
MAT235: Discussion 5

1 Simple random walk

Let {(Sd
n)∞n=0} be the simple symmetric random walk on Zd. That is Sd

0 = 0, Sd
n =

∑n
k=1Xk where

X1, X2, · · · are i.i.d. d-dimensional random vectors distributed uniformly on the 2d points {±ej : j =
1, · · · , d}. Denote

• Ereturn = {Sd
n = 0 for some n ≥ 1},

• Erecurrence = {Sd
n = 0 i.o.}.

Theorem: (1): P (Ereturn) = 1 for d = 1, 2; P (Ereturn) < 1 for d ≥ 3.
(2): P (Erecurrence) = 1 for d = 1, 2; P (Erecurrence) = 0 for d ≥ 3.

Lemma 1: The 1-dim simple random walk is spatially homogeneous. That is

P (Sn = j|S0 = 0) = P (Sn = j + b|S0 = b).

Proof: Both sides equal P (
∑n

1 Xi = j).

Lemma 2: The 1-dim simple random walk is temporally homogeneous. That is

P (Sn = j|S0 = 0) = P (Sm+n = j|Sm = 0).

Proof:

LHS = P (
n∑
1

Xi = j) = P (
m+n∑
m+1

Xi = j) = RHS.

Let un = P (Sn = 0), u0 = 1 be the probability of being at the origin after n steps, and let
fn = P (Sn = 0, S1 6= 0, · · · , Sn−1 6= 0), f0 = 0 be the probability that the first return occurs after n
steps. Denote the generating sequence of these sequences by

U(x) =
∞∑

n=0

unx
n F (x) =

∞∑
n=0

fnx
n |x| < 1.

Note that P (Ereturn) = F (1) = limx→1 F (x) by Abel’s Theorem.

Lemma 3: P (Ereturn) < 1 iff
∑∞

n=0 un <∞.
Proof: Let A be the event that Sn = 0, and let Bk be the event that the first return to the origin
happens at k-th step. Clearly the Bk are disjoint, so:

P (A) =
n∑

k=1

P (A|Bk)P (Bk).

And P (Bk) = fk and P (A|Bk) = un−k by temporal homogeneity. Therefore

un =
n∑

k=1

un−kfk for n ≥ 1.

Multiply the above equation by xn, sum over n and remembering u0 = 1, we can obtain:

U(x)− 1 = U(x)F (x)⇒ U(x) =
1

1− F (x)
.
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From this we see that limx→1 F (x) < 1 if and only if limx→1 U(x) < ∞. Since U(1) =
∑∞

n=0 un =
limx→1 U(x), this happens if and only if

∑∞
n=0 un <∞. Thus to see whether P (Ereturn) < 1, it suffices

to determine the convergence of the series
∑

n P (Sd
n = 0).

Proof of Theorem (1): For d = 1,

P (S1
2n = 0) =

(
2n
n

)
1
2n
∼ 1√

πn

by Stirling’s formula. Thus
∑
P (S1

n = 0) =∞, which implies P (Ereturn) = 1.
For d = 2,

P (S2
2n = 0) = P (for some 0 ≤ m ≤ n, m steps up and m steps down, n−m steps left and n−m steps right)

=
n∑

m=0

2n!
m!m!(n−m)!(n−m)!

1
42n

= 4−2n

(
2n
n

) n∑
m=0

(
n
m

)2

= 4−2n

(
2n
n

)2

= P (S1
n = 0)2 ∼

√
πn.

Again
∑
P (S2

n = 0) <∞. Therefore P (Ereturn) = 1.
For d = 3,

P (S3
2n = 0) =

l+m=n∑
l,m=0

2n!
(l!m!(n− l −m)!)2

1
62n

= 2−2n

(
2n
n

)∑
l,m

( n!
l!m!(n− l −m)!

3−n
)2

≤ 2−2n

(
2n
n

)[∑
l,m

( n!
l!m!(n− l −m)!

3−n
)]

(max
l,m

3−n n!
l!m!(n− l −m)!

),

where the term in the square brackets is 1. Because it is the “factorial distribution” (random coloring
of n balls using 3 colors). And the maximum of the last term is obtained when l,m, n− l −m are as
close as possible to 1/3. In that case we have:

n!
l!m!(n− l −m)!

≈ C
√
n

(
√
n/3)3

nn[
(
√
n/3)n/3

]3 = 3nC

n
.

Together with 2−2n

(
2n
n

)
∼ C/

√
n, we have

P (S3
2n = 0) ≤ C

n3/2
,

which implies
∑
P (S3

2n = 0) <∞, therefore P (Ereturn) < 1.

For d ≥ 3, consider the projection of the random walk into the first three coordinates. The ran-
dom walk does not return to the origin if the first three coordinates does not.

Example: Let {Sn : n ≥ 0} be a random walk which moves up with probability p at each step.
Show that P (Sn = 0 i.o.) = 0 if p 6= 1

2 .

P (S2n = 0) =
(

2n
n

)
{p(1− p)}n ∼ [4p(1− p)]n 1√

πn

where [4p(1 − p)] < 1 for p 6= 1
2 , and this implies that this sum is less than ∞. Therefore a direct

application of Borel-Cantelli lemma (1) shows that P (Sn = 0 i.o.) = 0.
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