
Homework Set No. 4 – Probability Theory (235A), Fall 2013

Due: 10/28/13 at discussion section

1. Compute E(X) and Var(X) when X is a random variable having each of the following

distributions:

1. X ∼ Binomial(n, p).

2. X ∼ Poisson(λ).

3. X ∼ Geom(p).

4. X ∼ U{1, 2, . . . , n} (the discrete uniform distribution on {1, 2, . . . , n}).

5. X ∼ U(a, b) (the uniform distribution on the interval (a, b)).

6. X ∼ Exp(λ)

7. X ∼ Gamma(α, λ)

8. X ∼ Beta(α, β)

2. If X is a random variable satisfying a ≤ X ≤ b, prove that

Var(X) ≤ (b− a)2

4
,

and identify when equality holds.

3. A function ϕ : (a, b)→ R is called convex if for any x, y ∈ (a, b) and α ∈ [0, 1] we have

ϕ(αx+ (1− α)y) ≤ αϕ(x) + (1− α)ϕ(y).

(a) Prove that an equivalent condition for ϕ to be convex is that for any x < z < y in (a, b)

we have
ϕ(z)− ϕ(x)

z − x
≤ ϕ(y)− ϕ(z)

y − z
.
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Deduce using the mean value theorem that if ϕ is twice continuously differentiable and

satisfies ϕ′′ ≥ 0 then it is convex.

(b) Prove Jensen’s inequality, which says that if X is a random variable such that P(X ∈
(a, b)) = 1 and ϕ : (a, b)→ R is convex, then

ϕ(EX) ≤ E(ϕ(X)).

Hint. Start by proving the following property of a convex function: If ϕ is convex then at

any point x0 ∈ (a, b), ϕ has a supporting line, that is, a linear function y(x) = ax + b

such that y(x0) = ϕ(x0) and such that ϕ(x) ≥ y(x) for all x ∈ (a, b) (to prove its existence,

use the characterization of convexity from part (a) to show that the left-sided derivative of

ϕ at x0 is less than or equal to the right-sided derivative at x0; the supporting line is a line

passing through the point (x0, ϕ(x0)) whose slope lies between these two numbers). Now

take the supporting line function at x0 = EX and make appropriate use of the monotonicity

property of the expectation.

4. Let (An)∞n=1 be a sequence of events in a probability space. Show that

1lim sup An = lim sup
n

1An .

(The lim-sup on the left refers to the lim-sup operation on events; on the right it refers to

the lim-sup of a sequence of functions; the identity is an identity of real-valued functions on

Ω, i.e., should be satisfied for each individual point ω ∈ Ω in the sample space). Similarly,

show (either separately or by relying on the first claim) that

1lim inf An = lim inf
n

1An .

5. Let U be a uniform random variable in (0, 1). For each n ≥ 1 define an event An by

An = {U < 1/n}.

Note that
∑∞

n=1 P(An) = ∞. However, compute P(An i.o.) and show that the conclusion

of the second Borel-Cantelli lemma does not hold (of course, one of the assumptions of the

lemma also doesn’t hold, so there’s no contradiction).

2



6. If P,Q are two probability measures on a measurable space (Ω,F), we say that P is

absolutely continuous with respect to Q, and denote this P << Q, if for any A ∈ F ,

if Q(A) = 0 then P (A) = 0.

Prove that P << Q if and only if for any ε > 0 there exists a δ > 0 such that if A ∈ F and

Q(A) < δ then P (A) < ε.

Hint. The first Borel-Cantelli lemma makes an interesting appearance here.
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