_{u/2}^u \int_0^{u-v} 6dw dv \right] du$
= $1 - 6 \int_0^1 \left[\int_0^{u/2} v dv + \int_{u/2}^u (u-v) dv \right] du$
= $1 - 6 \int_0^1 \left[\frac{u^2}{8} + \frac{u^2}{8} \right] du = 6 \int_0^1 \frac{u^2}{4} du$
= $1 - 6 \frac{1}{12} = \frac{1}{2}.$

2 Poisson process

Definition: A Poisson process with rate r is a process $N_t = \{N(t) : t \ge 0\}$ taking values in $0, 1, 2, \cdots$ such that:

- 1. N(0) = 0;
- 2. N(t) has independent increments, i.e. $N(t_i) N(t_{i-1})$ are independent for $i = 1, 2, 3, \cdots$;
- 3. $N(t) N(s) \sim Poi(r(t-s)).$

Theorem: Let T_i denote the waiting time of the *i*-th arrival i.e. $T_0 = 0$, $T_i = \inf\{t : N(t) = i\}$. The interarrival times are denoted by X_1, X_2, \dots , i.e. $X_i = T_i - T_{i-1}$. Then X_1, X_2, \dots are independent, each having the exponential distribution with parameter r if N(t) is a Poisson process with rate r. First consider X_1 :

$$P(X_1 > t) = P(N(t) = 0) = e^{-rt}.$$

Now conditioning on X_1 ,

$$P(X_2 > t | X_1 = t_1) = P(\text{no arrivals in } (t_1, t_1 + t) | X_1 = t).$$

Where $\{X_1 = t_1\} = \{N(t_1) - N(0) = 1\}$ and {no arrivals in $(t_1, t_1] = \{N(t_1) - N(t_1) = 0\}$ are independent by the definition.

$$P(X_2 > t | X_1 = t_1) = P(\text{no arrivals in } (t_1, t_1 + t]) = e^{-rt}.$$

Similarly,

$$P(X_{n+1} > t | X_1 = t_1, \cdots, X_n = t_n) = P(\text{no arrivals in } (T, T+t]) = e^{-rt},$$

where $T = t_1 + \cdots + t_n$.

Theorem: Let T_i, X_i be the same as in above theorem. Then $N(t) = \max\{n : T_n \leq t\}$ is a Poisson random variable with parameter rt, if X_1, X_2, \cdots are independent identically distributed Exp(r). Notice that $T_n = \sum_{i=1}^n X_i$, and $\{N(t) \geq n\} = \{T_n \leq t\}$,

$$P(N(t) = n) = P(T_n \le t < T_{n+1}) = P(T_n \le t) - P(T_{n+1} \le t).$$

And $T_n \sim Gamma(n, r)$,

$$\begin{split} P(N(t) = n) &= \int_0^t \frac{r^n}{n!} x^{n-1} e^{-rx} dx - \int_0^t \frac{r^{n+1}}{(n+1)!} x^n e^{-rx} dx \\ &= \frac{(rt)^n}{n!} e^{-rt}. \end{split}$$

by integration by parts and induction.

Example: Simulate $Poi(\lambda)$ using $U_1, U_2, \dots, \sim_{iid} U(0, 1)$. Using the fact $T_n = \sum_{i=1}^n X_i$ and $N(t) \sim Poi(\lambda t)$,

$$P(N(t) \ge n) = P(T_n \le t) = P(\sum_{i=1}^n X_i \le t),$$
$$\{\Pi_{i=1}^n U_i \le e^{-\lambda t}\} \Leftrightarrow \{-\sum_{i=1}^n \log U_i \ge \lambda t\}.$$