
Final exam study guide – Probability Theory (235A), Fall 2013

The final exam will be held on Thursday, Dec. 5 from 1:35 to 3:00 in 1344 Storer

Hall. Please come on time! It will be a closed-book exam. The special distributions hand-

out sheet (similar to the table on page 54 of the lecture notes) will be included with the

exam.

The final exam will cover all material covered in the lectures, discussion sections and home-

work, with an emphasis on applications, practical computations and understanding (and

being able to explain) definitions of concepts and the statements of major results. You do

not need to memorize proofs.

This study guide has a short list of sample questions that are designed to be indicative of

the style of questions that may appear on the final exam. (These questions are not subject

to the time restriction of the exam so they may take a bit longer to solve than actual exam

questions.) It is provided to aid you in studying for the final but is not meant as a substitute

for going over the full material. Do not assume that if a topic is not mentioned in

these questions then it will not appear on the exam.

1. Compute the c.d.f. or density function of X + Y when X, Y are independent random

variables such that:

(a) X ∼ Exp(a), Y ∼ Exp(a).

(b) X ∼ Exp(a), Y ∼ Exp(b) with a 6= b.

(c) X ∼ Exp(a), −Y ∼ Exp(b).

(d) X ∼ Beta(2, 1), Y ∼ Beta(1, 2).

2. Let X, Y ∼ Geom(p) be independent random variables. Compute the distribution of:

(a) X + Y

(b) min(X, Y )

(c) max(X, Y )

Note: when you are asked to compute the distribution of a random variable Z taking

only integer values, the answer should be a formula for the probabilities P(Z = k), or
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if the distribution is one of the standard special distributions then an identification of

this distribution and the relevant parameters.

3. A sequence of experiments is performed for n = 1, 2, . . . as follows: in the nth exper-

iment, n unbiased coins are tossed. All coin tosses are independent. Let En be the

event that at least one of the coins tossed in the nth step came up “heads”.

(a) Compute P(En).

(b) Let B be the event that infinitely many of the events En occurred. Express B in

terms of set operations on the events En. Find P(B).

(c) Let C be the event that for infinitely many values of n, both En and En+1 occurred.

Express C in terms of set operations on the events En. Find P(C).

(d) Let D be the event that for infinitely many values of n, either Ec
n or Ec

n+1 occurred.

Express D in terms of set operations on the events En. Find P(D).

Note: in a problem of this type, be prepared to explain why P(B),P(C),P(D) have

the value that you claim they do, by quoting a relevant result and providing any

additional necessary arguments.

4. Let X1, X2, . . . be a sequence of i.i.d. random variables satisfying P(Xk = 1) = 2/3,

P(Xk = −2) = 1/3. Denote Sn =
∑n

k=1Xk.

(a) Find lim
n→∞

P(Sn > n). Explain your reasoning.

(b) Find lim
n→∞

P(Sn > 0). Explain your reasoning.

(c) Find lim
n→∞

√
nP(S3n = 0). Explain your reasoning. (Hint. Look for a binomial

r.v. hiding here.)

(d) Find lim
n→∞

n−2E(S4
n). Explain your reasoning.

5. Let a, b ≥ 1 be some integers. In the Polyá urn experiment, the urn initially has a red

balls and b green balls. We successively sample a uniformly random ball from the urn,

observe its color, put it back and add a new ball of the same color. Denote by En the

event that on the nth step a red ball was sampled. For example, P(R1) = a/(a + b).

Denote In = 1En , the indicator random variable of En. Denote Sn =
∑n

k=1 Ik, the

number of red balls added to the urn in the first nth steps.
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(a) Prove that for any sequence x1, . . . , xn ∈ {0, 1} we have the formula

P(I1 = x1, I2 = x2, . . . , In = xn) =
a(a+ 1) . . . (a+ k − 1) · b(b+ 1) . . . (b+ n− k − 1)

(a+ b)(a+ b+ 1) . . . (a+ b+ n− 1)
,

where k =
∑n

j=1 xj (the number of xj’s for 1 ≤ j ≤ n that are equal to 1).

Hint. A key thing to figure out is why the left-hand side in this equation is

independent of the ordering of x1, . . . , xn.

