
Homework Set No. 3 – Probability Theory (235A), Fall 2013

Due: 10/21/13 at discussion section

1. Let X be an exponential r.v. with parameter λ, i.e., FX(x) = (1− e−λx)1[0,∞)(x). Define

random variables

Y = bXc := sup{n ∈ Z : n ≤ x} (“the integer part of X”),

Z = {X} := X − bXc (“the fractional part of X”).

(a) Compute the (1-dimensional) distributions of Y and Z (in the case of Y , since it’s a

discrete random variable it is most convenient to describe the distribution by giving the

individual probabilities P(Y = n), n = 0, 1, 2, . . .; for Z one should compute either the

distribution function or density function).

(b) Show that Y and Z are independent. (Hint: Check that P(Y = n, Z ≤ t) = P(Y =

n)P(Z ≤ t) for all n and t.)

2. Use the convolution formula

fX+Y (t) =

∫ ∞
−∞

fX(x)fY (t− x) dx

for the density of a sum of independent random variables to compute the distribution of

X + Y when X and Y are independent r.v.’s with the following pairs of distributions:

(a) X ∼ U [0, 1], Y ∼ U [0, 2].

(b) X ∼ Exp(1), Y ∼ Exp(1).

(c) X ∼ Exp(1), −Y ∼ Exp(1).

(d) X ∼ Exp(1), Y ∼ U [0, 1].

3. Prove that if X is a random variable that is independent of itself, then X is a.s. constant,

i.e., there is a constant c ∈ R such that P(X = c) = 1.
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4. (a) Show that if X, Y are independent random variables with the standard normal

distribution, and a, b ∈ R are numbers such that a2 + b2 = 1, then aX + bY ∼ N(0, 1).

Hints. Here are two suggested methods. The first possibility is to use the polar decomposi-

tion (R,Θ) of the random vector (X, Y ), defined by the relations X = R cos Θ, Y = R sin Θ.

The second possible approach is to consider U = aX + bY as one coordinate of the vector(
U

V

)
=

(
a b

−b a

)(
X

Y

)
,

and to compute the joint density of (U, V ) from the joint density of (X, Y ) using the trans-

formation formula for 2-dimensional densities (developed in the discussion section), noting

that the matrix
(
a b
−b a

)
is a rotation matrix.

(b) Use part (a) to prove that if X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) are independent then

X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2). (A useful fact to be aware of is that Z ∼ N(m, s2) ⇐⇒
Z−m
s
∼ N(0, 1).)

(c) Optionally, prove the result of part (b) directly (by replacing X and Y with X ′ = X−µ1

and Y ′ = Y − µ2 it is enough to consider the special case µ1 = µ2 = 0) by computing the

convolution of two normal densities.

5. If X, Y are independent random variables with the standard normal distribution N(0, 1),

show that X2 − Y 2, 2XY are equal in distribution.

6. Let X, Y be i.i.d. random variables with distribution function F = FX = FY .

(a) Show that the pair of random variables U = min(X, Y ), V = max(X, Y ) have joint

distribution function

FU,V (u, v) =

F (u)(2F (v)− F (u)) if u ≤ v,

F (v)2 if u > v.

(b) In the case when X, Y also have density f , use the result above to show that U, V have

joint density

fU,V (u, v) =

2f(u)f(v) if u < v,

0 otherwise.
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(c) Apply the above formula in the case X, Y ∼ U [0, 1] to get the joint density of U, V in

this case. Then compute the marginal (1-dimensional) densities of U, V using the relations

fU(u) =

∫ ∞
−∞

fU,V (u, v) dv,

fV (v) =

∫ ∞
−∞

fU,V (u, v) du,

and use them to identify which special distribution family each of the r.v.s U, V and belongs

to, and with what parameters.

7. Let Γ(t) denote the Euler gamma function, defined by

Γ(t) =

∫ ∞
0

e−xxt−1 dx, (t > 0).

(a) Show that the special value Γ(1/2) =
√
π of the gamma function is equivalent to the

integral evaluation
√

2π =
∫∞
−∞ e

−x2/2 dx (which is equivalent to the standard normal density

being a density function).

(b) Prove that the Euler gamma function satisfies for all t > 0 the identity

Γ(t+ 1) = tΓ(t).

(This identity immediately implies the fact that Γ(n+ 1) = n! for integer n ≥ 0.)

(c) Find a formula for the values of Γ(·) at half-integers, that is,

Γ
(
n+ 1

2

)
= ?, (n ≥ 0).

(d) Read the Wikipedia article on the Euler gamma function to learn about some of its other

very interesting properties and its importance in mathematics.
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