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1 Characteristic Function

Let φ(t) = E(eitX) where i =
√
−1 denote the characteristic function.

1.1 Some Properties

1. φ is non-negative definite, which is to say that
∑

j,k φ(tj − tk)zj z̄k ≥ 0 for all real t1, t2 · · · , tn
and complex z1, z2, · · · , zn.
Proof. ∑

j,k

φ(tj − tk)zj z̄k =
∑
j,k

∫
[zj exp(itjx)][z̄k exp(−itkx)]dF

= E
(
|
∑
j

zj exp(itjX)|2
)
≥ 0.

2. If φ(k)(0) exists then {
E|Xk| <∞ if k is even
E|Xk−1| <∞ if k is odd

3. If E|Xk| <∞ then

φ(t) =
k∑

j=0

E(Xj)

j!
(it)j + o(tk),

and so φ(k)(0) = ikE(Xk).
Proof of 1, 3 is essentially Taylor’s theorem for a function of a complex variable.

Example 1. Bernoulli distribution. If X is Bernoulli with parameter p then

φ(t) = E(eitX) = eit·0q + eit·1p = q + peit.

Example 2. Binomial distribution. If X is Bin(n, p), then it is the sum of n Bernoulli random
variables. Hence

φ(t) = E(eitX) = (q + peit)n.

Example 3. It is known that if X and Y are independent, then φX+Y (t) = φX(t)φY (t). But is the
converse true in general.
Consider the Cauchy distribution with characteristic function φ(t) = e−|t|. Let X have Cauchy distri-
bution and set Y = X. Then φX+Y (t) = φ(2t) = e−2|t| = φX(t)φY (t).

Remark. If a distribution F is given, then the corresponding moments mk(F ) =
∫
xkdF (x), k =

1, 2, · · · whenever these integrals exist. Is the converse true: does the collection of moments (mk(F ) :
k = 1, 2, · · · ) specify F uniquely? The answer is no.

Example 4. Log-normal distribution. Let X be N(0, 1), and let Y = eX ; Y is said to have
the log-normal distribution. Show that the density function of Y is

f(x) =
1

x
√

2π
exp−1

2
(log x)2, x > 0.
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For |a| ≤ 1, define fa(x) = {1 + a sin(2π log x)}f(x). Show that fa is a density function with finite
moments of all (positive) orders, none of which depends on the value of a. The family {fa : |a| ≤ 1}
contains density functions which are not specified by their moments.
Solution. (i) P (Y ≤ y) = P (X ≤ log y) = Φ(log y) for y > 0, where Φ is the c.d.f. of N(0, 1). The
density function of Y follows by differentiating.
(ii) Notice that fa(x) ≥ 0 if |a| ≤ 1, and∫ ∞

0
a sin(2π log x)

1

x
√

2π
exp(−1

2
(log x)2)dx =

∫ ∞
−∞

1√
2π
a sin(2πy) exp(−1

2
y2)dy = 0

since sine is an odd function. Therefore
∫∞
−∞ fa(x)dx = 1, so that each such fa is a density function.

(iii) For any positive integer k, the k-th moment of fa is
∫∞
−∞ x

kf(x)dx+ Ia(k) where

Ia(k) =

∫ ∞
−∞

1√
2π
a sin(2πy)eky−

1
2
y2dy = 0

since the integrand is an odd function of y − k. It follow that each fa has the same moments as f .

Under what condition on F is it the case that the moments uniquely specify the distribution. One of
the simplest sufficient condition is that the moment generating function of F is finite in some neigh-
borhood of the point t. Remember the moment generating function is defined as M(t) = E(etX), it is
clear that characteristic function is closely related to moment generating function.

Theorem. Let M(t) = E(etX), t ∈ R, and φ(t) = E(eitX), t ∈ C be the moment generating function
and characteristic function of X respectively. For any a > 0, the following conditions are equivalent.
(a) |M(t)| <∞ for |t| < a.
(b) φ is analytic on the strip |Im(z)| < a.
(c) The moments mk = E(Xk) exist for k = 1, 2, · · · and satisfy lim supk→∞{|mk|/k!}1/k ≤ a−1.
If any of these conditions hold for a > 0, the power series expansion for M(t) may be extended
analytically to the strip |Im(z) < a|, resulting in a function M with the property that φ(t) = M(it).
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