(b) Deduce from part (a) a formula for P(Sn +a = k), the distribution of the number

of red balls immediately after the nth step.

(c) Note that Sn+a
n+a+b

represents the fraction of red balls in the urn immediately after

the nth step. Using part (b), show the convergence in distribution

Sn + a

n+ a+ b
=⇒ Beta(a, b) as n→∞.

(This is a bit more difficult than a realistic final exam question; if you are having

difficulties, try showing this first in the case a = b = 1 and then in the case a = 2,

b = 1.)

6. You are given a random number generator that can produce a sequence X1, X2, . . . of

i.i.d. samples from the U(0, 1) distribution. Suggest a simple algorithm that uses these

samples to simulate a Poi(λ) random variable. Explain why the algorithm works, and

what facts about special distributions you’re relying on.

7. n college students (labelled with the numbers 1, . . . , n) are attending a party. Each

pair i, j of students are friends with probability p, independently of each other pair.

(a) Find the expected value and variance of the number Fn of friend pairs i, j.

(b) Find the expected value and variance of the number Tn of “friendship triangles”

i, j, k (triples of students each two of whom are friends).

Hint. Represent Tn as a sum of indicators Tn =
∑

1≤i<j<k≤n 1E(i,j,k), where

E(i, j, k) is the event that i, j, k are in a friendship triangle. Then use the for-

mulas for the sum and covariance of a sum of random variables. To compute the

covariances of 1E(i,j,k) and 1E(i′,j′,k′), divide into cases according to the number of

students involved (3, 4, 5 or 6).

3



(c) Find a constant c = c(p) such that we have the convergence in probability

Tn
n3

P−−−→
n→∞

c,

and explain why this convergence holds.

Hint. ’s inequality...

8. Let X be a positive r.v. with associated c.d.f. F = FX and density function f = fX .

We think of X as modeling the time to failure of a piece of equipment or machinery

(e.g., the human body!). The survival function of X, denoted RX(t), is defined as the

probability that the equipment survived up to time t, that is, RX(t) = P(X > t). The

hazard rate function of X, denoted hX(t), represents the instantaneous probability

per unit time that the equipment will fail between time t and t + ∆t where ∆t is

infinitesimally small, conditioned on the knowledge that it survived up to time t. That

is,

hX(t) = lim
∆t↓0

P(t < X < t+ ∆t |X > t)

∆t
(t ≥ 0).

(a) Express hX(t) in terms of the survival function RX , and in terms of the c.d.f. FX

and/or density fX .

(b) If hX(t) is the constant function hX(t) ≡ ρ (where ρ > 0), what is the distribution

of X? Explain.

(c) Assume that the machine in question has two subsystems, and that in order for

the machine to fail, both subsystems have to fail. (For example, a twin-engine

plane can continue to fly with just one engine operational.) Assume that the two

subsystems are independent of each other. If the hazard rate functions of the two

subsystems are h1(t) = h2(t) = 1, find the hazard rate function of the full system.

Explain your reasoning.

(d) Answer part (c) above if the machine fails as soon as one of its two subsystems

fails. (This is much easier than (c); try to guess the answer based on intuition

alone before computing it.)

9. Compute the volume (a.k.a. Lebesgue measure) of the subset {(x, y, z) ∈ [0, 1]3 :

xyz ≤ t} of the unit cube in R3, as a function of t.
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Hint: of course this can be solved by integration, but if you rely on some known

facts about special distributions you can immediately write this volume as a single

integral instead of a triple integral. Furthermore, this probabilistic approach is easily

generalized to n dimensions.

10. (a) Compute the characteristic function (a.k.a. Fourier-Stieltjes transform) ϕX(t) =

E(eitX) when:

i. X ∼ Bin(n, p)

ii. X ∼ Poi(λ)

iii. X ∼ Gamma(α, λ)

(b) Explain how the computations of part (a) can be used to prove the convolution

identities:

i. Bin(n, p) � Bin(m, p)
d
= Bin(n+m, p)

ii. Poi(λ) � Poi(µ)
d
= Poi(λ+ µ)

iii. Gamma(α, λ) � Gamma(β, λ)
d
= Gamma(α + β, λ)

(Here, “�” denotes convolution, i.e., sum of independent samples; “
d
=” denotes

equality of distributions.)
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