Homework Set No. 4 — Probability Theory (235A), Fall 2013
Due: 10/28/13 at discussion section

1. Compute E(X) and Var(X) when X is a random variable having each of the following
distributions:

1. X ~ Binomial(n, p).

2. X ~ Poisson(A).

3. X ~ Geom(p).

4. X ~U{1,2,...,n} (the discrete uniform distribution on {1,2,...,n}).
5. X ~ U(a,b) (the uniform distribution on the interval (a,b)).

6. X ~ Exp()\)

7. X ~ Gamma(a, \)

8. X ~ Beta(a, 3)

2. If X is a random variable satisfying a < X < b, prove that

(b= a)?
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Var(X) <

and identify when equality holds.

3. A function ¢ : (a,b) — R is called convex if for any z,y € (a,b) and « € [0, 1] we have

plaz + (1 —a)y) < ap(x) + (1 — a)p(y).

(a) Prove that an equivalent condition for ¢ to be convex is that for any x < z < y in (a, b)

we have
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Deduce using the mean value theorem that if ¢ is twice continuously differentiable and
satisfies ¢” > 0 then it is convex.

(b) Prove Jensen’s inequality, which says that if X is a random variable such that P(X €
(a,b)) =1 and ¢ : (a,b) — R is convex, then

P(EX) < E(p(X)).

Hint. Start by proving the following property of a convex function: If ¢ is convex then at
any point o € (a,b), ¢ has a supporting line, that is, a linear function y(z) = az + b
such that y(z¢) = p(x) and such that ¢(x) > y(z) for all z € (a,b) (to prove its existence,
use the characterization of convexity from part (a) to show that the left-sided derivative of
@ at z¢ is less than or equal to the right-sided derivative at xy; the supporting line is a line
passing through the point (zg, ¢(zo)) whose slope lies between these two numbers). Now
take the supporting line function at xy = EX and make appropriate use of the monotonicity
property of the expectation.

4. Let (A,)22, be a sequence of events in a probability space. Show that

Liimsup 4, = limsup 14,
n

(The lim-sup on the left refers to the lim-sup operation on events; on the right it refers to
the lim-sup of a sequence of functions; the identity is an identity of real-valued functions on
(), i.e., should be satisfied for each individual point w € €2 in the sample space). Similarly,
show (either separately or by relying on the first claim) that

1lim inf A, — hm mf 1An .
n

5. Let U be a uniform random variable in (0,1). For each n > 1 define an event A,, by
A, ={U < 1/n}.

Note that >~ P(A,) = oco. However, compute P(4, i.0.) and show that the conclusion
of the second Borel-Cantelli lemma does not hold (of course, one of the assumptions of the

lemma also doesn’t hold, so there’s no contradiction).
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6. If P, are two probability measures on a measurable space ({2, F), we say that P is
absolutely continuous with respect to (), and denote this P << @, if for any A € F,
if Q(A) =0 then P(A) = 0.

Prove that P << @ if and only if for any € > 0 there exists a 6 > 0 such that if A € F and
Q(A) < 0 then P(A) < e.

Hint. The first Borel-Cantelli lemma makes an interesting appearance here.



