
Homework Set No. 1 – Probability Theory (235A), Fall 2013

Due: 10/7/13 at discussion section

1. (The total probability formula) If (Ω,F ,P) is a probability space and A,B ∈ F
are events such that P(B) 6= 0, the conditional probability of A given B is denoted

P(A|B) and defined by

P(A|B) =
P(A ∩B)

P(B)
.

Prove the total probability formula: if A,B1, B2, . . . , Bk ∈ F such that Ω is the disjoint

union of B1, . . . , Bk and P(Bi) 6= 0 for 1 ≤ i ≤ k, then

P(A) =
k∑

i=1

P(Bi)P(A|Bi). (TPF)

2. (Pólya’s urn) An urn initially contains one white ball and one black ball. At each step

of the experiment, a ball is drawn at random from the urn, then put back and another ball

of the same color is added. Prove that the number of white balls that are in the urn after N

steps is a uniform random number in {1, 2, . . . , N + 1}. That is, the event that the number

of white balls after step N is equal to k has probability 1/(N + 1) for each 1 ≤ k ≤ N + 1.

(Note: The idea is to use (TPF), but there is no need to be too formal about constructing

the relevant probability space - you can assume an intuitive notion of probabilities.)

3. (Randomized coordination) A cluster of N computers need to communicate with

a central server. At any time t = 0, 1, 2, . . ., each computer can decide to transmit, or not

to transmit, a data packet to the server. However, the server has very limited computing

capacity: it can process the data if and only if precisely one computer has sent a packet; if

no data was sent, or if more than one computer sent a packet, the data (and time and effort

spent sending it) is lost.

The computers cannot communicate directly with each other to coordinate the order in which

they send their packets. Show that they can nonetheless adopt the following randomized

strategy to ensure a relatively efficient rate of data transfer: for some value 0 < p < 1, each

computer at each time t tosses a coin with bias p, independently of all other computers, and
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sends its packet if the coin comes up ”heads”. Find the value of p (as a function of N) that

would lead to the maximal rate of success (i.e., probability at each time t for the server to

process data), and find that rate of success as a function of N and in the limit when N →∞.

4. (The inclusion-exclusion principle) If A1, . . . , An are events in a probability space

(Ω,F ,P), prove the formula

P

(
n⋃

k=1

Ak

)
= s1 − s2 + s3 − s4 + s5 − . . .+ (−1)n−1sn,

where

s1 = P(A1) + P(A2) + . . .+ P(An) =
n∑

k=1

P(Ak),

s2 =
∑

1≤k1<k2≤n

P(Ak1 ∩ Ak2),

s3 =
∑

1≤k1<k2<k3≤n

P(Ak1 ∩ Ak2 ∩ Ak3),

...

sd =
∑

1≤k1<...<kd≤n

P(Ak1 ∩ Ak2 ∩ . . . ∩ Akd
),

...

sn = P(A1 ∩ A2 ∩ . . . ∩ An).

5. (The derangement problem) N letters addressed to different people are inserted at

random into N envelopes that are labelled with the names and addresses of the N recipients,

such that allN ! possible matchings between the letters and envelopes are equally likely. What

is the probability of the event that no letter will arrive at its intended destination? As an

application of the formula in problem 3 above, compute this probability for any N , and in

the limit when N →∞.

6. (Poisson splitting) Let Z be a random variable with the Poi(λ) distribution. For

example, Z could represent the number of frog specimens observed by a biologist in a patch
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of jungle on a certain day, where the parameter λ corresponds to the number of frogs seen

on an average day. Assume that the events counted by Z are split into two types, where

the splitting happens independently at random for each event; for example, frogs could be

classified as belonging to one of two species. Formally, let X1, X2, X3, . . . denote an infinite

sequence of i.i.d. (independent and identically distributed) random variables with the Ber(p)

distribution (i.e., P(Xn = 1) = 1 − P(Xn = 0) = p), where 0 < p < 1 is some parameter.

Define

W1 =
Z∑

n=0

Xn,

W2 =
Z∑

n=0

(1−Xn),

so that Z = W1 +W2, and in the example W1 would represent the number of frogs belonging

to the first species and W2 the number of frogs from the second species. (The parameter p

is the fraction of frogs belonging to the first species.)

Prove that W1,W2 are also Poisson random variables with distributions W1 ∼ Poi(λp),

W2 ∼ Poi(λ(1− p)), and they are independent of each other.
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