
MAT235: Discussion 8
Modes of convergence
Definition: Let X1, X2, · · · be random variables on some probability space (Ω,F, P ).

1. Xn →a.s. X almost surely if {ω ∈ Ω : X(ω)→ X(ω) as n→∞} is an event of probability 1.

2. Xn →r X in r-th mean where r ≥ 1 if E|Xr
n| <∞ for all n and E(|Xn −X|r)→ 0 as n→∞.

3. Xn →P X in probability if P (|Xn −X| > ε)→ 0 as n→∞ for all ε > 0.

4. Xn →D X in distribution if P (Xn ≤ x) → P (X ≤ x) as n → ∞ for all points x at which the
function FX(x) is continuous.

Lemma 1: If r > s ≥ 1 and Xn →r X then Xn →s X.
Proof. First apply Cauchy-Schwarz inequality to |X|

1
2
(b−a) and |X|

1
2
(b+a), where 0 < a ≤ b, to obtain

(E|Zb|)2 ≤ E|Z|(b−a)E|Z|(b+a). Let g(p) = logE|Zp|, we have 2g(b) ≤ g(b − a) + g(b + a), g(p) is a
convex function. Therefore g(x)/x is non-decreasing in x, and hence g(r)/r ≥ g(s)/s if 0 < s ≤ r.
The claim then follows.
To see that the converse fails, define an independent sequence Xn by

Xn =

{
n with probability n−

1
2
(r+s)

0 with probability 1− n−
1
2
(r+s).

It is easy to check that E|Xs
n| = n

1
2
(s−r) → 0 but E|Xr

n| = n
1
2
(r−s) →∞.

Lemma 2: If Xn →1 X then Xn →P X.
Proof. By Markov’s inequality:

P (|Xn −X| > ε) ≤ E|Xn −X|
ε

for all ε > 0.

To see the converse fails, define an independent sequence {Xn} by

Xn =

{
n3 with probability n−2

0 with probability 1− n−2.

Then P (|Xn| > ε) = n−2 → 0 but E|Xn| = n→∞.

Lemma 3: (Xn →P X)⇒ (Xn →D X).
Counter example: Let X be a Bernoulli(12). Let X1, X2, · · · be identical random variables given by
Xn = X for all n. Let Y = 1 − X, then Y and X have the same distribution. Hence Xn →D Y .
However clearly Xn can not converge to Y in probability since |Xn − Y | = 1 for all n.

Lemma 4: (Xn →a.s. X)⇒ (Xn →P X).
Counter example: Define {Xn} to be a sequence of random variables on (0, 1) with Borel measure as
the probability measure. The sequence is defined in following steps.

• Step 1: X1 = 1 on (0,1).

• Step 2: X21 = 1 on (0,1/2], X22 = 0 on (1/2,1); X22 = 0 on (0,1/2], X22 = 1 on (1/2,1).

• Step k: Xkj = 1 on (j/k,(j+1)/k], Xkj = 0 other wise where j = 1, 2, · · · , k.
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It is too see that Xn converges to 0 in probability but not almost surely. In fact Xn converges no
where on (0,1).

Lemma 5: There exist sequences which:
(a) converge almost surely but not in mean. Consider the example in Lemma 2.
(b) converge in mean but not almost surely. Consider the example in Lemma 4.

Example. Show that Xn →a.s. X whenever ΣnE(|Xn −X|r) <∞ for some r > 0.
Proof. We have by Markov’s inequality that∑

n

P (|Xn −X| > ε) ≤
∑
n

E|Xn −X|r

εr
<∞

for ε > 0, so that Xn →a.s. X by first Borel-Cantelli lemma.

Example. Show that Xn →P 0 if and only if E( |Xn|
1+|Xn|)→ 0 as n→∞.

Proof. Note that g(u) = u/(1 + u) is an increasing function on [0,∞). Therefore for ε > 0,

P (|Xn| > ε) = P (
|Xn|

1 + |Xn|
>

ε

1 + ε
) ≤ 1 + ε

ε
E(

|Xn|
1 + |Xn|

)

by Markov’s inequality. Hence E( |Xn|
1+|Xn|)→ 0 implies P (|Xn| > ε)→ 0.

Suppose conversely that Xn →P 0. Then

E(
|Xn|

1 + |Xn|
) ≤ ε

1 + ε
P (|Xn| ≤ ε) + P (|Xn| > ε)→ ε

1 + ε

as n→∞, for ε > 0. However ε is arbitrary, and hence the expectation has limit 0.

Example: Let Xn and Ym be independent random variables having Poisson distribution with pa-
rameters n and m respectively. Show that as m,n→∞

(Xn − n)− (Ym −m)√
Xn + Ym

→D N(0, 1)

. Proof. The characteristic function φmn of

Umn =
(Xn − n)− (Ym −m)√

m+ n

satisfies

log φmn(t) = n(eit/
√
m+n − 1) +m(e−it/

√
m+n − 1) +

(m− n)it√
m+ n

→ − t
2

2

an m,n → ∞ by Taylor’s expansion. This implies that Umn →D N(0, 1). Now Xn + Ym is Poisson-
distributed with parameter m+ n, and therefore

Vmn =

√
Xn + Ym
m+ n

→P 1 as m,n→∞

by law of large numbers and the continuity of square root function. Then Slutsky’s theorem shows
that Umn/Vmn →D N(0, 1).
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