MATZ235: Discussion 6

1 Generating functions

1.1 Probability generating function

Probability generating functions of r.v. X is defined as

and

P(X =k) = G®(0)
. Theorem: If X and Y are independent, then Gx1y(s) = Gx(s)Gy(s).

Theorem: If X, X, .- is a sequence of independent identically distributed random variables with
common generating function Gx(s) and N > 0 is a random variable independent of X; and has
generating function G, then S = X; + - -+ + Xy has generating function given by:

Gs(s) = Gn(Gx(s)).
Proof. Use the property of conditional expectation to find that
Gs(s) = E(s°) = E(E(s°|N)) ZE s°|N =n)P(N =n)
- Z E(sX1H X P(N = n)

= Z E(sXY) ... E(sX")P(N = n)

- ZGX(S)”P(N =n)=Gn(Gx(s)).

Example (Branching process): let Zy = 1, and Z,, be the number of members of the n-th genera-
tion. Each member can independently produce family members of the next generation according to a
same discrete distribution. We are interested in the random sequence Zy, Z1,--- of generation sizes.
Let G,(s) = E(s%") be the generating function of Z,.

Lemma: It is the case that G40 (s) = G (Gn(s)) = Gn(Gm(s)), and thus Gy, (s) = G(G(--- (G(s))--+))
is the n-fold iterate of G.
Proof. Each member of the (m + n)-th generation has a unique ancestor in the m-th generation.

Zm+n:X1+"'+XZm

where X; is the number of family members of the i-th individual from the m-th generation. By
assumptions of the branching process, X;’s are independent and identically distributed with generating
function Gx, (s) = Gp(s). Thus

Gmn(s) = Gm(Gn(s))

according to the previous theorem. Iterate this relation to obtain



We are interested in the event of ultimate extinction {ultimate extinction} = U,{Z, = 0}. Let
A, ={Z, =0}, then A, C A,y1. Let E(Z;) =

Theorem: As n — oo, P(Z, = 0) — P(ultimate extinction) = p, where p is the smallest non-
negative root of s = G(s). Also,p=1if p<1l,and p=1if g > 1. If g = 1, then p =1 as long as
the family-size distribution has strictly positive variance.

Proof. Let p, = P(Z, = 0). Then,

Pn = Gn(0) = G(Gn-1(0)) = G(pn-1)-

By continuity of probability we know that p,, 1T p, and the continuity of G guarantees that p = G(p).
If « is any non-negative root of the equation s = G(s), then p < . Notice that G is non-decreasing
on [0,1] and so

p1=G(0) <G(a) =

Similarly,
p2 =G(p1) < G(a) =

and hence by induction, p, < « for all n, implying p < a. Thus p is the smallest non-negative root of
the equation s = G(s).

Now we can verify G is a convex function on [0,1]. Since G”(s) > 0 if s > 0. Since G(0) = py > 0,
G(1) = 1 and G is convex, the smallest root of s = G(s) isa=1if G'(1) = p <1l andis a < 1 if
G'(1)=pu>1

1.2 Moment generating function
Probability generating functions of r.v. X is defined as

Mx(t) = Gx(e') = E(e').
and

E(X*) = M®)(0).

Example For standard normal random variable it is to show that the moment generating function

ise T by integration using completing the square. Then using the moment generating function, it is
to show that E(X?*~1) =0 and B(X*)=1-3---(2k—1) for k=1,2,--

Try to find the moment generating functions of other common distributions.

2 Law of large numbers

Example (independent but not identically distributed case): Consider the number of cycles in a ran-
dom permutation of n numbers, where a cycle is defined as a group of numbers that permutes within
themselves.

Let Z,, denotes the number of cycles in a permutation of n numbers then Z, 11 = Z,, + X, 41, where
Xy+1 is independent of Z,, and is distributed as Bernoullz( 7). Since whether the last number starts



a new cycle is independent of the existing cycles. Therefore we have,

n

1
E(Z,) = ZE ~ logn,

k=1
k-1
Var(Z,) = R log n.
k=1
By Chebyshev’s inequality
1
P(|Z, —logn| > (logn)%“) = (logn)Z — 0 as n — oo.

Therefore Zg"n — 1 in probability.

lo
Example (identical but not independent distributed case): Consider the matching problem talked
before, where n letters are randomly put into n envelopes, what is number of correct matches and
what is its limit behavior.



