
Homework Set No. 7 – Probability Theory (235A), Fall 2013

Due: 11/18/13 at discussion section

1. Aliens on the planet Mars communicate in a binary language with two symbols, 0

and 1. A text of length n symbols written in the Martian language looks like a sequence

X1, X2, . . . , Xn of i.i.d. random symbols with the Bernoulli distribution Ber(p). Here, p ∈
(0, 1) is a parameter (the “Martian bias”).

Define the entropy function H(p) by

H(p) = −p log2 p− (1− p) log2(1− p).

The graph of H(p) is shown in the figure below.
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Figure 1: Graph of the entropy function h(p)

The goal of this problem is to prove the following result, which states loosely that if n is

large, then with high probability a Martian text of length n can be encoded into an ordinary

(human-made) computer file of length approximately n · H(p) computer bits (note that if

p 6= 1/2 then this is smaller than n, meaning that the text can be compressed by a linear

factor H(p); for example in the case p = 0.3 we have H(p) ≈ 0.881, giving a compression

ratio of around 88%).

Theorem. Let X1, X2, X3, . . . be a sequence of i.i.d. Martian symbols (i.e., Bernoulli vari-

ables with bias p). Denote by Tn = (X1, . . . , Xn) the Martian text comprising the first n
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symbols. For any ε > 0, if n is sufficiently large, the set {0, 1}n of possible texts of length n

can be partitioned into two disjoint sets,

{0, 1}n = An ∪Bn,

such that the following statements hold:

1. P(Tn ∈ Bn) < ε

2. 2n(H(p)−ε) ≤ |An| ≤ 2n(H(p)+ε).

Notes: The texts in Bn can be thought of as the “exceptional sequences” – they are the

Martian texts of length n that are observed only rarely (with probability less than ε). The

texts in An are called “typical sequences”. Because of the upper bound the theorem gives on

the number of typical sequences, it follows that we can encode them in a computer file of size

approximately n(H(p)+ ε) bits, provided we prepare in advance a “code” that translates the

typical sequences to computer files of the appropriate size (this can be done algorithmically,

for example by making a list of typical sequences sorted in lexicographic order, and matching

them to successive binary strings of length (H(p) + ε)n). Conversely, the lower bound on

|An| implies that we cannot encode the typical sequences using less than n(H(p)− ε) bits.

To prove the theorem, let Pn be the random variable given by

Pn =
n∏
k=1

(
pXk(1− p)1−Xk

)
.

Note that Pn measures the probability of the sequence that was observed up to time n.

(Somewhat unusually, in this problem the probability itself is thought of as a random vari-

able). Then proceed as follows:

(a) Represent Pn in terms of cumulative sums of a sequence of i.i.d. random variables.

(b) Apply the Weak Law of Large Numbers to that sequence, and see where that gets you.

2. Let X1, X2, . . . be a sequence of i.i.d. random variables with the exponential distribution

Exp(1), and denote Sn =
∑n

k=1Xk. For each 0 < p < 1, let Tp be a random variable with

the geometric distribution Tp ∼ Geom(p), chosen independently from the Xk’s.
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(a) Compute explicitly the distribution of the random variable STp =
∑Tp

k=1Xk, a sum of a

random number of random variables.

(b) (Optional) Prove the convergence in probability
STp

Tp

prob.−−−→
p→0

1. (Note that this is a version of

the weak law of large numbers for a sum of a randomly varying number of i.i.d. components.)
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