MAT235: Discussion 7

1 Characteristic Function

Let $\phi(t) = E(e^{itX})$ where $i = \sqrt{-1}$ denote the characteristic function.

1.1 Some Properties

1. ϕ is non-negative definite, which is to say that $\sum_{j,k} \phi(t_j - t_k) z_j \bar{z}_k \ge 0$ for all real $t_1, t_2 \cdots, t_n$ and complex z_1, z_2, \cdots, z_n . Proof.

$$\sum_{j,k} \phi(t_j - t_k) z_j \bar{z}_k = \sum_{j,k} \int [z_j \exp(it_j x)] [\bar{z}_k \exp(-it_k x)] dF$$
$$= E\left(|\sum_j z_j \exp(it_j X)|^2 \right) \ge 0.$$

2. If $\phi^{(k)}(0)$ exists then

$$\begin{cases} E|X^k| < \infty & \text{if } k \text{ is even} \\ E|X^{k-1}| < \infty & \text{if } k \text{ is odd} \end{cases}$$

3. If $E|X^k| < \infty$ then

$$\phi(t) = \sum_{j=0}^{k} \frac{E(X^j)}{j!} (it)^j + o(t^k),$$

and so $\phi^{(k)}(0) = i^k E(X^k)$.

Proof of 1, 3 is essentially Taylor's theorem for a function of a complex variable.

Example 1. Bernoulli distribution. If X is Bernoulli with parameter p then

$$\phi(t) = E(e^{itX}) = e^{it \cdot 0}q + e^{it \cdot 1}p = q + pe^{it}.$$

Example 2. Binomial distribution. If X is Bin(n, p), then it is the sum of n Bernoulli random variables. Hence

$$\phi(t) = E(e^{itX}) = (q + pe^{it})^n.$$

Example 3. It is known that if X and Y are independent, then $\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$. But is the converse true in general.

Consider the Cauchy distribution with characteristic function $\phi(t) = e^{-|t|}$. Let X have Cauchy distribution and set Y = X. Then $\phi_{X+Y}(t) = \phi(2t) = e^{-2|t|} = \phi_X(t)\phi_Y(t)$.

Remark. If a distribution F is given, then the corresponding moments $m_k(F) = \int x^k dF(x), k = 1, 2, \cdots$ whenever these integrals exist. Is the converse true: does the collection of moments $(m_k(F): k = 1, 2, \cdots)$ specify F uniquely? The answer is no.

Example 4. Log-normal distribution. Let X be N(0,1), and let $Y = e^X$; Y is said to have the log-normal distribution. Show that the density function of Y is

$$f(x) = \frac{1}{x\sqrt{2\pi}} \exp{-\frac{1}{2}(\log x)^2}, \quad x > 0.$$

For $|a| \leq 1$, define $f_a(x) = \{1 + a \sin(2\pi \log x)\}f(x)$. Show that f_a is a density function with finite moments of all (positive) orders, none of which depends on the value of a. The family $\{f_a : |a| \leq 1\}$ contains density functions which are not specified by their moments.

Solution. (i) $P(Y \le y) = P(X \le \log y) = \Phi(\log y)$ for y > 0, where Φ is the c.d.f. of N(0, 1). The density function of Y follows by differentiating.

(ii) Notice that $f_a(x) \ge 0$ if $|a| \le 1$, and

$$\int_0^\infty a\sin(2\pi\log x)\frac{1}{x\sqrt{2\pi}}\exp(-\frac{1}{2}(\log x)^2)dx = \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}}a\sin(2\pi y)\exp(-\frac{1}{2}y^2)dy = 0$$

since sine is an odd function. Therefore $\int_{-\infty}^{\infty} f_a(x)dx = 1$, so that each such f_a is a density function. (iii) For any positive integer k, the k-th moment of f_a is $\int_{-\infty}^{\infty} x^k f(x)dx + I_a(k)$ where

$$I_{a}(k) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} a \sin(2\pi y) e^{ky - \frac{1}{2}y^{2}} dy = 0$$

since the integrand is an odd function of y - k. It follow that each f_a has the same moments as f.

Under what condition on F is it the case that the moments uniquely specify the distribution. One of the simplest sufficient condition is that the moment generating function of F is finite in some neighborhood of the point t. Remember the moment generating function is defined as $M(t) = E(e^{tX})$, it is clear that characteristic function is closely related to moment generating function.

Theorem. Let $M(t) = E(e^{tX}), t \in R$, and $\phi(t) = E(e^{itX}), t \in C$ be the moment generating function and characteristic function of X respectively. For any a > 0, the following conditions are equivalent. (a) $|M(t)| < \infty$ for |t| < a.

(b) ϕ is analytic on the strip |Im(z)| < a.

(c) The moments $m_k = E(X^k)$ exist for $k = 1, 2, \cdots$ and satisfy $\limsup_{k \to \infty} \{|m_k|/k!\}^{1/k} \le a^{-1}$.

If any of these conditions hold for a > 0, the power series expansion for M(t) may be extended analytically to the strip |Im(z) < a|, resulting in a function M with the property that $\phi(t) = M(it)$.